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Abstract
Autonomous agents are increasingly required to be
able to make moral decisions. In these situations,
the agent should be able to reason about the ethi-
cal bases of the decision and explain its decision in
terms of the moral values involved. This is of spe-
cial importance when the agent is interacting with
a user and should understand the value priorities of
the user in order to provide adequate support. This
paper presents a model of agent behavior that takes
into account user preferences and moral values.

1 Introduction
Social assistive software and robots is an increasing area of
research and development [Oishi et al., 2010]. Such sys-
tems are envisioned as supporting their users in daily activ-
ities, such as medication monitoring and agenda reminders.
The use of such systems, often involving vulnerable users,
raises substantial ethical concerns: How is users’ privacy pro-
tected? Which tasks should the system be allowed to perform
and who can regulate and monitor this? Will artificial care-
givers displace human caregivers, negatively affecting both
client welfare and health-care provider jobs? How to ensure
that the system is aligned with and able to uphold the moral,
societal and legal values of the user and society? This paper
focuses on this last question and proposes means to integrate
values into the planning of agent activities.

Ethical decision making can be understood as action se-
lection under conditions where principles, values, and social
norms play a central role in determining which behavioral
attitudes and responses are acceptable. However, the way
agents choose between different possible courses of action
(“plans”), is often left to the programmer of the agent. This
may be done by statically prioritizing the plans by ordering
them in a file or by using (implicit) criteria that are predeter-
mined (and usually are utility-, resource- or time-optimizing).

Although this usually works well in applications where
agents only have goals related to a particular type of situa-
tion, it does not transfer to applications where agents have
several different tasks that are not directly related, e.g. an el-
derly companion robot or an e-health coach. In these applica-
tions different interactions might require different criteria to
optimize and long-term criteria might differ from short-term

objectives. Thus a person can eat a cake on his birthday while
trying to lose weight over a longer period. At first sight it may
seem inconsistent, but there is a balance between enjoyment
of a birthday and long-term health. However, it would be bet-
ter if the person would get the cake by walking to the shop
rather than going there by car (provided it is within walking
distance). In other words, the health criterion not only plays a
role in the eating decision, but also in the transport decision.

In this paper we present a computational mechanism for
using values to select between (hierarchical) plans in a con-
sistent manner. Using values has two advantages. First there
exists an extensive literature on human values and their rela-
tions. It shows that people have a common base system of
values where the difference between people lies in the pri-
orities they give to the values. It also indicates that values
are relatively stable over the life span of a person. Thus they
can be used as an underlying stable mechanism for decision
making. Note that we do not claim that every decision is ex-
plicitly based on some value. Many decisions are made based
on norms and longer term goals. However these norms and
goals are often chosen based on the value system. Thus these
decisions are indirectly influenced by the values.

A second advantage of using values is the ability to ex-
plain decisions over different situations in a relatively simple
manner. This is important to generate a level of trust in the
system by a human user in that the user can maintain a model
of the system and can predict its future actions based on that
model. Having underlying values explaining a wide variety of
decisions in different situations makes this much easier than
having explicit rules for all possible situations not directly re-
lated.

In the rest of the paper we will first sketch some back-
ground literature, indicating the added value of our approach
(Section 2). Section 3 then presents a scenario to illustrate the
use of values in the deliberation of a companion agent that ad-
vises a person on healthy living. Section 4 describes how this
scenario can be modeled in our framework, and Section 5 de-
fines the computational mechanism for reasoning about val-
ues. Section 6 concludes the paper and outlines future work.

2 Literature
This paper proposes a novel approach to plan selection in re-
active planning, in which societal, moral and legal values of
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users guide the planning process. As such it is based on cur-
rent work on value-sensitive design and on planning. Val-
ues (e.g. honesty, beauty, respect, environmental care, Self-
Enhancement) are key drivers in human decision making (see
e.g. [Rokeach, 1973; Schwartz, 2012]). As such, values can
be seen as criteria to measure the difference between two sit-
uations or for comparing alternative plans. Values are ab-
stract and context dependent, and therefore cannot easily be
measured directly. For example, the value wealth can in-
clude assets other than money, but can be approximated by
the amount of money someone owns. Miceli and Castel-
franchi [1989] discuss in depth the consequences of this indi-
rect use of values.

Values combine two core properties: (1) Genericity: val-
ues are generic and can be instantiated in a wide range of con-
crete situations, and therefore can be seen as a very abstract
goal (e.g. eating well, exercising and avoiding stress all con-
tribute to the value ‘health’). (2) Comparison: values allow
comparison of different situations with respect to that value
(e.g. according to the value ‘health’, salad is preferred over
pizza). In this sense, values become metrics that measure the
effects of actions in different dimensions.

For strengthening their decisions and covering a wider
range of decisions, individuals tend to rely on the influence of
multiple values (e.g. environmental care and wealth). How-
ever, for certain decisions, the values involved can lead to
contradictory preferences. For example, cycling to work
through the rain might be good for the environment, but will
leave you soaked and giving a bad impression in an important
meeting.

In order to handle these contradictions, value-systems in-
ternally order values. There are two dimensions along which
this ordering takes place. First, there is an intrinsic opposi-
tion between different basic values. This intrinsic opposition
is depicted by Schwartz as a circle in which the values are
placed (see Figure 1, adapted from [Schwartz, 2012]). Val-
ues that are close together on the circle work in the same di-
rection and values on opposite sides drive people in opposite
directions. For example, “achievement” and “benevolence”
are conflicting values. This means that generally trying to do
something that is primarily good for one’s own benefit (Self-
Enhancement) is not necessarily the best for society. For ex-
ample, making more profit by paying low wages is good for
the employer’s wealth but bad for the wealth of employees.
However, opposition of values does not mean that one value
excludes another value. It mainly means that they are in gen-
eral “pulling” in different directions and a balance must be
found. For example, if wages are too high the company might
go bankrupt and no one profits anymore.

The second ordering is a personal preference one. Some
values are given a relative importance over others. When
evaluating a decision with conflicting values, alternatives that
satisfy the most important values tend to be preferred (e.g. if
health is more important than wealth then a person will buy
healthy food even if it is more expensive than junk food). So,
the importance of values for a person determines how the bal-
ance is struck between conflicting values.

Value-Sensitive Design (VSD) is a theoretically grounded
approach to the design of technology that accounts for human

follow user’s 
decision 

user’s health 

user’s wealth 

user’s 
sustainability 

power 

Figure 1: Schwartz’s value model annotated with scenario

values in a principled and comprehensive manner [Friedman
et al., 2013; van den Hoven, 2007]. A crucial step in VSD
is the translation of values into design requirements. In this
paper, we follow the value hierarchy approach proposed by
van de Poel [2013], which links values, norms and design re-
quirements or goals through a ‘for the sake of’ relationship.
Formally, values can be linked to specific tasks or sub-plans in
a plan tree, using a ‘counts as’ formalization, which enables
reasoning about the motives to choose for a specific course of
action. This is similar to work done in normative systems to
link norms to agent actions [Grossi et al., 2006] and imple-
ments the properties of values as described above.

Our proposal to link values to the plans of agents is similar
to how Visser et al. [2016] add preferences to the plans of BDI
(Belief-Desire-Intention) agents [Rao and Georgeff, 1995].
However, using values gives us a way to create consistency
between decisions over different actions resulting in a generic
approach that is still consistent with Visser et al. [2016].

Also related is work on integrating planning into BDI lan-
guages [Sardiña and Padgham, 2011; Sardiña et al., 2006].
This work proposes the CANPLAN language. CANPLAN ex-
ploits the similarities between BDI languages and HTN plan-
ning to provide a construct Plan(P ) which does lookahead
planning for the plan P . This work differs from our work in
that they are doing full lookahead planning to find a course of
action, whereas we are considering an under-constrained sit-
uation (with multiple options), and using the consequences of
the available options to select from among them. Meneguzzi
and de Silva [2015] survey other related work that incorpo-
rates planning into the BDI architecture.

Finally, Bordini et al. [2002] implemented one of Agent-
Speak’s selection functions by integrating quantitative rea-
soning using TÆMS [Decker, 1996]. A key difference be-
tween our work and theirs is that they focused on intention se-
lection, i.e. selecting which intention to execute next, whereas
we are dealing with selecting how to achieve a given sub-goal.
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3 Scenario
Given the growing elderly population in many countries, the
development of health-care robots and virtual assistants is a
significant area of research and, at least in Japan, a serious
option for elderly care. The functionalities and requirements
for these Elderly Care Artificial Systems (ECAS) are very
diverse, but it is certain that ECAS will need to take decisions
on behalf and for their users. In this paper, we explore the
situation in which a extremely simplified ECAS should order
and serve a meal to its user [McColl and Nejat, 2013].

In order to decide on the most suitable meal, the robot must
consider the preferences of the user, the dietary prescriptions,
the financial implications, the ease and speed of delivery, pos-
sibly the carbon footprint of the choice, and other issues. Be-
sides contextual constraints (time, money, availability) this
decision is guided by moral and societal values held by the
user and his/her current priorities. An ECAS’s highest value
is to assist its user, which should be done in accordance with
the values of the user. In this meal-assistance scenario, rele-
vant high level user values are Self-Enhancement, Conserva-
tion and Self-Transcendence, using the Schwartz classifica-
tion [Schwartz, 2012]. It should be noted that the values of
Self-Enhancement and Self-Transcendence pull in different
directions and need thus to be balanced carefully.

According to van de Poel [2013], the abstract values are
translated into concrete values to govern the ECAS’s actions,
e.g. ‘follow user’s desires’ or ‘ensure user’s health’, which
are finally linked to concrete system goals, e.g. ‘serve the de-
sired meal’ or ‘serve a healthy meal’. Figure 2 depicts the
value hierarchy, linking user values to concrete goals for the
ECAS’s actions. If the desired meal is neither sustainable nor
healthy a choice has to be made about which value to support
most, and the priorities between values determine the out-
come of the choice. In our approach, plans are selected using
a multi-criteria optimisation (via a weighted sum). Here each
criterion measures the extent to which a particular value is
currently satisfied, given the plans for its child goals.

4 Model
In modeling the problem we take two aspects into account:
the agent’s goals and plans; and the values and their relation-
ships.

User’s 
self-

enhancement 

User’s 
conservation 

follow user’s 
decision user’s health user’s wealth 

desired meal healthy meal cheap meal 

User’s 
self-

transcendence  

user’s 
sustainability 

sustainable 
meal 

(robot’s main value) 
Support user 

Value Tree 

concrete 
values 

abstract 
values 

goals 

Figure 2: Value Tree

4.1 Goals and Plans
We begin with the agent’s goals and plans. We assume BDI-
style plans (excluding cycles), where each plan has a goal
that it achieves, a context condition that indicates in which
situations the plan can be used, and a plan body. Following
AgentSpeak(L) and Jason [Rao, 1996; Bordini et al., 2007]
we consider a plan body to be a sequence of steps (actions or
sub-goals), but this restriction can be easily relaxed. Space
precludes a detailed exposition of BDI languages.

The options for BDI agents to achieve their goals can be
represented as a goal-plan tree, where a goal node has as chil-
dren the plans that can be used to achieve it (an “or” relation-
ship), and a plan node has as children its sub-goals (“and”,
or more precisely “seq”). We extend our BDI language by
annotating actions or plans with their effects on the Value
State (defined below), similar to how Visser et al. [2016] ex-
tend goal-plan trees with preferences. For example, the plan
evil pizza (left side of Figure 3) is annotated “Desire: +20”
indicating that it increases the Value State of Desire by 20.

Figure 3 shows a goal-plan tree for the scenario. The top-
level goal has a single plan with three sub-goals: choosing a
meal, preparing the meal, and consuming the meal. There are
three choices: toast (which is highly unhealthy due to inade-
quate nutrition, but both sustainable and cheap), a frozen meal
(most healthy), and pizza (most desired) with two possible
providers: a local pizza company (within walking distance),
and a multinational “evil” pizza company that is cheaper but
less sustainable. Figure 3 elides the bindings and context
conditions that are needed to constrain the plans chosen to
achieve the prepare and consume sub-goals to be consis-
tent with the selection made earlier when achieving choose.
The annotations “+” and “-” before a variable’s name indi-
cate whether the variable has values produced by the goal in
question (“-”), or whether the goal in question uses values
produced by earlier goals (“+”). The weather goal (bottom
left) instantiates a variable (W ) that depends on the environ-
ment. For such ‘query goals’ we assume we have a proba-
bilistic model of the possible variable bindings, which appear
as child nodes of the query goal.

4.2 Values
A Value is an abstract representation of a human
driver (e.g. Self-Enhancement, Self-Conservation, Self-
Transcendence). As we have explained in Section 2, values
can be in conflict and also have a relative importance. These
two aspects together determine how much time or effort a per-
son (or in our case agent) will spend to promote the different
values.

We start by determining a target for each value, T (v). This
is a number that is compared to the current Value State to
determine the current need to advance that value. To reflect
observations in human behavior [Schwartz, 2012], a design
constraint in our current model is that conflicting values (that
pull decisions in opposite directions) cannot both be impor-
tant at the same time. For example, the annotations assigned
to plans and the relative importance of goals (“salience”,
defined below) should reflect that decisions related to Self-
Enhancement can potentially be at odds with those related
to Self-Transcendence, and therefore often cannot be realized
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G: user_eat 

G: prepare(+Food,+Provider) G: choose(-Food,-Provider) 

P: user_eat 

P: choose_pizza P: choose_frozen P: choose_toast P: have_pizza 

P: get_evil P: get_local P: defrost P: cook 

G: consume(+Food) 

P: make_frozen P: toast 

Wealth: -10 
Sustainability: -5 

Desire: +10 Desire: +5 
P: eat_pizza 

Health: -5 

G: make_frozen G: get_pizza(+Provider) 

P: walk_to 

G: get_there(+W) 

P: drive_to 

Context: W=good 
  AND Provider=Local 
Wealth: -20, Health: +4 
Sustainability: +10 

Wealth: -20 
Sustainability: +7 

Wealth: -1 
Sustainability: 
+20 

Wealth: -7, Sustainability: +15 

P: eat_frozen P: eat_toast 
Health: +10 Health: -10 

W=bad @50% 

G: weather(-W) 

W=good @50% 

Desire: +20 Desire: +20 

P: evil_pizza P: local_pizza 

G: choose_provider(-Provider) 

Figure 3: Goal-plan tree annotated with values

together. On the other hand, values that are very much aligned
should have compatible importance. Finally, for simplicity’s
sake, we assume (for now) that the T (v) remain constant dur-
ing the life of the agent.

At each point in time, for a given value v, the agent also has
a Value State, S(v), that represents the current level of “satis-
faction” for the value, i.e. the current level at which the value
is experienced. For example, if the user has been deprived of
coffee for a long time, then its hedonism Value State might be
low, which will make the need to satisfy it more urgent. For-
mally, S(v) assigns to each value type a number. The Value
State is represented numerically on the same scale as T (v),
i.e. S(v) < T (v) indicates that the Value State is below the
target. We assume that S(v) decays over time (the precise
decay pattern needs to be specified, but our approach is ag-
nostic). Decay represents the fact that if for some time noth-
ing has been done to promote that value, its satisfaction will
decrease. Decay is calculated at the ‘concrete value’ nodes of
the value tree (see Figure 2) using the same decay function
for all nodes. This is propagated up to the root in a very sim-
ple way: if all children of a node decay then the node itself
also decays (using the same decay function).

Values also have a current importance, CI(v), consisting
of two components: the salience of the value in a situation
sal(v, g) and the difference between the current Value State
and the target amount of that value (T (v) − S(v)) [Di Tosto
and Dignum, 2013]. We assume the salience of a value to be
given for each goal. We calculate CI(v) as

CI(v) = sal(v, g)× f(T (v)− S(v))

using some function f(x) (cf. Section 5.1 for the actual im-
plementation) to model that the importance of a value does
not grow linearly with the distance of its satisfaction to its
target, but can have some threshold or other non-linear shape.
However, we retain generality by permitting an arbitrary user-
specified function for the importance of a given value, as a
function of the distance from the Value State to the target.

Priorities between values are thus not static, but can depend
on the context. For example, if sal(wealth, prepare) is very
high, but the S(v) for wealth is well above T (v), then the
current priority of the value “wealth” may be quite low.

4.3 Extending AgentSpeak
We now briefly explain how the AgentSpeak language is ex-
tended to accommodate reasoning about courses of action
using values at runtime. Specifically we use the Jason lan-
guage [Bordini et al., 2007] (which extends Rao’s original
AgentSpeak(L)). Although we do make use of some of Ja-
son’s extensions, our work can also be easily adapted to apply
to the original AgentSpeak, and to other BDI languages.

Inspired by Sardiña and Padgham [2011] and Sardiña et
al. [2006] we introduce a construct “VBR(G)” denoting that
sub-goal G should be achieved, but with the selection of
choices to achieve it being guided by value-based reasoning.

At compile-time we pre-process this construct away1, re-
sulting in a collection of constraints, and a modified Jason
program. Where the original program has VBR(G), the mod-
ified program invokes an external constraint solver to find a
best course of action (in accordance with the values and their
Value State), and it then uses the recommended course of ac-
tion to guide the achievement of G.

We transform the agent program by firstly identifying the
plans that are involved in achieving G, either directly be-
cause their trigger is !G, or indirectly (recursively) because
their trigger is a goal that is a sub-goal of a plan that is
used to achieve G. Each of these plans is then modified
by: (i) adding an annotation2, and (ii) adding an additional
test to the context condition. The annotation is used to
carry an additional argument capturing the choices gener-

1Doing this allows Jason to be used without modification, but it
does mean that plans cannot be updated at run-time.

2This is a Jason construct that allows (e.g.) a goal to have addi-
tional information associated with it.
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ated by the value-based reasoning3. The additional test in
the context condition is that the choice specified by the value-
based reasoning is this plan. Formally, we use the annotation
choice(Choice) to capture, when the plan is called, the path
through the goal-plan tree generated by the value-based rea-
soning. We define Choice[G] to be the numerical index of
the plan chosen to achieve G. The additional context con-
dition for the ith plan to achieve G is then a test that either
Choice is not ground, or that it indicates the current plan,
i.e. (¬ground(Choice)) ∨ Choice[G] = i. For example, the
Jason plan +!g : c ← P (where !g is the goal being handled,
c the context condition, and P the plan body) is modified to
the following (where P ′ is P where sub-goals have the anno-
tation [choice(Choice)] added).

+!g[choice(Choice)]
: ((not .ground(Choice)) | Choice[g] = i) ∧ c
← P ′.

Secondly, we generate the constraints from the goal-plan
tree (which is itself derived from the program). Note that
the constraints do not change, and hence can be generated at
compile-time. We discuss this process below in Section 5.

Finally, we replace VBR(G) with the sequence of steps:
.callSolver(Choice) and !G[choice(Choice)]. The first step
(implemented as an internal action) invokes an external solver
to solve the constraints. The second step calls the sub-goalG,
but with the output from the solver provided as an annotation.
An exception is made for plans with an initial query goal (see
Section 5.1). These are optimised using an expected value
approach. A second optimisation is needed for the subgoals
of such a plan after the query has been executed to instantiate
its variable and before the plan is executed.

5 Process
The process for making value-based decisions has two steps.
Firstly, we take the constraint problem that has been gener-
ated from the goal-plan tree (Section 5.1) and use a standard
constraint solver to solve it, yielding a best course of action
for the current situation. Secondly, we implement the selected
course of action (by achieving4 the goal !G[choice(Choice)])
in the modified Jason program. In Section 5.2 we analyse the
scenario using this implementation.

5.1 Finding a best Course of Action
In order to determine a best course of action we generate
constraints from the program, and then solve the constraints.
We use constraints because, unlike [Thangarajah et al., 2002;
Visser et al., 2016], we need to deal with dependencies be-
tween different parts of the tree.

Before defining the mapping we need to formally define
goal-plan trees. A goal plan tree is represented by its root

3If using a BDI language other than Jason, then a copy of each
plan can be added, extended by an additional argument.

4If the goal achievement fails, then failure handling will be used,
e.g. for Jason using a pattern [Bordini et al., 2007, Section 8.2]. One
slight wrinkle is that we need to ensure that if !G[choice(Choice)]
fails, that the recovery is not bound to the choices, i.e. use !G in the
recovery plan, not !G[choice(Choice)].

node. A node N comprises a name Nn, an optional anno-
tation Na that is a tuple of changes to the Value State, an
optional context condition N cc (a logical formula), the input
(N i) and output (No) variables (both sets of variables), an
optional binding N b of the form var = val (allowing for
multiple variables, i.e. var can be a tuple of variables and val
a tuple of constants), a type N t (either g or p for “Goal” or
“Plan”), and a list of N c child nodes NC = {NC

1 , . . . , N
C
Nc}

(note that N c, lower case “c”, is the number of children and
NC is the set of child nodes NC

i ).
We now define the mapping from a goal-plan tree to a con-

straint solving problem. For each node we declare a variable
with the name of the node and type of tuple of Value State
changes. We also declare variables that appear in any node’s
N i or No, and, for nodes that are goals, we declare a vari-
able c Nn (c for “chosen”) that is an array of N c Booleans
(0 or 1) constrained so that exactly one of them is true. The
variable c Nn represents which plan is chosen to achieve the
goal corresponding to node N . Formally we define d(N) to
denote these declarations associated with a node N .

We generate the following constraints. For a plan node
the value of the node is the sum of the node’s children. For
a goal node we add a constraint for each child of the form
c Nn[i] = 1⇒ Nn = (NC

i )n ∧N cc ∧N b, i.e. if the choice
is i, then the value of the node N is the value of its ith child
NC
i , and the context condition and binding of the ith child

apply. Finally, if a node has an annotation, then the value of
the node is simply that annotation (and the node’s type and
children are ignored5). Formally:

c(N) =


Nn = Na if Na is present
Nn =

∑Nc

i=1N
C
i
n else if N t = p

Σic N
n[i] = 1 otherwise

∧
∧Nc

i=1 c N
n[i] = 1

⇒ (Nn = (NC
i )n ∧ N cc ∧N b)

Plan nodes with an initial query goal6 are optimised using
an expected value approach. Copies of the plan node’s sub-
tree with the query goal removed are made for each bind-
ing, with distinct new node names Nn

i replacing each Nn in
the original subtree. Distinct renamed copies of the query
goal’s variable are made for each copied tree and set to the
respective binding. Constraints are generated as shown above
for each copy, and finally the following constraint is added:
Nn = ΣipiN

n
i , where the pi are the binding probabilities.

We apply the functions d(N) and c(N) to all nodes and
collect the results. This gives us the constraints and variables.

Figure 4 shows an extract of a goal-plan tree (which cor-
responds to a Jason program, not shown for space reasons),
and the constraints that are generated (using our implementa-
tion) from the goal-plan tree. In the tree goal nodes are italic
and a node of the form N δ

x=c indicates that the plan labeled
N is annotated with value change δ, and has a plan selection
constraint or effect that constrains variable x to equal c (and
[x1 = c1, x2 = c2] constrains xi to equal Ci). Here food val-
ues represent pizza (1), frozen food (2), and toast (3), while

5Therefore if a node has an annotation then the tree below it can-
not contain any bindings.

6We do not currently handle more complex uses of query goals.
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G: choose(-food,-provider)

P: choose pizzafood=1

G: choose provider(-provider)

P: evil pizza[20;0;0;0]provider=1 P: local pizza[20;0;0;0]provider=2

P: choose frozen[10;0;0;0][food=2,provider=3] P: choose toast[5;0;0;0][food=3,provider=3]

Vars: food, provider : int; c g choose:{0, 1}3, c choose provider:{0, 1}2;
g choose, p choose pizza, g choose provider, p evil pizza, p local pizza, p choose frozen, p choose toast : Int4;

Constraints:
p evil pizza= (20, 0, 0, 0), p local pizza= (20, 0, 0, 0), p choose frozen= (10, 0, 0, 0), p choose toast= (5, 0, 0, 0)∑3
i=1 c g choose[i] = 1 ∧

∑2
i=1 c g choose provider[i] = 1

c g choose[1] = 1⇒ (g choose = p choose pizza ∧ food = 1)
c g choose[2] = 1⇒ (g choose = p choose frozen ∧ food = 2 ∧ provider = 3)
c g choose[3] = 1⇒ (g choose = p choose toast ∧ food = 3 ∧ provider = 3)
p choose pizza = g choose provider
c g choose provider[1] = 1⇒ (g choose provider = p evil pizza ∧ provider = 1)
c g choose provider[2] = 1⇒ (g choose provider = p local pizza ∧ provider = 2)

Figure 4: Example goal-plan tree and the constraints generated from it (“c ” is short for “chosen ”)

provider values represent evil pizza (1), local pizza (2), and
home (3).

The objective function that we minimize, subject to these
constraints, is CI(v) = sal(v, g)× f(T (v)−S(v)), summed
over the different values. We use the function f(x) =
(max{x, 0})2 (although other functions could obviously be
used). Thus, the constraints are solved while minimizing:∑

v∈V
sal(v, g)× (max{T (v)− S(v) , 0})2

where V is the set of all value types. The output from the
constraint solver includes the values for each of the choices
c Nn - this allows us to guide the selection of plans to follow
the recommended course of action.

5.2 The Scenario Revisited
The goal-plan tree in Figure 3 has been encoded and our
implementation of the mapping in Section 5.1 has been
used to generate constraints in MATLAB using the YALMIP
(yalmip.github.io) optimisation library. We use MOSEK
(mosek.com), a state-of-the-art industrial optimiser, as the
underlying solver. The internal representation of the problem
has 194 variables and 370 constraints.

In a situation where all four values (desire, health, wealth
and sustainability) have equal salience, their targets are all
100, and their Value States are (110, 50, 80, 20), the best
choice (found by the constraint solver in a fraction of a sec-
ond7), is to get and eat pizza from the local provider. The
computed Value State change is (20,−3,−20, 8.5), where

7 0.2324 seconds, obtained from YALMIPs solvertime property
and averaged over 10 runs on a 2.6GHz Intel Core i7 running Win-
dows 7.

the health and sustainability values are expected values from
either walking or driving, depending on the weather.

However, in other situations, different decisions are appro-
priate. For instance, in a situation where all four values have
equal importance (i.e. equal CI), the best choice is a frozen
meal (with Value State change (10, 10,−7, 15)). On the other
hand, if wealth is somewhat more important (i.e. CI(wealth)
is sufficiently greater than the other values’ CI), and sustain-
ability not important at all, then the cost saving offered by
evil pizza makes it the best choice (Value State change of
(20,−5,−10,−5)). Finally, if wealth is the overriding crite-
rion, then toast becomes the best choice (5,−10,−1, 20).

6 Conclusions
In this paper, we propose a value-based approach to plan se-
lection, that takes into account societal and ethical values that
influence decision-making. Using values as basis for deliber-
ation supports both stability over time and the ability to ex-
plain decisions over different situations in a relatively sim-
ple and cohesive manner. We show the potential of this ap-
proach on a simple scenario of a Elderly Care Artificial Sys-
tem (ECAS) as an example of social assistive technology.

We have described a mechanism for BDI agents to make
decisions using value-based reasoning. The mechanism uses
an external constraint solver, and does not require changing
the BDI language or its implementation.

Future work is needed on the evaluation of the scalability
and broader applicability of the approach, on a mechanism to
use values to provide explanations of an agent’s behaviour,
and on consideration of multi-agent decision making.
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