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Abstract
We consider a voting scenario where agents have
opinions that are estimates of an underlying com-
mon ground truth ranking of the available alterna-
tives, and each agent is asked to approve a set with
her most preferred alternatives. We assume that es-
timates are implicitly formed using the well-known
Mallows model for generating random rankings.
We show that k-approval voting — where all agents
are asked to approve the same number k of alterna-
tives and the outcome is obtained by sorting the al-
ternatives in terms of their number of approvals —
has exponential sample complexity for all values of
k. This negative result suggests that an exponential
(in terms of the number of alternatives m) number
of agents is always necessary in order to recover
the ground truth ranking with high probability. In
contrast, by just asking each agent to approve a ran-
dom number of alternatives, the sample complexity
improves dramatically: it now depends only poly-
nomially on m. Our results may have implications
on the effectiveness of crowdsourcing applications
that ask workers to provide their input by approving
sets of available alternatives.

1 Introduction
How should preferences of different individuals be aggre-
gated into a collective decision? This is the central question
that social choice theory aims to answer. In a well-known
model, there is a set of available alternatives and each indi-
vidual preference is expressed as a ranking over these alter-
natives. Given such a profile of preferences, a voting rule
outputs either a winning alternative or a ranking of all the al-
ternatives as a collective decision.

Social choice theory has extensively studied the different
voting rules that can be defined, following two main ap-
proaches. The first one, which is the most common, is ax-
iomatic. It assumes that voting rules should satisfy some de-
sirable social choice axioms and aims to characterize voting
rules in terms of the axioms they satisfy. Well-known impos-
sibility results — e.g. the results by Arrow [1953], Gibbard
[1973], and Satterthwaite [1975] — indicate the challenges
of this approach. The second approach assumes that there is

a ground truth (i.e., an underlying objective ranking over the
alternatives) and views votes as noisy estimates of the ground
truth. Then, a voting rule is better than another if it is more
likely to output the ground truth; the best such rule is a maxi-
mum likelihood estimator (MLE) of the ground truth.

Even though it originates from Marquis de Condorcet —
the founder of social choice theory — more than two cen-
turies ago, the MLE approach became popular only very re-
cently, due to the work of Young [1988], Conitzer and Sand-
holm [2005], and others. Interestingly, Marquis de Condorcet
proposed a very simple process as a model of the mental pro-
cess with which voters decide their individual rankings: each
voter decides the relative ranks of every pair of alternatives a
and b correctly (i.e., consistently to the relative ranks of a and
b in the ground truth) with probability p and incorrectly with
probability 1−p. The process is repeated until these decisions
define a ranking. This model was rediscovered by Mallows
[1957] and today is known as the Mallows noise model.

When voting rules are viewed as estimators of a ground
truth, an important measure of their effectiveness is their sam-
ple complexity. How many votes do we need in a profile
so that the application of a voting rule recovers the ground
truth with high probability? Caragiannis et al. [2016] proved
that maximum likelihood estimators are the voting rules that
have optimal sample complexity and presented positive and
negative sample complexity results for Mallows. See also
[Braverman and Mossel, 2008; Chierichetti et al., 2014;
Rubinstein and Vardi, 2017] for results of similar flavour
in slightly different (non-voting) contexts. Chierichetti and
Kleinberg [2014] and Dey and Battacharyya [2015] present
sample complexity results for voting rules that return a win-
ning alternatives (instead of a complete ranking, which is our
main focus here).

In this paper, we study the sample complexity of approval
voting on profiles that are generated using the Mallows noise
model. Approval voting is simultaneously a simplified for-
mat of voters’ preferences and a voting rule. With an ap-
proval vote, a voter just approves some of the alternatives
(and disapproves the rest). The approval voting rule takes
a profile with approval votes as input, ranks the alternatives
in monotone non-increasing order in terms of their number of
approvals, and returns this ranking as output. Besides its sim-
plicity, approval voting has many interesting properties; the
books by Brams and Fishburn [2007] and Laslier and San-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

149



ver [2010] are devoted to its study. It also seems to be ideal
for several crowdsourcing tasks, as it provides a very sim-
ple interface through which workers can provide their input;
see [Shah et al., 2015; Lee et al., 2014]. A concrete scenario
could be the evaluation of alternative projects that a local gov-
ernment considers for implementation. Adapting the recent
trend of participatory democracy, the local government can
ask a “crowd” of citizens to approve a given number of pre-
ferred projects each, in order to come up with an ordering of
them in terms of their approval score.

Here, our assumptions are that there is a ground truth rank-
ing and each voter uses the Mallows model to form an inter-
nal opinion (i.e., a ranking) over the alternatives. Then, her
approval vote consists of the top alternatives in her internal
opinion. What is the sample complexity of approval voting in
this setting? In other words, how many noisy approval votes
do we need in order to recover (learn) the ground truth rank-
ing with high probability?

As Procaccia and Shah [2015] show, approval voting is the
maximum likelihood estimator for approval votes that have
been produced using Mallows. Then, by the result of Cara-
giannis et al. [2016] mentioned above, we can conclude —
after some adaptation of their proof — that approval voting
has optimal sample complexity in the setting we consider. Is
this a positive result? Not necessarily, as we will show in
Section 3. In particular, we first consider profiles with ap-
proval votes that consist of k alternatives. We show that ap-
proval voting has exponential sample complexity for all pos-
sible values of k. This result extends a negative result from
[Caragiannis et al., 2016] for plurality. Is that all we can hope
for with approval votes? Surprisingly, as we show in Section
4, in profiles where each voter approves a random number
of alternatives, approval voting has only polynomial sample
complexity. We use the term randomized approval voting to
refer to this voting rule.

We have also conducted experiments with randomized ap-
proval (and with a deterministic variant of it) that verify our
positive theoretical result; these are also presented in Sec-
tion 4 together with a discussion on possible extensions of
our proof. Actually, the Mallows sample complexity is ex-
perimentally observed to be even better than our theoretical
bound. We conclude in Section 5, with a short discussion
on open problems and an interesting (and somewhat surpris-
ing) observation about an alternative definition of the model
of building Mallows approval votes.

2 Preliminaries
We begin with preliminary definitions. We consider set-
tings with n voters (or agents) and m alternatives. We de-
note by A = {a1, a2, ..., am} the set of alternatives and by
N = {1, ..., n} the set of agents. We use L(A) to denote
the set of rankings of the alternatives in A. For a ranking
σ ∈ L(A), we denote by σ(a) the rank (or position, taking
values between 1 to m) of alternative a ∈ A in σ.

An approval vote is the set of alternatives approved by an
agent; we use A` to denote the approval vote of agent `. A k-
approval vote has exactly k alternatives. We consider voting
profiles in which each agent submits an approval vote. A vot-

ing profile is a collection of approval votes of the agents, i.e.,
{A`|` ∈ N}. The approval score of an alternative a ∈ A in
a profile is simply the number of its appearances in approval
votes, i.e., |{` ∈ N |a ∈ A`}|.

The well-known approval voting rule computes a fi-
nal ranking by sorting the alternatives in monotone non-
increasing order in terms of their approval score. Ties (i.e.,
deciding the ranks of alternatives that have equal approval
scores) can be broken either randomly or deterministically.
The approval voting rule can be applied to profiles in which
agents have approval votes of different sizes or to profiles
in which all agents’ preferences are restricted to k-approval
votes for some fixed k. As a convention, approval votes are
always non-empty and exclude at least one alternative.

We assume that there is an unknown ground truth ranking
σ∗ ∈ L(A) of the alternatives. Each agent ` ∈ N has an
opinion π` ∈ L(A), which is a noisy estimate of σ∗. The
noisy estimate of agent ` is computed using a noise model
that takes as input the ground truth ranking σ∗ and returns a
random ranking σ ∈ L(A) with a probability that depends on
σ and σ∗. So, when agent ` is asked to submit a k-approval
vote, it returns the first k alternatives in π`; we use topk to
denote the k top alternatives in ranking σ.

We assume that the agents decide their opinions by (im-
plicitly) applying the Mallows noise model. This model uses
a noise parameter p ∈ [1/2, 1] (or, equivalently, noise pa-
rameter φ = 1−p

p ) and produces the (random) ranking σ by
deciding the relation of each pair of alternatives separately:
for alternatives a and b from A with σ∗(a) < σ∗(b), it is de-
cided that a beats b (i.e., a � b) with probability p and that
b � a with probability 1 − p. This is continued for each
pair of alternatives; this process defines a round. If the re-
lation � induces a ranking, the round is successful and this
ranking is the noisy estimate returned by the Mallows pro-
cess; otherwise, the whole process is repeated from scratch
(with a new round that uses new randomness). We denote by
Mallows(φ, σ∗) the random ranking returned by the Mallows
process with noise parameter φ and ground truth σ∗.

It is well-known — e.g., see [Caragiannis et al., 2016] —
that the Mallows probabilities are defined as

Pr[Mallows(φ, σ∗) = σ] =
φd(σ,σ

∗)∑
σ′∈L(A) φ

d(σ′,σ∗)
,

where d(σ1, σ2) is the Kendall-tau distance between rankings
σ1 and σ2 defined as the number of pairwise relations be-
tween alternatives that differ in σ1 and σ2, i.e.,

d(σ1, σ2) =
∑

a,b∈A:σ1(a)<σ1(b)

II{σ2(a) > σ2(b)}.

3 The Mallows Sample Complexity of
k-Approval Voting

We begin with a negative result for k-approval voting, extend-
ing a negative result of Caragiannis et al. [2016] for plurality.
Namely, we will show that, for all values of k, k-approval vot-
ing has exponential sample complexity for almost all values
of noise parameters (Theorem 1).
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Let us give some intuition for the result, for the two ex-
treme values of the noise parameter. As the noise parameter
approaches 1/2, the votes are selected almost uniformly at
random from L(A). Then, it should be clear that a huge num-
ber of votes is required in order to detect any bias towards the
ground truth. In contrast, when the votes have no noise at all,
all agents submit the same set of alternatives and there is no
way to recover the ground truth ranking.

We begin with the following technical lemma; note that the
assumption about σ∗ is without loss of generality.
Lemma 1. Let σ∗ be a ground truth ranking that has alter-
natives ai ranked i-th and let S = topk(Mallows(φ, σ∗)) be
a k-approval set that is produced using Mallows with noise
parameter φ. Then,

Pr[{am−1, am} ∩ S 6= ∅] ≤ 2φm−1−k (1)

Pr[{a1, a2} ∩ S = ∅] ≤ 2φk−1. (2)

Proof. Due to lack of space, we prove only (1) here. First, ob-
serve that a round of the Mallows process is successful if the
pairwise relations among the alternatives in A \ {am−1, am}
induce a (partial) ranking σ and there are different integers
i, j ∈ [m] so that the pairwise relations involving alternatives
am−1 and am are as follows:
• either 1 ≤ i < j ≤ m and alternative am−1 is beaten by

the top i−1 alternatives in σ, beats the rest including am,
and alternative am is beaten by the top j− 2 alternatives
in σ (and by am−1) and beats the rest,
• or 1 ≤ j < i ≤ m and alternative am−1 is beaten by the

top i − 2 alternatives in σ and by alternative am, beats
the rest, and alternative am is beaten by the top j − 1
alternatives in σ and beats the rest including am−1.

In both cases, the integers i and j denote the ranks of am−1
and am in the ranking produced.

So, assuming that the round of the Mallows process has
decided the pairwise relations among the alternatives in A \
{am−1, am} so that they induce a partial ranking σ, the
probability that the remaining pairwise relations that involve
am−1 and am are decided so that a full ranking is pro-
duced with alternatives am−1 and am ranked i-th and j-
th, respectively, is pi+j−2(1 − p)2m−i−j−1 if i < j and
pi+j−3(1 − p)2m−i−j if i > j. To see why, observe that
the probability that alternative am−1 (or am) is decided to be
beaten by any of m− 2 alternatives in σ is p while the prob-
ability that am−1 is decided to beat am is p as well. Clearly,
these probabilities do not depend on the ranking σ.

Hence, the probability that a round of the Mallows process,
that has decided the pairwise relations among the alternatives
in A \ {am−1, am} so that they induce a partial ranking, de-
cides the remaining pairwise relations that involve am−1 and
am so that a full ranking is induced and neither am−1 nor am
occupies some of the t top position (i.e., i, j ≥ t+ 1) is

P (t) =
m−1∑
i=t+1

m∑
j=i+1

pi+j−2(1− p)2m−i−j−1

+
m∑

i=t+2

i−1∑
j=t+1

pi+j−3(1− p)2m−i−j

=
(1− p)2m−1

p3

m−1∑
i=t+1

m∑
j=i+1

(
p

1− p

)i+j
. (3)

The first (respectively, the second) sum in the first equality
above runs over all pairs of positions i, j such that t + 1 ≤
i < j ≤ m (respectively, t + 1 ≤ j < i ≤ m) and sums up
the probabilities that alternatives am−1 and am occupy these
positions at the end of the round. The parameter t can take
any value from 0 to m− 2.

In order to simplify notation, set λ = p
1−p (i.e., λ =

1/φ) and define f(t) =
∑m−1
i=t+1

∑m
j=i+1 λ

i+j for any non-
negative integer t. Then, (3) becomes

P (t) =
(1− p)2m−1

p3
f(t). (4)

By simple calculations, we have

f(t) =
m−1∑
i=t+1

λi
m∑

j=i+1

λj =
m−1∑
i=t+1

λi
λm+1 − λi+1

λ− 1

=
λm+1

λ− 1

m−1∑
i=t+1

λi − λ

λ− 1

m−1∑
i=t+1

λ2i

=
λm+1(λm − λt+1)

(λ− 1)2
− λ(λ2m − λ2(t+1))

(λ− 1)(λ2 − 1)

=
λ3(λm − λt)(λm−1 − λt)

(λ− 1)2(λ+ 1)
. (5)

Using (4) and (5), we have that the probability that the Mal-
lows process returns a ranking with some alternative among
am−1 and am in the top k positions is equal to

1− P (k)/P (0) = 1− (λm − λk)(λm−1 − λk)

(λm − 1)(λm−1 − 1)

=
(λm + λm−1 − 1− λk)(λk − 1)

(λm − 1)(λm−1 − 1)

≤ 2(λk − 1)

λm−1 − 1
≤ 2λk+1−m = 2φm−1−k.

The two inequalities follow since λ ≥ 1 and k ≤ m−1. This
completes the proof of inequality (1).

In order to distinguish between two alternatives and learn
their relative positions in the ground truth ranking using ap-
proval voting, we need at least one approval vote in which the
one alternative is approved and the other is not. Therefore,
the useful (for our purposes) information in the statement of
Lemma 1 is that the probability that a Mallows k-approval
vote can distinguish between the top two (if k is large) or
the bottom two (if k is small) alternatives in the ground truth
ranking σ∗ is exponentially small. Then, it follows that an
exponential number of Mallows approval votes is necessary
just in order to distinguish between the top or the bottom two
alternatives of σ∗.
Theorem 1. For every integer k ∈ [m− 1] and ε ∈ [0, 1/4],
at least Ω(φ−m/2) Mallows k-approval votes are necessary
in order to obtain the ground truth ranking among m alter-
natives with probability at least 1− ε.
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Proof. Assuming that the number of agents is strictly smaller
than 1

4φ
1−m/2, we will show that the probability that we can

correctly decide the position of two particular alternatives in
the ground truth ranking is less that 3/4 ≤ 1 − ε. We distin-
guish between two cases:

When k ≤ m/2, using inequality (1) from Lemma 1 and
the union bound, we have that the probability that some k-
approval set in the profile contains either alternative am−1 or
alternative am (or both) is less than 1

4φ
1−m/2 × 2φm−1−k ≤

1/2; the inequality follows since k ≤ m/2. Hence, the prob-
ability that am−1 gets strictly more approvals than am or their
tie is resolved in favour of am−1 is less than 3/4.

For k > m/2, we use inequality (2) from Lemma 1 and
the union bound to obtain that the probability that some k-
approval set in the profile does not contain alternatives a1 and
a2 is less than 1

4φ
1−m/2 × 2φk−1 ≤ 1/2 as well. So, we

obtain that the probability that a1 gets strictly more approvals
than a2 or their tie is resolved in favour of a1 is less than 3/4.

Hence, in order to get the ground truth with probability at
least 1− ε, at least 1

4φ
1−m/2 agents are necessary.

4 Randomized Approval Voting Has Only
Polynomial Mallows Sample Complexity

The negative result in Section 3 is certainly disappointing.
Still, there is a surprisingly simple way to recover the ground
truth using only polynomially many Mallows approval votes.
The main idea is to ask agents to approve different numbers
of alternatives. In particular, let us define the randomized
approval voting rule, which, for every agent, picks an inte-
ger r uniformly at random from [m − 1] and asks the agent
to approve r alternatives. Then, it ranks the alternatives in
decreasing order of approvals, breaking ties uniformly at ran-
dom.

Before proving our sample complexity bound for random-
ized approval, we give some intuition. Let us identify the
agents that are asked to approve r alternatives as the ones be-
longing to the r-th group. Now observe that if we have suffi-
ciently many (say, Θ(m2)) agents in total, then, almost surely,
all the m− 1 possible groups of agents will be non-empty. If
there is no noise at all, each agent in the r-th group will cor-
rectly approve the top r alternatives in the ground truth rank-
ing and, as we have agent groups and sets of approved alter-
natives of all possible sizes, sorting the alternatives in terms
of their number of approvals will reveal the ground truth.

This intuition is valid in the presence of noise as well. If we
have sufficiently many agents in the first group, they will most
probably give the highest approval score to the top alternative
in the ground truth. Similarly, a sufficiently large number of
agents in the second group will distinguish the two top alter-
natives in the ground truth. Combined with the information
from the first group of agents, we will have the correct rank-
ing for the two top alternatives. The intuition proceeds this
way and indicates that, most probably, the whole information
that is needed in order to recover the ground truth ranking is
in the approved sets of alternatives.

We are now ready to formally prove our positive result. An
interesting feature in the statement of Theorem 2 is that it
involves agents with different noise levels.

Theorem 2. For every ε > 0, when the Mallows agents have
possibly different noise parameters with average value p∗ =
1
n

∑
`∈N p` and their number is

n ≥ 2(m− 1)2

(2p∗ − 1)2
ln (m/ε),

randomized approval returns the ground truth ranking of m
alternatives with probability at least 1− ε.

Proof. Without loss of generality, we assume that the ground
truth ranking σ∗ has alternative ai of A at position i. For
alternative ai ∈ A, let qi be the random variable that de-
notes the number of approvals ai gets from all agents under
the randomized approval voting rule. We will show that the
probability that qi ≤ qi+1 for some i ∈ [m− 1] is very small,
proving the theorem.

Let ` ∈ N be an agent and defineD` depending on whether
` approves alternatives ai and ai+1 as follows:

D` =


1 if agent j approves ai but not ai+1

0 if agent j approves or disapproves
both ai and ai+1

−1 if agent j approves ai+1 but not ai

Hence,

qi − qi+1 =
∑
`∈N

D`. (6)

We would like to show that Pr[qi − qi+1 ≤ 0] ≤ ε/m. The
theorem will then follow by summing over all i ∈ [m− 1].

Observe that the quantity qi − qi+1 is the sum of n in-
dependent random variables, one per agent, taking values in
{−1, 0, 1}. We will use the following well-known inequality:

Lemma 2. [Hoeffding, 1963] Let X1, X2, ..., Xt be inde-
pendent random variables so that Pr[aj ≤ Xj ≤ bj ] = 1
for j ∈ [t]. Then, the expectation of the random variable
X =

∑t
j=1Xj is E[X] =

∑t
j=1 E[Xj ] and, futhermore, for

every ν ≥ 0,

Pr[X ≤ E[X]− ν] ≤ exp

(
− 2ν2∑t

j=1 (bj − aj)2

)
.

We apply Lemma 2 to the random variable qi − qi+1 =∑n
`=1D` with ν = E[qi − qi+1]. Observe that t = n, and

a` = −1, b` = 1 for ` ∈ [n]. Hence, we have

Pr[qi − qi+1 ≤ 0] ≤ exp

(
−E[qi − qi+1]2

2n

)
= exp

(
−
(∑

`∈N E[D`]
)2

2n

)
. (7)

It remains to bound E[D`] from below. Let ` ∈ N be any
agent. By the definition of D`, we have that

E[D`] = Pr[D` = 1]− Pr[D` = −1]. (8)

Clearly, the eventD` = 1 happens when the Mallows process
returns a ranking σ in which alternative ai has better rank
than ai+1. Then, alternative ai is approved and alternative
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ai+1 is not approved when agent ` is asked to approve the r
top alternatives with r lying between σ(ai) (the rank of ai in
σ) and σ(ai+1)− 1. Since r is selected uniformly at random,
we have that the probability that r lies in this particular range
is σ(ai+1)−σ(ai)

m−1 .
Similarly, the event D` = −1 happens when the Mallows

process returns a ranking σ in which alternative ai has worse
rank than ai+1. Then, alternative ai+1 is approved and al-
ternative ai is not approved when agent ` is asked to ap-
prove the r top alternatives with r lying between σ(ai+1) and
σ(ai) − 1. The probability that r lies in this particular range
is σ(ai)−σ(ai+1)

m−1 .
Denote by σ̃ the ranking obtained by swapping alternatives

ai and ai+1 in σ and abbreviate Pr[Mallows(φ`, σ∗) = σ] by
Pr[σ]. By the discussion above, (8) yields

E[D`] =
∑

σ∈L(A):
ai�ai+1

Pr[σ] · σ(ai+1)− σ(ai)

m− 1

−
∑

σ∈L(A):
ai+1�ai

Pr[σ] · σ(ai)− σ(ai+1)

m− 1

=
∑

σ∈L(A):
ai�ai+1

Pr[σ] · σ(ai+1)− σ(ai)

m− 1

−
∑

σ∈L(A):
ai�ai+1

Pr[σ̃] · σ(ai+1)− σ(ai)

m− 1

=
∑

σ∈L(A):
ai�ai+1

(1− φ`) · Pr[σ] · σ(ai+1)− σ(ai)

m− 1

≥ 1− φ`
m− 1

∑
σ∈L(A):
ai�ai+1

Pr[σ]. (9)

The first two equalities follow by the discussion above while
the inequality uses the trivial fact that σ(ai+1) − σ(ai) ≥ 1
when alternative ai is ranked higher than ai+1 in σ. We need
to justify the property Pr[σ̃] = φ` ·Pr[σ] which is used to ob-
tain the third equality in the derivation above. This follows by
the definition of the Mallows probabilities by observing that
d(σ̃, σ∗) = d(σ, σ∗) + 1. To see why, recall the definition of
the Kendall-tau distance from Section 2 and notice that every
pair of alternatives aj and aj′ with j, j′ different than i and
i+1 have the same contribution to the quantities d(σ̃, σ∗) and
d(σ, σ∗). Also, for j different than i and i+1, the contribution
of the pair of alternatives ai and aj to d(σ̃, σ∗) (respectively,
to d(σ, σ∗)) is equal to the contribution of the pair of alter-
natives ai+1 and aj to d(σ, σ∗) (respectively, to d(σ̃, σ∗)). It
remains to consider the contribution of the pair of alternatives
ai and ai+1. Clearly, this contributes (one) to d(σ̃, σ∗) but not
to d(σ, σ∗).

Using again the fact Pr[σ̃] = φ` · Pr[σ], we also have

1 =
∑

σ∈L(A):
ai�ai+1

(Pr[σ] + Pr[σ̃]) = (1 + φ`)
∑

σ∈L(A):
ai�ai+1

Pr[σ],

and (9) now yields

E[D`] ≥
1− φ`

(1 + φ`)(m− 1)
=

2p` − 1

m− 1

and, hence, ∑
`∈N

E[D`] =
n(2p∗ − 1)

m− 1
.

Using (7) and the bound on the number of agents n, we get

Pr[qi − qi+1 ≤ 0] ≤ exp

(
−n(2p∗ − 1)2

2(m− 1)2

)
≤ ε/m,

as desired.

An advantage of randomization is that it guarantees that the
r-th group of agents will have size very close to n/(m − 1)
for every possible value of r in [m − 1].1 Alternatively, this
can be enforced deterministically, e.g., in a round-robin fash-
ion; in this way, each group of agents will have size equal to
either dn/(m − 1)e or bn/(m − 1)c for all values of k. Let
us call this variant balanced approval voting. We do not see
how the proof of Theorem 2 can be adapted to work in this
case since our proof exploits the fact that a Mallows agent is
asked to approve a random number of alternatives in order to
avoid a detailed reasoning about the outcome of the Mallows
distribution. Still, we strongly believe that balanced approval
has polynomial sample complexity at least in the scenario of
agents with identical Mallows parameters. Experimental re-
sults that are presented below fully justify this belief.

On the other hand, if agents have very different Mallows
parameters, the bound of Theorem 2 should not be expected
to hold for balanced approval voting. Indeed, it might hap-
pen that low-noise agents are the ones that are asked to ap-
prove either very few or too many alternatives. Then, all such
an agent can do is to contribute towards distinguishing be-
tween the few alternatives at the top or the few alternatives
in the bottom. At the same time, the agents who are asked
to contribute the most (i.e., the ones who are asked to ap-
prove, say, half of the alternatives) might happen to be the
high-noise ones. A possible solution for avoiding this corre-
lation would be to keep the balancedness restriction but parti-
tion the agents into different groups randomly. Then, a state-
ment similar to the one in Theorem 1 certainly holds but its
proof would be more complicated, making use of martingale
arguments (Azuma instead of Hoeffding bound; see e.g., the
classical textbook on probabilistic analysis by Mitzenmacher
and Upfal [2005]) in order to handle subtle dependencies be-
tween the random variables involved due to the balancedness
restriction.

We conclude this section by presenting experimental re-
sults with randomized and balanced approval voting on 50
alternatives. We have used profiles with homogeneous Mal-
lows agents with three different parameter values, namely
p = 0.95, 0.75, and 0.6. The results are depicted in Figure 1

1Our intuition suggests that uniform selection of the number of
alternatives to be approved is best possible. We do not have a formal
proof of this though.
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Figure 1: Observed accuracy of randomized approval (blue points)
with Mallows agents. Number of agents range from 100 to 400
for agents with p = 0.95 (o), from 200 to 1000 for p = 0.75
(+), and from 500 to 3000 for p = 0.6 (3). Observed accuracy is
measured as the frequency of correctly recovering the ground truth
among 1000 simulations. Ties are broken at random. The red points
show that corresponding results for balanced approval voting.

and show a threshold phenomenon: as the number of agents
increases in a short range of values, the accuracy jumps very
steeply from 0 to almost 1. The results indicate that random-
ized approval is considerably better in practice compared to
our theoretical bound. For example, in order to achieve accu-
racy of 90%, profiles with 250, 800, and 2250 agents with
Mallows parameters 0.95, 0.75, and 0.6, respectively, are
sufficient. The theoretical bounds are approximately 37 000,
120 000, and 750 000. Balanced approval voting is consider-
ably more accurate for high values of the Mallows parameter
(p = 0.95). This is due to the fact that the profiles considered
in this scenario have very few agents compared to the number
of alternatives and, in contrast to balanced approval, random-
ized approval leaves many agents groups empty. This advan-
tage vanishes and there is essentially no statistical difference
between the accuracy of balanced and randomized approval
for higher noise levels (lower values of p).

5 Discussion
Let us attempt to define a seemingly different model that is
inspired by Mallows but instead builds k-approval votes di-
rectly. In particular, consider the alternative random pro-
cess altMallowsk(φ, σ∗) which takes as input the ground truth
ranking σ∗ among the m alternatives in A and the noise pa-
rameter φ (and, consequently, p = 1

φ+1 ) and works as fol-
lows. Like Mallows, it first decides the relation � between
every pair of alternatives separately: for every pair of alter-
natives a and b with σ∗(a) < σ∗(b), it is decided that a � b
with probability p and b � a with probability 1 − p. Now,
if there is a set of k alternatives S so that each of them beats
(according to�) all alternatives in A \S, the current round is
successful and the set S is returned. If no such set exists, the
whole process is repeated from scratch with a new round.

Interestingly, this turns out to be equivalent to the model
for building Mallows approval votes that we have used

throughout the paper. We will present the formal statement
shortly (omitting the proof, due to lack of space). Before do-
ing so, let us define the quantity

δ(S, σ∗) =
∑
a∈S

∑
b∈A\S

II{σ∗(a) > σ∗(b)}

for a non-empty set of alternatives S ⊆ A of size at most
m − 1. In a sense, δ(S, σ∗) is a “distance function” between
a set of approved alternatives S and the ground truth ranking
σ∗. For example, δ(S, σ∗) is equal to 0 if S consists of the
top alternatives in σ∗ while it takes its maximum value when
S consists of alternatives at the bottom of σ∗.

Theorem 3. Given a ground truth ranking σ∗ of the alter-
natives in A, noise parameter φ, and integer k ∈ [m − 1],
the processes altMallowsk(φ, σ∗) and topk(Mallows(φ, σ∗))
return random subsets of A of size k according to the same
probability distribution. In particular, the probability that the
k-sized set S ⊆ A is returned is proportional to φδ(S,σ

∗).

We believe that this alternative view of Mallows approval
votes could be useful in future theoretical investigations. Fur-
thermore, it can be used for the implementation of the Mal-
lows approval noise model without building a Mallows rank-
ing first. Compared to the naive implementation of Mallows
that mimics its definition (of deciding the pairwise relations
between alternatives independently in rounds until these re-
lations induce a ranking), the alternative implementation is
clearly faster since it is less restrictive. Actually, it is con-
siderably faster than several implementations in the literature
such as the “multistage ranking method” of Fligner and Ver-
ducci [1988]. But Mallows has an extremely fast implemen-
tation using the “repeated insertion method” of Doignon et
al. [2004] (see also [Lu and Boutilier, 2014]). In our experi-
ments, we have used this implementation and obtain the ap-
proval votes after building Mallows rankings first. Whether
the alternative process can yield an even improved implemen-
tation is an interesting open problem.

Besides Mallows, there are many other important noise
models over rankings that can be combined with approval
voting, e.g., see [Critchlow et al., 1991; Lebanon and Laf-
ferty, 2002; Lu and Boutilier, 2014]. What is the sample
complexity of randomized approval voting when such models
are used to form the internal agent opinions? Another direc-
tion for future research is to replace the requirement to learn
the ground truth with high probability with the requirement
to recover it approximately. This objective has been studied
very recently in slightly different contexts in [de Weerdt et al.,
2016] and [Caragiannis et al., 2017]. Adapting the terminol-
ogy in these papers to our case, the accuracy parameter 1− ε
would refer to the expected fraction of pairwise relations of
the ground truth ranking that are recovered correctly when ap-
plying approval voting. Finally, regardless of whether the ob-
jective is to learn the ground truth exactly or approximately,
experimentation with real-world data could shed more light
on the suitability of (randomized) approval voting in crowd-
sourcing environments.
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