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Abstract
This paper deals with two-sided matching with
budget constraints where one side (firm or hospi-
tal) can make monetary transfers (offer wages) to
the other (worker or doctor). In a standard model,
while multiple doctors can be matched to a single
hospital, a hospital has a maximum quota: the num-
ber of doctors assigned to a hospital cannot exceed
a certain limit. In our model, a hospital instead
has a fixed budget: the total amount of wages al-
located by each hospital to doctors is constrained.
With budget constraints, stable matchings may fail
to exist and checking for the existence is hard. To
deal with the nonexistence of stable matchings, we
extend the “matching with contracts” model of Hat-
field and Milgrom, so that it handles near-feasible
matchings that exceed each budget of the hospitals
by a certain amount. We then propose two novel
mechanisms that efficiently return such a near-
feasible matching that is stable with respect to the
actual amount of wages allocated by each hospi-
tal. In particular, by sacrificing strategy-proofness,
our second mechanism achieves the best possible
bound.

1 Introduction
This paper studies a two-sided, one-to-many matching model
when there are budget constraints on one side (firm or hospi-
tal), i.e., the total amount of wages that it can pay to the other
side (worker or doctor) is limited. The theory of two-sided
matching has been extensively developed. See the book by
Roth and Sotomayor [1990] or Manlove [2013] for a compre-
hensive survey. In this literature, rather than fixed budgets,
maximum quotas are typically used, i.e., the total number of
doctors that each hospital can hire is limited.

Some real-world examples are subject to matching with
budget constraints: a college can offer stipends to students to
recruit better students while the budget for admission is lim-
ited, a firm can offer wages to workers under the condition
∗A full version can be found at http://arxiv.org/abs/1705.07643.
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that employment costs depend on earnings in the previous ac-
counting period, a public hospital can offer salaries to doctors
in the case where the total amount relies on funds from the
government, and so on. To establish our model and concepts,
we use doctor-hospital matching as a running example.

However, most papers on matching with monetary trans-
fers assume that budgets are unrestricted (e.g., [Kelso and
Crawford, 1982]). When they are restricted, stable match-
ings may fail to exist [Mongell and Roth, 1986; Abizada,
2016]. In particular, Abizada considers a subtly different
model from ours and shows that (coalitional) stable match-
ings, where groups of doctors and hospitals have no profitable
deviations, may not exist.1

We construct and analyze our mechanisms on a “matching
with contracts” model [Hatfield and Milgrom, 2005], which
characterizes a class of mechanisms called the generalized
Deferred Acceptance (DA) mechanism. If a mechanism—
specifically, the choice function of every hospital—satisfies
three properties, i.e., substitutability, irrelevance of rejected
contracts, and law of aggregate demand, then it always finds
a “stable” allocation and is strategy-proof for doctors. How-
ever, in the presence of budget constraints, the hospital’s
choice function cannot satisfy these properties because sta-
ble matchings may not exist.

To deal with the nonexistence of stable matchings, we fo-
cus on a near-feasible matching that exceeds the budget of
each hospital by a certain amount. This idea can be inter-
preted as one in which, for each instance of a matching prob-
lem, our mechanisms find a “nearby” instance with a sta-
ble matching. For a choice function that produces a near-
feasible matching, the existing properties are not sufficient to
ensure the optimality of the hospitals’ utilities. To resolve
this, we devise a new property, which we call compatibil-
ity, on the matching with contract model. Moreover, from a
practical point of view, we need to compute choice functions
efficiently. However, computing each hospital’s choice func-
tion is NP-hard because it is equivalent to solving a knapsack
problem.

Building upon these ideas, we propose two novel mecha-
nisms that efficiently return a near-feasible stable matching

1He also proposes a modified deferred acceptance mechanism
that produces a pairwise stable matching, and that is strategy-proof
for doctors.
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with respect to the actual amount of wages allocated by each
hospital: one is strategy-proof for doctors and the other is not.

The idea of near-feasible matchings closely relates to
Nguyen and Vohra [2015]. They examine matchings with
couples where joint preference lists over pairs of hospitals are
submitted (e.g., [Kojima et al., 2013; Perrault et al., 2016]),
and then develop an algorithm that outputs a stable match-
ing, in which the number of doctors assigned to each hospi-
tal differs (up or down) from the actual maximum quota by
at most three. Alternatively, Dean et al. [2006] examine a
problem similar to ours, restricting each hospital to having
only a lexicographic utility. We instead allow each hospital
to have an additive utility. In any case, it must be emphasized
that those studies discuss no strategic issue, i.e., misreport-
ing a doctor’s preference may be profitable. The literature on
matching has found strategy-proofness for doctors, i.e., each
doctor has no incentive to misreport his or her preference,
to be a key property in a wide variety of settings [Abdulka-
diroğlu and Sönmez, 2003].

2 Preliminaries

This section describes a model for two-sided matchings with
budget constraints. A market is a tuple (D,H,X,�D,
fH , BH), where each component is defined as follows. There
is a finite set of doctors D = {d1, . . . , dn} and a finite set of
hospitals H = {h1, . . . , hm}. Let X ⊆ D × H × R++ de-
note a finite set of contracts where each contract x ∈ X is
of the form x = (d, h, w). Here, R++ is the set of positive
real numbers. A contract means that hospital h ∈ H offers
wage w ∈ R++ to doctor d. A hospital can choose a wage
freely within R++ and can offer a doctor multiple contracts
with different wages. Each contract is acceptable for each
hospital h.

Furthermore, for any subset of contracts X ′ ⊆ X , let
X ′d denote {(d′, h′, w′) ∈ X ′ | d′ = d} and X ′h denote
{(d′, h′, w′) ∈ X ′ | h′ = h}. We use the notation xD, xH ,
and xW to describe the doctor, the hospital, and the wage as-
sociated with a contract x ∈ X , respectively.

Let �D= (�d)d∈D denote the doctors’ preference profile,
where �d is the strict relation of d ∈ D over Xd ∪ {∅}, i.e.,
x �d x

′ means that d strictly prefers x to x′. ∅ indicates a
null contract. Let fH = (fh)h∈H denote hospitals’ utility
profile, where fh : Xh → R++ is a function such that for
any two sets of contracts X ′, X ′′ ⊆ Xh, hospital h prefers
X ′ to X ′′ if and only if fh(X ′) > fh(X ′′) holds. We fur-
ther assume that fh is additive for all h ∈ H , i.e., fh(X ′) =∑

x∈X′ fh(x) holds for any X ′ ⊆ Xh. We assume, instead
of priority orderings, cardinal utilities as used in some pre-
vious work [Barberà et al., 2004; Bouveret and Lang, 2011;
Budish and Cantillon, 2012]. However, this does not mat-
ter for our theoretical results. Indeed, a cardinal utility can
be transformed into a priority ordering �h over contracts
Xh for each hospital h ∈ H , where, for any two contracts
x, x′ ∈ Xh, x �h x

′ if and only if fh(x) > fh(x′).
Each hospital h has a fixed budget Bh ∈ R++ that it

can distribute as wages to the doctors it admits. Let BH =
(Bh)h∈H be the budget profile. We assume that, for any con-

tract (d, h, w), 0 < w ≤ Bh holds. Given X , let

wh = min
x∈Xh

xW and wh = max
x∈Xh

xW .

Moreover, we use the notation wh(X ′) for any X ′ ⊆ X to
denote the total wage that h offers in X ′, i.e.,

∑
x∈X′

h
xW .

We call a subset of contractsX ′ ⊆ X a matching if |X ′d| ≤
1 for all d ∈ D. A matching X ′ ⊆ X is B′H -feasible if
wh(X ′) ≤ B′h for all h ∈ H . Let us next explain the notion
of a blocking set (or coalition). Given a matchingX ′, another
matching X ′′ ⊆ Xh for hospital h is a blocking coalition if
X ′′ �xD

X ′ for all doctors xD of x ∈ X ′′ \X ′, fh(X ′′) >
fh(X ′h), and wh(X ′′) ≤ B′h. If such X ′′ exists, we say X ′′
blocks X ′. Then we obtain a stability concept.
Definition 1 (B′H -stability). We say a matching X ′ is B′H -
stable if it is B′H -feasible and there exists no blocking coali-
tion.

As we will see, when no hospital is allowed to violate the
given constraints BH , conventional stable matchings (B′H =
BH ) may not exist. Definition 1, for example, allows a central
planner to add or redistribute the budgets and this planner
finds a problem instance with B′H(≥ BH) whose B′H -stable
matching is guaranteed to exist. If each contract has the same
amount of wage w, we can regard a budget constraint Bh for
each hospital h as its maximum quota of bBh/wc.

A mechanism is a function that takes a profile of doctors’
preferences as input and returns matching X ′. We say a
mechanism is stable if it always produces aB′H -stable match-
ing for certain B′H . We also say a mechanism is strategy-
proof for doctors if no doctor ever has any incentive to mis-
report her preference, regardless of what the other doctors
report.

Next, we briefly describe a class of mechanisms called the
generalized DA mechanism [Hatfield and Milgrom, 2005]
and its properties. This mechanism uses choice functions
ChD : 2X → 2X and ChH : 2X → 2X . For each
doctor d, its choice function Chd(X ′) chooses {x}, where
x = (d, h, w) ∈ X ′d such that x is the most preferred con-
tract within X ′d (we assume Chd(X ′) = ∅ if ∅ �d x for all
x ∈ X ′d). Then, the choice function of all doctors is given as:
ChD(X ′) :=

⋃
d∈D Chd(X ′d). Similarly, the choice function

of all hospitals ChH(X ′) is
⋃

h∈H Chh(X ′h) where Chh is a
choice function of h. There are alternative ways to define the
choice function of each hospital Chh. As we discuss later,
the mechanisms considered in this paper can be expressed by
the generalized DA with different formulations of ChH . For-
mally, the generalized DA is given as Algorithm 1.

Algorithm 1: Generalized DA
input: X,ChD,ChH output: matching X ′ ⊆ X

1 R(0) ← ∅;
2 for i = 1, 2, . . . do
3 Y (i) ← ChD(X \R(i−1)), Z(i) ← ChH(Y (i));
4 R(i) ← R(i−1) ∪ (Y (i) \ Z(i));
5 if Y (i) = Z(i) then return Y (i);

Here, R(i) is a set of rejected contracts at the ith iteration.
Doctors cannot choose contracts in R(i). Initially, R(0) is
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empty. Thus, each doctor can choose her most preferred
contract. The chosen set by doctors is Y (i). Then, hospi-
tals choose Z(i), which is a subset of Y (i). If Y (i) = Z(i),
i.e., no contract is rejected by the hospitals, the mechanism
terminates. Otherwise, it updates R(i) and repeats the same
procedure.

Hatfield and Milgrom define a notion of stability, which we
refer to as HM-stability.

Definition 2. (HM-STABILITY) A matching X ′ ⊆ X is
said to be HM-stable if X ′ satisfies (i) X ′ = ChD(X ′) =
ChH(X ′) and (ii) there exists no hospital h and set of con-
tracts X ′′ 6= Chh(X ′h) such that X ′′ = Chh(X ′h ∪ X ′′) ⊆
ChD(X ′ ∪X ′′).

HM-stability unifies stability concepts that are designed for
each context of (standard) matching problems without con-
straints. Indeed, it implies BH -stability if we require the
choice functions of hospitals to strictly satisfy budget con-
straints BH . Let us next see the properties for ChH .

Definition 3. (SUBSTITUTABILITY, SUB) For any X ′,
X ′′ ⊆ X with X ′′ ⊆ X ′, X ′′ \ChH(X ′′) ⊆ X ′ \ChH(X ′).

Definition 4. (IRRELEVANCE OF REJECTED CONTRACTS,
IRC) For any X ′ ⊆ X and X ′′ ⊆ X \ X ′, ChH(X ′) =
ChH(X ′ ∪X ′′) holds if ChH(X ′ ∪X ′′) ⊆ X ′.
Definition 5. (LAW OF AGGREGATE DEMAND, LAD) For
any X ′, X ′′ with X ′′ ⊆ X ′ ⊆ X , |ChH(X ′′)| ≤
|ChH(X ′)|.

Hatfield and Milgrom proved that if ChH satisfies SUB and
IRC, the generalized DA always produces a matching that is
HM-stable. If ChH further satisfies LAD, it is strategy-proof
for doctors.

2.1 Impossibility and Intractability
When no hospital is allowed to violate the given constraints,
it is known that stable matchings may not exist [Mongell and
Roth, 1986; McDermid and Manlove, 2010; Abizada, 2016].
This raises the issue of the complexity of deciding the exis-
tence of aBH -stable matching. McDermid and Manlove con-
sidered a special case of our model and proved NP-hardness.
Hamada et al. [2017] examined a similar model to ours and
Abizada [2016] and proved that the existence problem is ΣP

2 -
complete.

To deal with the nonexistence of stable matchings, we fo-
cus on a near-feasible matching that exceeds each budget by
a certain amount. For each instance of a matching problem,
our mechanisms find a nearby instance with a stable match-
ing. The following theorem implies that, to obtain a stable
matching, at least one hospital h needs to increase its budget
by nearly wh.

Theorem 1. For any positive reals α < β < 1, there exists a
market (D,H,X,�D, fH , BH) such thatwh ≤ β·Bh and no
stable matching exists in any inflated market (D,H,X,�D,
fH , B

′
H) if Bh ≤ B′h ≤ (1 + α)Bh for all h ∈ H .

Although we omit the proof due to space limitations, we
obtained this theorem by generalizing an example where no
stable matching exists according to parameters α and β.

3 New Property: Compatibility
This section introduces a new property, which we call com-
patibility, to extend Hatfield and Milgrom’s framework for a
situation where budget constraints may be violated. Let us
first consider the following choice function for a hospital h:

Ch∗h(X ′) = arg max
X′′⊆X′, wh(X′′)≤Bh

fh(X ′′)

for each X ′ ⊆ Xh.2 In this case, evaluating Ch∗h is compu-
tationally hard because the problem is equivalent to the well-
known knapsack problem, which is an NP-hard problem (see
e.g., [Kellerer et al., 2004]). Hence, the choice function is
not practical. Even worse, the generalized DA does not al-
ways produce aBH -stable matching because such a matching
need not exist. Furthermore, even if there exists a BH -stable
matching, the generalized DA with the choice function may
produce an unstable matching.

What choice function Chh can we construct when we al-
low it to violate budget constraints? Strategy-proofness is
still characterized by SUB, IRC, and LAD because changing
the budgets of hospitals does not affect doctors’ preferences.
However, SUB and IRC are not sufficient to admit a stable
matching in our sense.

Intuitively, to admit such a stable matching, the set of con-
tracts chosen by the choice function does maximize the hos-
pital’s utility. Otherwise, a hospital with non-optimal utility
can form a blocking coalition. To prevent this, we need to
introduce a new property.

Definition 6. (COMPATIBILITY, COM) Consider a hospi-
tal h with a utility function fh, a budget Bh, and contracts
Xh. For any X ′′ ⊆ X ′ ⊆ Xh such that wh(X ′′) ≤
max{Bh, wh(Chh(X ′))}, it holds that

fh(Chh(X ′)) ≥ fh(X ′′).

With this property, the output of the choice function Chh

is guaranteed to be the optimal solution for a knapsack prob-
lem with a certain capacity that is greater than or equal to the
predefined capacity.

We next prove that COM together with SUB and IRC char-
acterizes stable matchings when budget constraints may be
violated.

Theorem 2. Suppose that for every hospital the choice func-
tion satisfies SUB, IRC, and COM. The generalized DA
produces a matching X ′ that is B′H -stable where B′H =
(max{Bh, wh(X ′)})h∈H .

Proof. Let the mechanism terminate at the lth iteration, i.e.,
X ′ = Y (l) = Z(l). From its definition, it is immediately
derived that the union of Y (i) and R(i) is nondecreasing in
i(≤ l), i.e., for any i ∈ {2, 3, . . . , l},

Y (i) ∪R(i) ⊇ Y (i−1) ∪R(i−1). (1)

For notational simplicity, we refer to Y (i) ∪R(i) as T (i).

2When ties occur in the argmax above, we break ties arbitrarily,
for example, by choosing the lexicographically smallest one with
respect to a fixed order of doctors.
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Next, to obtain ChH(X ′∪R(l)) = X ′ for anyX ′, we claim
that ChH(T (i)) = Z(i) for any i ∈ {1, 2, . . . , l}. For the base
case i = 1, we have ChH(T (1)) = ChH(Y (1)) = Z(1) since
R(1) = Y (1) \ Z(1) ⊆ Y (1). For the general case i > 1, we
suppose ChH(T (i−1)) = Z(i−1). From (1), we rewrite the
SUB condition as T (i−1)\ChH(T (i−1)) ⊆ T (i)\ChH(T (i)).
By the inductive hypothesis, we transform the left side of the
equation (Y (i−1) ∪R(i−1)) \ Z(i−1) to

(R(i−1) \ Z(i−1)) ∪ (Y (i−1) \ Z(i−1))

= R(i−2) ∪ (Y (i−1) \ Z(i−1)) = R(i−1).

Hence, it holds that R(i−1) ⊆ T (i) \ ChH(T (i)) and thus
ChH(T (i)) includes no contract in R(i−1). Together with the
IRC condition, ChH(T (i)) is equal to

ChH(T (i) \R(i−1)) = ChH((Y (i) ∪R(i)) \R(i−1))

= ChH((Y (i) ∪R(i−1)) \R(i−1)) = ChH(Y (i)) = Z(i).

The third equality holds because Y (i)∩R(i−1) = ∅ and Y (i)∪
R(i) = Y (i) ∪ (R(i−1) ∪ (Y (i) \ Z(i))) = Y (i) ∪ R(i−1).
Consequently, we obtain the claim and since X ′ = Y (l) =
Z(l), we get ChH(X ′ ∪R(l)) = X ′.

Next, since Chh is COM, fh(Chh(X ′h ∪R
(l)
h )) ≥ fh(X ′′)

holds for any X ′′ ⊆ X ′h ∪ R
(l)
h such that wh(X ′′) ≤

max{Bh, wh(Chh(X ′h∪R
(l)
h ))}. Here, as Chh(X ′h∪R

(l)
h ) =

X ′h, we have fh(Chh(X ′h)) ≥ fh(X ′′) holds for any X ′′ ⊆
X ′h ∪R

(l)
h such that wh(X ′′) ≤ B′h.

Suppose, contrary to our claim, that X ′′ ⊆ Xh is a
blocking coalition for a hospital h. By the definition of
blocking coalition, (i) X ′′ �xD

X ′ for all x ∈ X ′′, (ii)
fh(X ′′) > fh(X ′h), and (iii) wh(X ′′) ≤ B′h. The con-
dition (i) implies x ∈ X ′ ∪ R(l) for all x ∈ X ′′, and
hence, X ′′ ⊆ X ′h ∪ R

(l)
h holds. This contradicts the fact

that ChH(X ′ ∪ R(l)) = X ′ for any X ′. Therefore, X ′ is
B′H -stable where B′H = (max{Bh, wh(X ′)})h∈H .

Note that this theorem does not specify how much budget
a hospital may exceed. Here, one can define a choice func-
tion such that the hospital affords to hire all of the doctors
who have accepted its contracts much beyond the predefined
budgets. The theorem simply ensures that if a choice func-
tion satisfies COM, in addition to SUB and IRC, the gen-
eralized DA admits a B′H -stable matching X ′ with B′h =
max{Bh, wh(X ′)} for each hospital.

We also remark that if each hospital h knows the selectable
contracts, i.e., Y (l)

h ∪R(l)
h , in advance, it only needs to select

arg max{fh(X ′′) | X ′′ ⊆ X ′h ∪ R
(l)
h , wh(X ′′) ≤ B′h} for

a certain budget B′h (≥ Bh). However, the selectable con-
tracts are difficult to predict because the resulting set depends
on the choice function itself. It is not so straightforward to
design or find a choice function such that it satisfies the re-
quired properties and only violates budget constraints to an
acceptable extent.

4 Near-Feasible Stable Mechanisms
In matching with constraints [Kamada and Kojima, 2015;
Goto et al., 2016; Kurata et al., 2017], designing a desir-
able mechanism essentially tailors choice functions for hos-
pitals to satisfy necessary properties and constraints simulta-
neously. We tackle this challenging task as an analogue to
approximation or online algorithms for knapsack problems.

Let us start from Dantzig’s greedy algorithm for fractional
knapsack problems [Dantzig, 1957]. It greedily selects con-
tracts with respect to utility per wage and then outputs an
optimal but fractional solution. We need to develop an al-
gorithm that always provides an integral solution. Roughly
speaking, we have to provide an algorithm (choice function)
that satisfies the necessary properties, e.g., SUB and COM,
for any set of contracts X ′ given at each round of the gen-
eralized DA. At the same time, we need to let the algorithm
determine how much budget should be exceeded beyond the
predefined one (how many contracts should be chosen). In-
deed, at each round, it is difficult to predict the amount of
excess over the budgets without violating the necessary prop-
erties. In what follows, we propose two choice functions that
adaptively specify how much budgets should be spent within
the generalized DA process.

4.1 Strategy-Proof Stable Mechanism
This subsection proposes a strategy-proof mechanism that
outputs a matching X ′ that is B′H -stable where B′h is at most
wh · dBh/whe for any h ∈ H . Let kh = dBh/whe. The
choice function greedily takes the top min{kh, |X ′|} con-
tracts according to utility per wage. Formally, it is given as
Algorithm 2.

Algorithm 2:
input: X ′ ⊆ Xh output: Chh(X ′)

1 Initialize Y ← ∅;
2 Sort X ′ in descending order of utility per wage;
3 for i = 1, 2, . . . ,min{kh, |X ′|} do
4 add the ith contract in X ′ to Y ;
5 return Y ;

We remark that we can implement the mechanism to run in
O(|X| log |X|) time by using heaps.

Next, let us illustrate this mechanism via an example.
Example 1. Consider a market with five doctors D =
{d1, d2, d3, d4, d5} and two hospitals H = {h1, h2}. The
set of offered contracts is
X = {(d1, h1, 57), (d2, h1, 50), (d3, h1, 42), (d4, h1, 55),

(d5, h1, 50), (d1, h2, 100), (d2, h2, 100), (d3, h2, 100),

(d4, h2, 100), (d5, h2, 100)}.
Here, h1 offers the doctors wages from 42 to 57, while h2

offers each of them wage 100. We assume that the preferences
of the doctors are

�d1 : (d1, h1, 57) �d1 (d1, h2, 100),

�d2 : (d2, h1, 50) �d2 (d2, h2, 100),

�d3 : (d3, h1, 42) �d3 (d3, h2, 100),

�d4 : (d4, h1, 55) �d4 (d4, h2, 100),

�d5 : (d5, h2, 100) �d5 (d5, h1, 50).
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Table 1: Utilities of hospitals and utilities per wage.

x ∈ Xh1
fh1

fh1
/w x ∈ Xh2

fh2
fh2

/w
(d1, h1, 57) 111 1.95 (d1, h2, 100) 50 0.50
(d2, h1, 50) 98 1.96 (d2, h2, 100) 30 0.30
(d3, h1, 42) 83 1.98 (d3, h2, 100) 20 0.20
(d4, h1, 55) 110 2.00 (d4, h2, 100) 10 0.10
(d5, h1, 50) 101 2.02 (d5, h2, 100) 40 0.40

The utilities of the hospitals are given in Table 1. Each
hospital has a common fixed budget 100 (Bh1

= Bh2
= 100).

First, each doctor chooses her most preferred contract;

X ′ = {(d1, h1, 57), (d2, h1, 50), (d3, h1, 42),

(d4, h1, 55), (d5, h2, 100)}.

Since dBh1
/wh1

e = 3, Chh1
(X ′) chooses the top three con-

tracts according to the ranking of utilities per wage shown
in Table 1, i.e., {(d4, h1, 55), (d3, h1, 42), (d2, h1, 50)}. As
well, Chh2(X ′) chooses the top dBh2/wh2

e = 1 contract,
i.e., {(d5, h2, 100)}.

Then, d1 chooses her second preferred contract,

X ′ = {(d1, h2, 100), (d2, h1, 50), (d3, h1, 42),

(d4, h1, 55), (d5, h2, 100)}.

Chh2
(X ′) is {(d1, h2, 100)}, whose utility per wage is larger

than (d5, h2, 100).
Next, d5 chooses her second preferred contract, i.e.,

(d5, h1, 50), whose utility per wage is 2.02. Since this is
higher than the other contract in X ′h1

, (d2, h1, 50) is re-
jected. Thus, d2 chooses her second preferred contract, i.e.,
(d2, h2, 100);

X ′ = {(d1, h2, 100), (d2, h2, 100), (d3, h1, 42),

(d4, h1, 55), (d5, h1, 50)}.

Chh2
(X ′) = {(d1, h2, 100)}, since it has a higher utility

per wage than (d2, h2, 100). Finally, since d2 no longer has
a preferred contract:

X ′ = {(d1, h2, 100), (d3, h1, 42), (d4, h1, 55), (d5, h1, 50)}.

No contract is rejected and the mechanism terminates.
We claim that the choice function satisfies the following

properties.
Lemma 1. For each hospital h, the choice function defined
in Algorithm 2 is SUB, IRC, LAD, and COM.

Proof. It is straightforward that the choice function is SUB,
IRC, and LAD because it simply picks at most the top
min{kh, |X ′|} contracts. Next, let us turn to COM. Let
X ′′ ⊆ X ′ ⊆ Xh. If |X ′| ≤ kh, since the choice function
picks all contracts inX ′, fh(Chh(X ′)) = fh(X ′) ≥ fh(X ′′)
clearly holds. On the other hand, if |X ′| > kh, since it picks
kh contracts, we have wh(Chh(X ′)) ≥ wh · kh ≥ Bh. Thus,
it is sufficient to claim that

fh(Chh(X ′)) ≥ fh(X ′′) if wh(X ′′) ≤ wh(Chh(X ′))

for any X ′′ ⊆ X ′ ⊆ X .
Since the choice function greedily pick kh contracts with

respect to the utility per wage, the chosen contracts yield
the optimal utility of a fractional knapsack problem [Dantzig,

1957]. Also, to maximize the utility of hospital h with X ′′,
we need to solve an integral knapsack problem. Therefore,
fh(Chh(X ′)) is at least

max
z∈[0,1]X′

{ ∑
x∈X′

fh(x) · zx |
∑
x∈X′

xW · zx ≤ wh(Chh(X ′))

}

≥ max
z∈{0,1}X′

{ ∑
x∈X′

fh(x) · zx |
∑
x∈X′

xW · zx ≤ wh(Chh(X ′))

}

= max
Y⊆X′

{∑
x∈Y

fh(x) |
∑
x∈Y

xW ≤ wh(Chh(X ′))

}
≥ fh(X ′′).

Note that the first inequality is derived from the fact that the
optimal value of the fractional knapsack problem is never
worse than that of the integral one. Thus, the choice function
Chh satisfies COM. The proof is complete.

Next, we show the upper bound of the increment of
the budgets. The following lemma clearly holds from
|Chh(X ′)| ≤ kh and xW ≤ wh for all x ∈ Xh.
Lemma 2. For each choice function defined in Algorithm 2
and a set of contracts X ′ ⊆ Xh, it holds that

wh(Chh(X ′)) ≤ wh · kh (= wh · dBh/whe).

Now, we summarize the arguments on the above in the fol-
lowing theorem:
Theorem 3. The generalized DA mechanism with the choice
functions defined in Algorithm 2 is strategy-proof for doctors
and it produces a B′H -stable matching such that Bh ≤ B′h ≤
wh · kh for any h ∈ H . In addition, the mechanism can be
implemented to run in O(|X| log |X|) time.

Finally, note that, omitting the detailed proof, this mech-
anism is almost tight as long as we use the choice functions
that satisfy LAD and COM. More precisely, for any wh, wh,
and Bh, there exists a set of contracts Xh and an additive
utility function fh such that any choice function Chh satisfies
wh(Chh(X ′)) > wh · (Bh − wh)/wh for some X ′ ⊆ Xh.

4.2 Non-Strategy-Proof Stable Mechanism
This subsection proposes a stable mechanism that is not
strategy-proof, but improves the budget bound, i.e., this
mechanism outputs a matching X ′ that is B′H -stable where
B′h is at most Bh + wh for any h ∈ H . This bound is best
possible from Theorem 1.

As with the first one, the second choice function greedily
picks the top min{kh, |X ′|} contracts. However, kh is de-
fined as min

{
k |

∑k
i=1 x

(i) ≥ Bh

}
, where x(i) denotes the

ith highest contract with respect to utility per wage. For-
mally, it is given as Algorithm 3. Note that the running time is
O(|X| log |X|), as with the first mechanism. Here, we show
the properties that this mechanism satisfies.
Lemma 3. For each hospital, the choice function defined in
Algorithm 3 is SUB, IRC, and COM.

Proof. IRC clearly follows from the definition of the choice
functions. Next, we claim that the choice functions sat-
isfy SUB. Let X ′′ ⊆ X ′ ⊆ Xh. By definition, the utility
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Algorithm 3:
input: X ′ ⊆ Xh output: Chh(X ′)

1 Initialize Y ← ∅;
2 Sort X ′ in descending order of utility per wage;
3 for i = 1, 2, . . . , |X ′| do
4 let x be the ith contract in X ′;
5 if wh(Y ) < Bh then Y ← Y ∪ {x};
6 return Y ;

per wage of any contract in Chh(X ′) (⊇ Chh(X ′) ∩ X ′′)
is higher than that of any contract in X ′ \ Chh(X ′) (⊇
X ′′ \ Chh(X ′)). Hence, we can partition X ′′ into two sub-
sets: H = Chh(X ′) ∩ X ′′ and L = X ′′ \ Chh(X ′). Any
contract in H has higher utility per wage than any contract in
L. When Chh takes X ′′ as an input, it first picks all of the
contracts in H and some contracts in L. Therefore, we obtain
Chh(X ′) ∩X ′′ ⊆ Chh(X ′′) and derive the SUB property:

X ′′ \ Ch(X ′′) ⊆ X ′′ \ (Chh(X ′) ∩X ′′) ⊆ X ′ \ Chh(X ′).

Finally, we prove COM. Let X ′ = {x(1), . . . , x(|X′|)} ⊆
Xh, where the contracts are arranged in decreasing order of
the utility per wage. If wh(X ′) ≤ Bh, then it is clear that
Chh(X ′) = X ′ and fh(Chh(X ′)) ≥ fh(X ′′) hold for any
X ′′ ⊆ X ′. Otherwise, let Chh(X ′) = {x(1), . . . , x(k)}.
Here,

wh({x(1), . . . , x(k−1)}) < Bh ≤ wh({x(1), . . . , x(k)})

holds. As described in Lemma 1, since the greedy solution
Chh(X ′) is optimal, we have fh(Chh(X ′)) ≥ fh(X ′′) for
anyX ′′ ⊆ X ′ such that wh(X ′′) ≤ wh(Chh(X ′)). Thus, the
lemma holds.

It is straightforward to demonstrate that Algorithm 3
does not satisfy LAD. In Example 1, when a set of con-
tracts {(d2, h1, 50), (d3, h1, 42), (d4, h1, 55)} is given, the
choice function chooses all the three contracts. Here, if
(d1, h1, 57) is further added, it chooses only two contracts,
i.e., {(d1, h1, 57), (d2, h1, 50)}. Thus, the second mechanism
fails to satisfy LAD.

Next, we show an upper bound of the increment of the bud-
gets. Since our choice function chooses a set of contracts that
exceeds the capacity by at most one contract, we have the
following lemma.

Lemma 4. For each choice function defined in Algorithm 3
and a set of contracts X ′ ⊆ Xh, it holds that

wh(Chh(X ′)) < Bh + wh.

Now, we summarize the results for our second mechanism.

Theorem 4. The generalized DA mechanism with the choice
functions defined in Algorithm 3 produces a set of contracts
X ′ that is B′H -stable where Bh ≤ B′h < Bh + wh for any
h ∈ H . In addition, the mechanism can be implemented to
run in O(|X| log |X|) time.

5 Discussion
Based on insights gained so far, we examine two special cases
of hospitals’ utilities, although we omit the details here. First,
let us restrict each hospital to having a utility over a set of
contracts that is proportional to the total amount of wages,
e.g., for every h ∈ H and X ′ ∈ Xh, the utility fh(X ′) is
simply the total amount of wages wh(X ′). In this case, we
can make the second mechanism strategy-proof without sac-
rificing the budget bound by applying techniques from online
removable knapsack problems [Iwama and Taketomi, 2002;
Iwama and Zhang, 2007; Han et al., 2015; Cygan et al.,
2016]. Furthermore, by giving up strategy-proofness, we can
construct a stable mechanism that may increase the budget by
a factor of up to one-half.

Second, we assume that each hospital has the same utility
across contracts, e.g., for every h ∈ H and X ′ ∈ Xh, the
utility fh(X ′) is simply the number of contracts |X ′|. In this
case, we immediately obtain a strategy-proof mechanism that
always produces a conventional stable matching, which never
violates the given budget constraints.

Our model assumes that the amount of predefined budgets
is flexible up to a certain amount. There is certainly some
realistic situation where this assumption is justified. Indeed,
in firm-worker matchings, if a firm finds an application from
some worker who is appropriate for the business, the CEO
would agree to increasing the employment cost. In doctor-
hospital matchings, hospitals can make an association that
pools some funds in advance and subsidizes the expense of
salaries according to matching results. Alternatively, even
when budgets must not be exceeded, we can let our mecha-
nisms work by setting the budget Bh to Bh −wh in advance.
Our second mechanism produces a B′H -stable matching such
that Bh − wh ≤ B′h ≤ Bh for any h ∈ H .

Let us finally note that there is a certain amount of recent
studies on two-sided matchings in the AI and multi-agent sys-
tems community, although this literature has been established
mainly in the field across algorithms and economics. Drum-
mond and Boutilier [2013; 2014] examine preference elici-
tation procedures for two-sided matching. In the context of
mechanism design, Hosseini et al. [2015] consider a mech-
anism for a situation where agents’ preferences dynamically
change. Kurata et al. [2017] deal with strategy-proof mech-
anisms for affirmative action in school choice programs (di-
versity constraints), while Goto et al. [2016] handle regional
constraints, e.g., regional minimum/maximum quotas are im-
posed on hospitals in urban areas so that more doctors are
allocated to rural areas.

6 Conclusion
This paper deals with matching with budget constraints, intro-
duced a concept of near-feasible matchings and proposed two
novel mechanisms that return a stable matching in polyno-
mial time: one is strategy-proof and the other is not. Further-
more, we derived the bound of increment of the budgets. In
particular, the best possible bound is obtained by sacrificing
strategy-proofness. In future work, we would like to derive
the lower bound for strategy-proof mechanisms and extend
our results to matching problems with other constraints.
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