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Abstract
Posted-price mechanisms are widely-adopted to de-
cide the price of tasks in popular microtask crowd-
sourcing. In this paper, we propose a novel posted-
price mechanism which not only outperforms ex-
isting mechanisms on performance but also avoids
their need of a finite price range. The advantages
are achieved by converting the pricing problem into
a multi-armed bandit problem and designing an op-
timal algorithm to exploit the unique features of mi-
crotask crowdsourcing. We theoretically show the
optimality of our algorithm and prove that the per-
formance upper bound can be achieved without the
need of a prior price range. We also conduct exten-
sive experiments using real price data to verify the
advantages and practicability of our mechanism.

1 Introduction
Crowdsourcing is an economical method to outsource tasks
to online workers [Slivkins and Vaughan, 2014]. Depending
on the types of tasks, crowdsourcing takes different forms.
Microtask crowdsourcing, one of the most widely-adopted
forms, targets small tasks such as labeling images and fill-
ing up surveys [Gao et al., 2015]. These tasks usually are
repetitive and easy for an individual to perform. In microtask
crowdsourcing, a requester often needs to accomplish hun-
dreds of tasks within a given budget. The requester thus posts
these tasks on microtask crowdsourcing platforms along with
the price for each task. Workers, who are willing to perform
the tasks, submit their solutions and will be paid with the
prescribed price. Microtask crowdsourcing has become in-
creasingly prevalent in many domains, especially in collect-
ing training data for machine learning algorithms [Difallah et
al., 2015; Simpson et al., 2015; Wang and Zhou, 2016].

One of the key challenges in microtask crowdsourcing is
to determine the price of tasks properly. Overpricing causes
inefficient use of the budget, whereas underpricing may lead
to an insufficient number of participating workers [Anari et
al., 2014]. Thus, various pricing mechanisms have been pro-
posed [Singla and Krause, 2013; Singer and Mittal, 2013],
among which the posted-price mechanism is one of the most
attractive branches. It is because the posted-price mecha-
nism only requires workers to make reject-or-accept deci-

sions, which greatly facilitates its practical usage. With these
binary decisions, the mechanism can learn the worker model
online and accordingly adjusts the price to be optimal.

Nevertheless, existing posted-price mechanisms are still
inadequate in two aspects. Firstly, they overlook the unique
features of microtask crowdsourcing: the number of workers
willing to accept the task is unknown and increases monoton-
ically with the increasing price, whereas the number of work-
ers allowed by the limited budget is accurately known and
decreases monotonically. These features can be employed to
guide the price adjustment of posted-price mechanisms. Sec-
ondly, the performance of existing posted-price mechanisms
significantly degrades if the number of possible prices is very
large. Thus, the requester is required to input a proper range
of prices in advance, which causes much inconvenience.

In this paper, we propose a novel posted-price mechanism
to exploit the unique features of microtask crowdsourcing.
More specifically, we first convert the pricing problem into
an equivalent multi-armed bandit (MAB) problem. Then, we
develop an algorithm that offers each coming worker the min-
imum price at which the anticipated number of workers will-
ing to accept the task approximately equals the number of
workers allowed by the budget. Due to the monotonicity fea-
tures of the two numbers mentioned above, our algorithm is
proven to be optimal. In addition, these features ensure that
our algorithm will never explore overly high prices and thus
does not need to set a price range in advance. To empirically
validate the advantages of our mechanism over existing ones,
we conduct extensive experiments using three popular worker
models as well as the real-world price data collected from
MTurk, a widely-adopted microtask crowdsourcing platform.
Experimental results confirm that our mechanism achieves al-
most the same performance as the idealized case where the
accurate worker model is known in advance (i.e., the optimal
price is used from the very beginning). We also carry out ro-
bustness tests to ensure the practicability of our mechanism.

2 Related Work
Existing posted-price mechanisms assume that a worker ac-
cepts a task if the offered price is higher than the cost. With-
out prior knowledge about workers’ costs, these mechanisms
learn the cost distribution online by counting the acceptance
frequency. To maximize requesters’ revenue under the un-
certainty about workers’ costs, different price selection al-
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gorithms have been employed. Badanidiyuru et al. [2012]
discretize the range of workers’ costs into a geometric pro-
gression, and use a heuristic policy to pick the price from
the progression. Singla and Krause [2013] then propose an
improved policy which selects the price with the highest up-
per confidence bound of the expected revenue under the bud-
get constraint. Badanidiyuru et al. [2013] and Agrawal and
Devanur [2014] propose to employ linear programming (LP)
to choose the optimal price. The LP problem is formulated
with the upper and lower confidence bounds of the expected
revenue and the budget cost of all possible prices. To summa-
rize, when a worker comes, the existing mechanisms estimate
the expected revenue for all possible prices using the learned
worker model, to choose the optimal price. However, the
learned worker model may be inaccurate, causing the inaccu-
racy of the estimated revenue. Besides, an essential condition
of this approach is that the number of possible prices has to be
finite. Its accuracy will become even lower for a larger num-
ber of possible prices. Thereby, a finite prior price range must
be provided. In contrast, in our mechanism, we only compare
the estimated number of workers willing to accept the task
with the accurately known number of workers allowed by the
limited budget. Without the comparison among the possibly
inaccurate estimations of expected revenue, the optimal price
computed by our mechanism is more accurate. Meanwhile,
since our mechanism only cares about the minimum price at
which the two numbers mentioned above are equal, there is
no need to have a proper price range given in advance.

Note that there are many other pricing mechanisms pro-
posed in the literature of crowdsourcing. These mechanisms
consider a different architecture or scenario. For example,
procurement auction determines the price based on work-
ers’ truthful bids about their costs [Singer and Mittal, 2013;
Zhang et al., 2014; Chandra et al., 2015]. In microtask
crowdsourcing, due to the large number of workers, this
architecture will significantly increase the communication
burden and easily be affected by workers’ bounded ratio-
nality [Rivas, 2015]. In [Badanidiyuru et al., 2012] and
[Singla and Krause, 2013], posted-price mechanisms also
show competitive and even better performance than procure-
ment auctions. Therefore, we focus on the posted-price mech-
anism in this paper. Another popular direction of crowd-
sourcing studies is to determine payment according to the
quality of work [Yin and Chen, 2015; Liu and Chen, 2016;
Radanovic et al., 2016]. Research in this direction tries to
exert more efforts from workers, while our aim is to recruit
more workers. These two aspects are in fact complementary.

3 Modeling of Microtask Crowdsourcing
In microtask crowdsourcing, a requester posts tasks along
with the price for each task. Workers can accept or reject
the task. If they accept and finish one task, they will be paid
the offered price. In this section, we formulate the requester
and worker models, and study the unique features, optimal
price and performance metric of microtask crowdsourcing.

3.1 Requester and Worker Models
The requester gets revenue from the completed tasks. In this
paper, we assume that each task has unit value. Thus, the

requester wishes to maximize the number of completed tasks
within the given budget B. Assume there are N workers in
the market and workers will finish the task if accepting it.

The worker model depicts how workers decide to accept
or reject the task. Here, we give three typical worker models
which will be utilized in our experiments:
• Private Cost Model [Singla and Krause, 2013] assumes

that worker wi accepts a task only if the offered price pi
is not lower than the cost ci for performing the task.
• Discrete Choice Model [Gao and Parameswaran, 2014]

describes human’s preference for tasks with higher util-
ity. It assumes worker wi accepts price pi with the prob-
ability exp[U(pi)]/{exp[U(pi)] + Mi}, where Mi de-
notes the effects of other tasks. U(pi) = αipi + βi de-
notes the utility of performing the offered task.
• Reference Payment Model [Yin and Chen, 2015] depicts

human’s habit to maintain a reference payment level ri.
It assumes worker wi accepts price pi with the probabil-
ity {1 + exp[−αi − βi(pi − ri)]}−1, where αi and βi
denote worker i’s interest and activeness, respectively.

In this paper, we assume the stochastic arrival of workers.
This setting is widely-adopted in the research on microtask
crowdsourcing [Singla and Krause, 2013]. Under this as-
sumption, workers arrive one at a time, and the decision pa-
rameters of different workers (e.g. the cost ci) are the same
or i.i.d. sampled from a same distribution. Thus, the input-
output relationship of the worker models mentioned above
can be described by a probability function F (p). It denotes
the probability at which the coming worker accepts the of-
fered price p. Since prices in practice must be positive, we
require the support of F (p) to be (0,+∞) (i.e. F (p) = 0
for p ≤ 0). Note that the stochastic arrival assumption may
be violated in real crowdsourcing markets, and the number of
workers N is also always changing. Therefore, in our experi-
ments, we evaluate the robustness of our mechanism in more
practical settings where these factors are all considered.

3.2 Unique Features, Optimal Price and Metric

If we choose a price p for all tasks, the requester’s expected
revenue will be U(p) = min{N · F (p), B/p}. The first item
denotes the expected number of workers accepting the price,
and the second item represents the budget constraint. Then,
we can summarize the features of microtask crowdsourcing:
• Higher prices attract more workers — i.e. the acceptance

probability function F (p) is monotonically increasing;
• Higher prices allow fewer workers to be recruited — i.e.

the budget constraint B/p is monotonically decreasing;
• The optimal price p∗ = arg maxp U(p) is the point

where the budget equals the costs to recruit all workers
willing to accept the price, i.e. N · F (p∗) = B/p∗.

Besides, the available prices in practice should be discrete
(e.g. 1, 2, ... cents), and the optimal price p∗ may be un-
available. Thus, we write the possible prices as an increasing
sequence (p1 < p2 < . . .), and denote the available optimal
price with the optimal subscript k∗ = arg maxk U(pk).

We also introduce a performance metric for posted-price
mechanisms, termed regret. It denotes the expected revenue
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gap between mechanism M and taking the optimal price pk∗ :

R(N,B) = U(pk∗ , B,N)− U(M,B,N) (1)

Maximizing requester’s revenue is thus equivalent to mini-
mizing the regret. Note that the stochastic combination of
different prices may generate higher expected revenue than
the optimal price p∗ [Badanidiyuru et al., 2013]. Neverthe-
less, finding the optimal combination requires much more ac-
curate F (p) than identifying the single optimal price. Thus,
the mechanisms targeting the optimal combination need to
explore sub-optimal prices more, and their performance turns
out to be worse than ours in experimental evaluation.

4 Indirect Design of Posted-Price Mechanism
When selecting prices, we face a dilemma between exploring
possible better prices and exploiting the current best price. A
general idea to resolve this dilemma is to compute and select
the current optimal price while considering the uncertainties
of the learned worker model. However, it is not easy to prop-
erly measure the uncertainties. In addition, budget constraint
is another factor that needs attention. The requester accumu-
lates revenue by recruiting workers, and the recruitment stops
when the budget is exhausted. The stopping point is in fact
not fixed due to the change of selected prices, making it dif-
ficult to decide the current optimal price. Thus, designing a
mechanism that can also exploit unique features of microtask
crowdsourcing becomes even more challenging.

We adopt an indirect approach to design our mechanism.
More specifically, instead of directly solving the pricing prob-
lem of microtask crowdsourcing, we define an equivalent
multi-armed bandit (MAB) problem at first. It not only has
the same optimal solution as microtask crowdsourcing but
also inherits all the unique features. The only difference is
that this equivalent problem has a fixed stopping point which
simplifies computing the current optimal. For this equivalent
problem, we then develop an algorithm which optimally ex-
ploits the unique features of microtask crowdsourcing and use
it as the core of our mechanism. For clarity, all the theoreti-
cal analysis, including the optimality of our MAB algorithm,
the linkage between the two problems on regret and the regret
under the infinite price range, will be provided in Section 5.

4.1 Equivalent MAB Problem
We first define the equivalent MAB problem using the no-
tations explained in microtask crowdsourcing. Suppose that
we need to repeatedly select a price pi ∈ {p1, . . . , pK} for
N times. After selecting the price pi in round n, we can
observe a stochastic signal Xn which follows the Bernoulli
distribution. The mean of Xn equals to F (pi). Meanwhile,
the reward for choosing pi is Ũi = min{Fi, Ci}, where
Fi = F (pi) and Ci = B/(N · pi). The rewards are ac-
cumulated in background, so we can only know the rewards
after finishing all the N selections. In fact, this new problem
just equally divides the expected revenue in microtask crowd-
sourcing into N rounds, i.e. Ũi = U(pi)/N . This conversion
helps us bypass the difficulty caused by the changing stopping
point when trying to exploit the unique features of microtask
crowdsourcing. It is also easy to conclude that this equivalent

problem inherits all the unique features of microtask crowd-
sourcing and reaches the optimal at the optimal price pk∗ .

Based on the three unique features, we introduce the fol-
lowing two kinds of possible optimal prices (POPs):
• POP-1 is the price pk that satisfies Ck > Fk ≥ Ck+1;
• POP-2 is the price pk that satisfies Fk ≥ Ck > Fk−1.

Here, k ∈ {1, . . . ,K}. For completeness, we add the con-
ventions that p0 = 0 and pK+1 = +∞. The rationale behind
introducing POPs lies in the following theorem:
Theorem 1. There is always one and only one POP-1 or
POP-2. The optimal price pk∗ must be POP-1 or POP-2.
Proof of Existence: Due to the monotonicity of F (p) and
B/p, Fi − Ci is monotonically increasing when i changes
from 1 to K. Meanwhile, the conventions, p0 = 0 and
pK+1 = +∞, lead to F0 − C0 < 0 and FK+1 − CK+1 > 0,
respectively. Therefore, there must exist k satisfying Fk −
Ck < 0 and Fk+1 − Ck+1 ≥ 0. In this case, if Fk ≥ Ck+1,
then pk is POP-1; otherwise, pk+1 is POP-2.

Proof of Uniqueness: Let pk be POP-1. Then, for ∀i < k,
Fi ≤ Fk < Ck ≤ Ci+1 < Ci. For ∀i > k, Fi ≥ Fi−1 ≥
Fk ≥ Ck+1 ≥ Ci. Thus, pi6=k cannot be POP-1 or POP-2.
Besides, let pk be POP-2. Then, for ∀i < k, Fi ≤ Fk−1 <
Ck ≤ Ci+1 < Ci. For ∀i > k, Fi ≥ Fk ≥ Ck ≥ Ci−1 > Ci.
Thus, pi6=k also cannot be POP-1 or POP-2.

Proof of Optimality: Let pk be POP-1 or POP-2. From the
uniqueness proof, we can have Fi ≤ min{Ck, Fk} for ∀i < k

and Ci ≤ min{Ck, Fk} for ∀i > k. Therefore, Ũk ≥ Ũi6=k,
and pk equals to the optimal price pk∗ .

4.2 Optimal MAB Algorithm
Algorithm 1: Optimal MAB Algorithm (OA-MAB)

Input: n, S = {p1, . . . , pK}, µi(n) for i = 1 . . .K
1 Search for the minimum POP in S based on µi(n);
2 Output the current optimal price pk(n) at which:

k(n) =


k̂ if pk̂ is POP-1,
k̂ if pk̂ is POP-2 and

l
k̂
−1

2
∈ N

k̂ if pk̂ is POP-2,
l
k̂
−1

2
6∈ N and bk̂−1 < Ck̂

k̂ − 1 if pk̂ is POP-2,
l
k̂
−1

2
6∈ N and bk̂−1 ≥ Ck̂

where k̂ is the subscript of the minimum POP.

Here we describe the optimal algorithm for the MAB prob-
lem, a novel price selection algorithm with the regret proven
to match the Lai-Robbins regret lower bound in Section 5.1.
To formally describe the algorithm, we need the following
notations. Let Ni(n) denote the number of times that price
pi has been selected up to round n. The empirical esti-
mate of the acceptance probability Fi in round n is µi(n) =

1
Ni(n)

∑n
t=1 1{k(t) = i}Xt. Here, k(t) denotes the subscript

of the selected price in round t, and we set µi(n) = 1 if
Ni(n) = 0. Besides, we employ the KL-divergence to com-
pute the upper confidence bound of the estimate as:
bi(n, µi, Ni) = sup{q ≥ µi(n) :

Ni(n) ·KL[µi(n), q] ≤ log(n) + 3 log(log(n))} (2)

with the convention that bi(n, µi, 0) = 1 and bi(n, 1, Ni) =
1. Here,KL[x, y] = x log(xy )+(1−x) log( 1−x

1−y ) denotes the
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KL-divergence between two Bernoulli distributions whose
means are x and y respectively. We adopt this upper confi-
dence bound formulation because Garivier and Cappé [2011]
prove it to outperform other formations in Bernoulli distribu-
tions. Furthermore, we define li(n) as the number of times
that pi has been identified as not only the minimum possible
optimal price (being POP-1 or POP-2) but also POP-2. The
pseudo-code of the algorithm is presented in Algorithm 1.

4.3 Posted-Price Mechanism
Our posted-price mechanism is presented in Algorithm 2.
The input parameters include the budget B, the number of
workers N and the minimum price gap δp. Here, δp is a pa-
rameter of the microtask crowdsourcing platform and denotes
the minimum payment unit (e.g. 1 cent). Due to the search of
the minimum possible optimal price in our MAB algorithm,
the probability of exploring overly large prices exponentially
decreases. We call this property as probability decay and will
further explain it in Section 5.3. This special property en-
sures the performance of our MAB algorithm to be unaffected
when K → +∞. Thus, our mechanism does not need the in-
put of a finite price range, which is required by other existing
mechanisms. Furthermore, to strictly ensure the offered price
is not higher than the remaining budget Bn, we use Bn to
update the available price set S in our mechanism.
Algorithm 2: Optimal Posted-Price Mechanism (OPPM)

1 Parameters: B, N , δp
2 Initialize: worker counter: n = 1; available budget: Bn = B;

the number of recruited workers: U = 0;
the number of available prices: K = bB/δpc;
the estimate of F : µi = 1 for i = 1 . . .K;

begin
3 while Bn > δp and n ≤ N do
4 K ← bBn/δpc , S ← {δp, 2δp, . . . ,Kδp};
5 pk ← OA-MAB(n, S, µ1, . . . , µK);
6 Offer price pk(n) to the coming worker;
7 Observe the decision: Xn = 0 (reject) or 1 (accept);
8 Update: U ← U +Xn; Bn+1 ← Bn − pkXn;

µk ← (Nkµk +Xn)/(Nk + 1).

5 Theoretical Analysis
In this section, we provide extensive theoretical analysis to
support our indirect approach to designing the mechanism.

5.1 Optimality of the MAB Algorithm
To prove the optimality of Algorithm 1, we firstly derive the
Lai-Robbins regret lower bound of the MAB problem defined
in Section 4.1 [Lai and Robbins, 1985]. This classic bound
represents the possible best performance that can be achieved
by any uniformly good algorithm. We say an algorithm π is
uniformly good if its regret is at most O(logN) for all possi-
ble F (p). Besides, we keep B/N = const when N → +∞.
This setting ensures the optimal price pk∗ to be unchanged
and can greatly facilitate the asymptotic analysis.

Theorem 2. In the MAB problem defined in Section 4.1, any
uniformly good algorithm π satisfies:

lim inf
N→∞

Rπ(N)

log(N)
=

{
0 pk∗ is POP-1

Ck∗−Fk∗−1

KL[Fk∗−1,Ck∗ ] pk∗ is POP-2 (3)

Proof. To prove this theorem, we firstly employ the
Theorem 1 in [Graves and Lai, 1997]1 and can get
limN→∞ inf [Rπ(N)/ log(N)] ≥ w(F ), where w(F ) equals
the output of the following LP problem:

min
∑K
j=1wj · [Ũk∗(F )− Ũj(F )]

s.t. inf F̌∈Z(F )

∑
j 6=k∗wj ·KL[Fj , F̌j ] ≥ 1

(4)

where wj ≥ 0 and F̌ denotes the bad distribution that has the
same value as F at k∗ but provides the largest rewards at an-
other price ǩ 6= k∗. Even starting from k∗, any algorithm still
needs to explore other prices to distinguish F and F̌ . Other-
wise, it may miss the real optimal price ǩ if we substitute F
with F̌ . All the bad distributions form the set Z(F ):

Z(F ) = {F̌ |F̌k∗ = Fk∗ , Ũk∗(F̌ ) < maxk Ũk(F̌ )}. (5)

Secondly, we solve the LP with the monotonicity of F (p)
and C(p) considered. The detailed deduction is similar
to those in Theorem 4.1 of [Combes and Proutiere, 2014].
Therefore, we only provide the results here: if pk∗ is
POP-1, Z(F ) ≡ ∅ and w(F ) = 0; if pk∗ is POP-2,
inf F̌∈Z(F )

∑
j 6=k∗wjKL[Fj , F̌j ] = wk∗−1 ·KL[Fk∗−1, Ck∗ ]

and w(F ) = (Ck∗ − Fk∗−1)/KL[Fk∗−1, Ck∗ ].

Then, let R̃ be the regret of Algorithm 1. The optimality of
our algorithm is guaranteed by the following theorem:

Theorem 3. The regret upper bound of Algorithm 1 equals
the Lai-Robbins regret lower bound, namely

lim supN→∞R̃/ log(N) = lim infN→∞R
π/ log(N). (6)

To prove this theorem, we firstly decompose the rounds where
sub-optimal prices are selected into the following sets:

{n ≤ N |k(n) 6= k∗} ⊂ A1 ∪A2 ∪A3, (7)

where A1 = {n|k̂(n) < k∗} and A2 = {n|k̂(n) > k∗}
denote the cases where POP is wrongly identified. A3 = {n|
k̂(n) = k∗, k(n) = k∗ − 1} represents the cases where POP
is correct but the price is wrongly selected. Next, based on
this decomposition, we compute the regret of Algorithm 1 as:
Theorem 4. R̃ ≤ E|A1|+ E|A2|+ (Ck∗ − Fk∗−1) · E|A3|,
where | · | denotes the size of a set.
Proof. Considering the fact that Ũk∗ ≤ Ck∗ , Ũk∗−1 = Fk∗−1

and 0 < Ũj ≤ Ũk∗ ≤ 1 hold for ∀j, we can have

R(B,N) ≤ E|A1|+ E|A2|+ (Ck∗ − Fk∗−1) · E|A3|

where, Nj denotes the total times that pj is selected.

Furthermore, we can bound E|A1|, E|A2| and E|A3| with:
Theorem 5. E|A1| < +∞.

1The Condition (2.14) for Theorem 1 in [Graves and Lai 1997]
is equivalent to F (p(k

∗ − 1)) > 0, which is satisfied in all cases.
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Proof. According to the settings of Algorithm 1, we derive
Qj

def
= {n|k̂ = j}

Wj
def
= {n|k̂ = j, k(n) = j}

}
⇒ |Wj | ≥ |Qj |/2 (8)

using the fact that pj is selected at least when lj−1
2 ∈ N. For

j < k∗, to achieve k̂ = j, µj should satisfy µj ≥ Cj+1.
Meanwhile, Fj < Cj+1. Thus, µj > Fj holds for all ele-
ments in Wj . According to Theorem 4.1 of [Rajeev et al.,
1989], E|Wj | <∞ and E|A1| =

∑
j<k∗ E|Qj | < +∞.

Theorem 6. E|A2| = O(log log(N)).
Proof. For any j > k∗, we can define the following sets:

Qj
def
= {n|pj is POP-1} Wj

def
= {n|pj is POP-2} (9)

Furthermore, we can decompose the set Wj as:
Xj

def
= {n ∈Wj |Nj−1(n) ≥ lj(n)/4}

Yj
def
= {n ∈Wj |Nj−1(n) < lj(n)/4}

(10)

where lj(n) denotes the times that pj is identified as the min-
imum POP and POP-2. Similar as Theorem 5, we can prove
E|Qj | < +∞ and E|Xj | < +∞. Then, we can derive

Zj
def
= {n ∈Wj |bj−1(n) < Cj} ⇒ |Yj | ≤ 4|Zj | (11)

using the fact that pj is selected at least lj(n)/4 times under
the condition that (lj − 1)/2 6∈ N and bj−1(n) < Cj . Since
Cj < Fj−1, according to Theorem 2 of [Garivier and Cappé,
2011], E|Zj | ≤ γ log log(N), where γ is a constant. Thus,
E|A2| =

∑
j>k∗(E|Qj |+ E|Wj |) = O(log log(N)).

Theorem 7. If pk∗ is POP-1, E|A3| < +∞ . If pk∗ is POP-2,
E|A3| = O((1 + ε) log(N)/KL[Fk∗−1, Ck∗ ]), where ε can
be any positive number [Garivier and Cappé, 2011].
Proof. A3 denotes the case where pk∗ is identified as POP-2
in Algorithm 1 and k∗ − 1 is selected because bk∗−1 ≥ Ck∗ .
If k∗ is actually POP-1, similar as Theorem 5, we can prove
E|A3| < +∞. If k∗ is POP-2, we can get Fk∗−1 < Ck∗ ≤
bk∗−1. According to Theorem 2 of [Garivier and Cappé,
2011], E|A3| = O((1 + ε) log(N)/KL[Fk∗−1, Ck∗ ]).
Using Theorems 4∼7, we can finally conclude Theorem 3.

5.2 Regret of Our Mechanism
Since the stopping point of posted-price mechanisms is not
fixed, the regret of our mechanism has a little difference with
the regret of the proposed MAB algorithm. Thus, we here
derive the regret upper bound of our mechanism.
Theorem 8. The expected regret of our mechanism satisfies:

R(N,B) ≤E|A1|+ (Fk∗ − Fk∗−1)E|A3|
[Krδp − Fk∗pk∗ ] · E|A2|/pk∗

(12)

where Kr > k∗ denotes the subscript of the highest price
explored by our mechanism. Due to the probability decay
explained in Section 5.3,Kr may be far smaller than bB/δpc.
The proof of Theorem 8 is similar to the proof of Lemma 1
in [Singla and Krause, 2013]. Thus, we omit it here. The
core idea is to derive the connection between the expected
stopping point and the regret. Furthermore, Theorems 4 and 8
show that the regrets of both the algorithm and the posted-
price mechanism are linearly proportional to E|A1|, E|A2|
and E|A3|. This linkage explains the rationale behind our
indirect approach, which is to first develop the algorithm with
the lowest regret in the equivalent MAB problem and then
design our mechanism based on the optimal algorithm.

5.3 The Regret under Infinite Price Range
In our mechanism, the price range is set as the budget B.
However, in real markets, B is usually very large, leading to
a large number of possible prices. To avoid the low efficiency
of exploring a large price space, existing mechanisms all re-
quire inputting a prior price range. By contrast, the regret
of our mechanism is not affected by the infinitely increasing
price range. To demonstrate, we analyze the probability dis-
tribution of the largest price explored in our mechanism:
Theorem 9 (Probability Decay). There exists a probability
pd < 1 which ensures Pr(Kr = k∗ + n) ≤ pn−1

d .
Proof. If Algorithm 1 outputs Kr, pKr

or pKr+1 must be
identified as the minimum POP. Thus, µk < Ck must hold
for k∗ < ∀k < Kr. In this case, we can have

Pr(Kr = k∗ + n) ≤
∏k∗+n−1

k=k∗+1
Pr(µk ≤ Ck) (13)

Meanwhile, since the initial value of µi is set as 1 in Algo-
rithm 2, to satisfy µk < Ck, pk must be tried for at least one
time. Considering the fact that Fk > Ck and the Chernoff-
Hoeffding bound [Auer et al., 2002], we can get

Pr(µk ≤ Ck) ≤ e−2Nk(Fk−Ck)2 ≤ e−2∆2

(14)

where ∆ = Fk∗+1−Ck∗+1. Combining Equations 13 and 14,
we can conclude Theorem 9 by setting pd as exp(−2∆2).
Then, we conduct asymptotic analysis of the regret as:
Theorem 10. When N →∞ and B/N = const,

R(N,B) ≤
{

O(log logN) pk∗ is POP-1
O
(

Fk∗−Fk∗−1

KL[Fk∗−1,Ck∗ ] logN
)

pk∗ is POP-2

Proof. Considering the probability decay, we can bound the
expected value of the right-hand side of Equation 12 using∑∞

n=1
KrδpPr(Kr = k∗+n) ≤

∑∞

n=1
(k∗+n)δpp

n
d (15)

The other items in Equation 12 are not affected by Kr. Fur-
thermore, we can compute the above infinite series as∑∞

i=1
(k∗+n)pnd = (k∗+ 1)Z(pd) +Z2(pd) < +∞ (16)

where Z(pd) = pd/(1− pd). Thus, the effects of the infinite
price range (B →∞) is bounded by a finite constant. Hence,
using Theorems 5∼7, we can conclude Theorem 10.
Theorem 10 shows that our mechanism not only outper-
forms the state-of-the-art mechanism, BP-UCB [Singla and
Krause, 2013], but also classic MAB algorithms, such as
UCB-1 [Auer et al., 2002] and OSUB [Combes and Proutiere,
2014]. Above all, the performance of our mechanism is al-
most not affected by the number of possible prices, which
is attractive for practical usage but unreachable by existing
posted-price mechanisms and MAB algorithms.

6 Experimental Evaluation
In this section, we empirically compare our mechanism with
state-of-the-art mechanisms including BP-UCB [Singla and
Krause, 2013], PD-BwK [Badanidiyuru et al., 2013] and
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Table 1: Experimental settings
Expt. Worker Model Price Range1 B/N

#1 Private Cost Model: ci ∼ U [5, 200]2 [5, 200] 40

#2 Discrete Choice Model:
[1, 200] 30

αi = 1/15, βi = 0.39, Mi = 2000

#3
Reference Payment Model:

[1, 200] 70αi ∈ {0, 1, 3}, βi ∈ {0, 1, 3}, ri ∈
{20, 60, 120}, Evenly Distributed

#4 The data (Fig. 1e) collected using [1, 100] 10MTurk-Tracker [Difallah et al., 2015]
1 The price range is set for the benchmark mechanisms.
2 Here, U denotes the uniform distribution.
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(f) Selected Prices in Expt. #1
Figure 1: Experiment results on different worker models

UCB-BwK [Agrawal and Devanur, 2014]. The idealized case
with the optimal price pk∗ known in advance and always se-
lected is also employed for comparison. The testbeds are built
based on the three worker models mentioned in Section 3.1
and the real-world price data collected from MTurk. In our
experiments, workers come sequentially. The mechanism of-
fers a price for each worker. The worker decides to accept
or reject the price according to the worker model. After ob-
serving worker’s decision, the mechanism updates the price
offered to the next worker. The settings of our experiments
are shown in Table 1. The price unit in all experiments is the
cent. The expected revenue is estimated with the mean of 100
runs. Besides, we keep the ratio between the budget B and
the number of workers N fixed so as to ensure the optimal
price pk∗ to be unchanged and thus a fair comparison.

The results are shown in Fig. 1(a-d), respectively. We can
conclude that our mechanism remarkably outperforms state-
of-the-art mechanisms. It even achieves the same perfor-
mance as the idealized case where pk∗ is known and always
selected. To explain the reason for the optimal performance
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Figure 2: Robustness tests against: (a) the inaccurate worker num-
ber; (b) the non-stochastic arrival of workers

of our mechanism, we compare the selected price distribu-
tions in Fig. 1f. We can observe an overstaying of BP-UCB
at the current optimal price, which is caused by an overmuch
exploitation on the current estimate of F (p). UCB-BwK, on
the other hand, shows an overmuch exploration on the possi-
ble better prices. By contrast, our mechanism performs much
better in balancing exploitation and exploration. It can not
only move quickly to pk∗ , but also accurately stop exploration
around pk∗ . Note that PD-BwK behaves similarly as UCB-
BwK and thus is not included for comparison in Fig. 1f.

To further verify the practical usability of our mechanism,
we conduct robustness analysis by considering two abnormal
cases where the assumptions used for design are violated.
Here, we use the private cost model as the testbed, and the
settings are the same as Expt. #1. In Fig. 2a, we compare
the performance of different mechanisms when the number
of workers N is not accurately given. The real number of
workers N is 20000, and the relative error is calculated as
(N̄ −N)/N , where N̄ is the value offered to the mechanism.
The comparison shows that our mechanism has distinct ad-
vantages over state-of-the-art mechanisms in this abnormal
case. Fig. 2b presents the comparison of different mecha-
nisms in a non-stochastic setting where two groups with the
private cost uniformly distributed in [5, 100) and [100, 200]
respectively arrive one after another. This setting can explain
the phenomenon that working at night may cost workers more
than at day. The results show that the performance advantage
of our mechanism is kept in this non-stochastic setting.

7 Conclusion and Future Work
In this paper, we propose an optimal posted-price mechanism
for microtask crowdsourcing. Compared with existing mech-
anisms, our mechanism not only has better performance but
also requires fewer inputs. To demonstrate the advantages,
we firstly prove the optimality of our algorithm that its re-
gret matches the Lai-Robbins regret lower bound. This lower
bound applies to any possible algorithms and denotes the best
performance that can be achieved. Then, we prove that the
regret of our mechanism is not affected by the infinite price
range. Besides, the empirical results on various worker mod-
els and the real price data collected from MTurk also verify
the advantages of our mechanism. For future work, we will
improve our mechanism in two aspects. Firstly, when search-
ing for the optimal price, our mechanism needs to try the price
one-by-one. Adaptively changing the searching step can en-
hance efficiency. Secondly, the work quality can be further
considered by designing a more practical payment scheme
consisting of base salary and bonus-penalty.
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