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Abstract

We provide the first polynomial-time algorithm for
recognizing if a profile of (possibly weak) prefer-
ence orders is top-monotonic. Top-monotonicity is
a generalization of the notions of single-peakedness
and single-crossingness, defined by Barbera and
Moreno. Top-monotonic profiles always have weak
Condorcet winners and satisfy a variant of the me-
dian voter theorem. Our algorithm proceeds by re-
ducing the recognition problem to the SAT-2CNF
problem.

1 Introduction

Condorcet paradox refers to situations where a group of ra-
tional individuals (i.e., a group of individuals where each can
rank a set of objects from the best one to the worst one) has
cyclic collective preference (under majority voting). For ex-
ample, consider objects a, b, and ¢ (referred to as candidates)
and three individuals, v, v9, and v3 (referred to as voters),
with preference orders:

vi:a>=b>ec, vy: b= c > a, v3: c > a = b.

A majority of the voters (v; and v3) prefers a to b, a majority
of the voters (v; and vs) prefers b to ¢, and a majority of the
voters (vo and v3) prefers ¢ to a. The fact that a Condorcet
paradox can occur in preference aggregation is unfortunate.
Indeed, if cyclic collective preferences could be avoided, then
it would often be quite clear how to aggregate voters’ opin-
ions. For example, in each election there would be a candi-
date (or, possibly, a group of candidates, if ties could hap-
pen) preferred by a majority of voters to all the other ones,
and equally preferred among themselves; such candidates are
known as (weak) Condorcet winners.

One of the standard ways to avoid the Condorcet para-
dox is to restrict the domain of legal preference orders from
all permutations of the candidates to some subset of such
permutations. Indeed, a Condorcet domain is a set of al-
lowed preference orders, such that, if one forms a prefer-
ence profile by choosing orders only from this set, then there
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will certainly be a (weak) Condorcet winner (see, e.g., the
overview of Gaerner [2001], or the work of Clearwater et
al. [2015]). Two best-known examples of domain restric-
tions are the notions of single-peakedness [Black, 1958; Ar-
row, 1951] and single-crossingness [Mirrlees, 1971; Roberts,
1977] (formally, single-crossingness corresponds to a family
of Condorcet domains). Under single-peaked preferences, we
assume that the candidates can be arranged on a line, known
as the societal axis (e.g., on the left-to-right political spec-
trum, or simply in the order of increasing numbers if we con-
sider such an issue as, e.g., choosing the most comfortable
temperature in a room). Then, a voter has single-peaked pref-
erences if as we go along the societal axis, first this voter’s
appreciation for the candidates increases and then decreases.

On the other hand, a preference profile is single-crossing if
the voters can be ordered in such a way that as we progress
from one end of the voter spectrum to the other, then for
each pair of candidates their relative order can change at most
once. (The left-right political spectrum again provides an ex-
ample: if the voters have views that can be arranged on the
left-to-right spectrum, and the candidates can also be asso-
ciated with such views, then for each two candidates a and
b, such that a is more left-wing and b is more right-wing,
the extreme-left voters certainly prefer a to b, extreme-right
voters certainly prefer b to a, and as we progress from one
extreme to the other, we expect only one swap.) Saporiti and
Tohmé [2006] discuss several settings where single-crossing
preferences arise in practice (the first motivating examples of
Mirrlees [1971] and Roberts [1977] regarded taxation).

Not only is it known that the Condorcet paradox cannot oc-
cur if the voters have single-peaked or single-crossing prefer-
ences, but also many other negative effects cannot happen in
these cases (e.g., the famous impossibility theorems of Ar-
row [1951] and of Gibbard [1973] and Satterthwaite [1975]
do not hold under these restrictions).’

In this paper we consider a far more recent domain re-
striction than either single-peakedness or single-crossingness,
namely the notion of top-monotonic preferences of Barbera
and Moreno [2011]. Top monotonicity has many advantages
as, for example, it generalizes both the notions of single-

'Results of Arrow and of Gibbard and Satterthwaite are often
interpreted as saying that in general no perfect voting rule exists. For
single-peaked or single-crossing preferences, such a “perfect voting
rule” simply elects the (weak) Condorcet winners.
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peakedness and single-crossingness while still guaranteeing
existence of (weak) Condorcet winners, and it is applicable
to the settings where voters have weak preferences.” How-
ever, it also has drawbacks. One is that top-monotonic pref-
erences are hard to define intuitively (and, indeed, this is
why we refrain from describing them here on the intuitive
level and point the reader to the formal definition in Sec-
tion 2). Another one is that so far no polynomial-time algo-
rithm for recognizing top-monotonic preferences was known
(even though there is a number of algorithms for recogniz-
ing single-peaked preferences [Bartholdi and Trick, 1986;
Escoffier et al., 2008] and single-crossing preferences [Elkind
etal.,2012; Bredereck et al., 2013; Cornaz et al., 2013]). Our
main contribution is providing the first such algorithm. (How-
ever, we mention that there are natural domain restrictions for
which the recognition problem is NP-hard [Peters, 20171.)

The first algorithmic study of top monotonicity is due to
Aziz [2014]. While he did not give a recognition algorithm,
he has shown that the problem of deciding if a profile of par-
tial preference orders can be extended to a top-monotonic one
is NP-hard (similar results were earlier obtained for single-
peakedness [Lackner, 2014] and single-crossingness [Elkind
et al., 2015]). He also related the problem of recogniz-
ing top-monotonic profiles to the non-betweenness prob-
lem [Guttmann and Maucher, 2006]. Our algorithm uses dif-
ferent ideas and is based on a somewhat intricate reduction
to the SAT-2CNF problem (i.e., the problem of testing if a
logical formula in conjunctive normal form with at most two
literals per clause is satisfiable, well known to be solvable in
polynomial time [Krom, 1967]). This is interesting both tech-
nically (indeed, noting that our approach can produce SAT-
2CNF formulas requires some insight) and because many
other methods for recognizing elections in restricted domains
rely on the consecutive-ones problem?® (see, e.g., the works
of Peters and Lackner [2017] or Elkind and Lackner [2015]).
The SAT-2CNF problem might have similar impact on the
design of further algorithms recognizing domain restrictions
and we recommend it as a useful tool for such tasks.

We conclude by noting that there is yet another reason
why having a polynomial time algorithm for recognizing
top-monotonic preferences is important. Indeed, many NP-
hard voting-related problems turn out to be polynomial-time
solvable under various restricted domains. This was noted,
e.g., by Conitzer [2009] for the case of vote elicitation, by
Faliszewski et al. [2011; 2014] and by Magiera and Fal-
iszewski [2014] for election control (i.e., for problems that
model affecting the election result by changing its structure),
by Brandt et al. [2015] for election bribery (i.e., problems
where we can change some number of votes to ensure a given
candidate’s victory), and—most importantly—by many re-
searchers for the case of winner determination (as a few ex-
amples, we mention the results of Brandt et al. [2015] for all

Lackner [2014] and Elkind et al. [2015] also apply notions of
single-peakedness and single-crossingness to partial orders (includ-
ing weak ones) and encounter some computational hardness results.

3In this problem, we are given a binary matrix and we ask if we
can permute its rows so that in each column the entries with “ones”
are consecutive [1976].

325

the Condorcet consistent rules and the results of Betzler et
al. [2013], Cornaz et al. [2012], and Skowron et al. [2015] for
the Chamberlin—Courant rule).

Our results may inspire researchers to seek positive algo-
rithmic consequences for top-monotonic preference profiles.

2 Preliminaries

We mostly adopt the notation of Barbera and Moreno [2011].
We let A be a (finite) set of alternatives (also called candi-
dates) and we let N = {1,...,n} be a set of n agents (also
called voters). We denote the preference order of agent ¢ over
the set of alternatives by =; (note that we take them to be
weak orders). For each pair of alternatives =,y € A, we write
x »=; y if the i-th agent weakly prefers alternative = over y.
We use the strict order (>-;) and equality (=;) notations de-
fined for each x,y € A as follows:

1. x »=; y holds if z *=; y and it is not the case that y =; x;
2. x =;yholdsif x >=; yand y =; x.

A preference profile is a collection of preference orders of
the agents from N; we write = = (=1, ..., %=,) to denote a
preference profile of weak orders, and > = (-1, ...,>,) for
a profile of strict orders (i.e., one where there is no agent ¢
and distinct candidates z, y € A such that x ~; y).

Before we define top-monotonic preferences, let us give
formal definitions of single-peaked and single-crossing ones.

Definition 1 (Black [1958], Arrow [1951]). A preference pro-
file = is single-peaked if there exists a linear order > over the
set of the alternatives (the societal axis), such that for each
three alternatives x, vy, and z, if either it holds that x > y > z
or z > y > x, then for each agent i € N we have that
Ty = Yz

Intuitively put, the definition says that each agent ¢ can
choose his or her most preferred candidate arbitrarily, but then
this agent must choose the following ones so that for each
Jj € {1,...|A|}, the set of top j candidates according to ¢
forms a consecutive block within the societal axis. (In conse-
quence, for each agent the candidate ranked last is either the
maximum or the minimum element of >.)

Definition 2 (Mirrlees [1971] and Roberts [1977]). A pro-
file = = (>1,...,>n) is single-crossing with respect to an
ordering of voters (1, ...,>y) if for each two alternatives
x and y such that x > y, there is a number t, , such that
{i € N |z = y} ={1,...,ts,} Profile = is single-
crossing if it is single-crossing with respect to some ordering
of the voters.

That is, a profile is single-crossing if it is possible to order

the voters so that, as we move along this order, the relative
order of each two candidates changes at most once.

Example 1. Consider candidate set {a,b,c,d} and the pro-
file of the following preference orders:
ar-1b=1c=1d, b=9a>2d>5c¢, d>3c>3b>3a.

It is single-crossing (for the natural order of the voters) but
not single-peaked for any axis (because each of the three
agents ranks a different candidate last).
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For candidate set {a, b, c,d, e}, consider a profile with the
following four preference orders:

C>—1b>—1d>—1&>—1€,
c>3b>3d>3e>3a,

C>—2d>—2b>-2@>‘267
cr4d=4b>4e>4a.

It is single-peaked with respect to the axisa > b >c>d > e
(indeed, for each agent i and each j € {1,...,5}, the top j
candidates ranked by i form a consecutive block on this axis),
but it is not single-crossing (a single-crossing ordering would
have to put agent 1 next to 2, 3 next to 4, 1 next to 3, and 2 next
to 4; fulfilling these conditions simultaneously is impossible).

We are ready to define top-monotonic preferences [Barbera
and Moreno, 2011]. For all ¢ € N and for each S C A, we
denote by ¢;(S) the set of top choices of the i-th agent among
the alternatives from S. That is, ¢;(S) = {x € S | = »;
y forall y € S} and we call it the top of 4 in .S according to
. Let T = |J;cn ti(A). For each preference profile 3=, let
A(=) be the family of sets containing A itself and all triples
of distinct alternatives where each alternative is top in A for
some agent ¢ € N according to 3= (i.e., the triples in A(3=)
consist of the candidates from 7', but A(=) also contains A).

Definition 3 (Barbera and Moreno [2011]). A preference pro-
file = is top-monotonic if there exists a linear order > over
the set of the alternatives, such that:
(1) t;(A) is a finite union of closed intervals for all i € N.*
(2) Forall S € A(=), foralli,j € N, all z € t;(S), all
y € t;(S), and all z € S, we have that:

[x>y>zVz>y>z] =

ifz € ti(S) U tj(S),

if 2 & t:(S) Ut (S).
Definition 4. A linear order > over the set of alternatives is

a top-monotonic order of a preference profile = if = is top-
monotonic and > fulfills condition (2) from Definition 3.

Y 7 2
Y =iz

The following example, provided by Barbera and
Moreno [2011], shows that there is a profile that is top-
monotonic but neither single-peaked nor single-crossing (the
fact that every single-peaked or single-crossing profile is top-
monotonic is also shown in their work).

Example 2. Consider candidate set {a, b, ¢, d} and profile ~
of three preference orders:

a>—1b>—1c>—1d, c>2d>2b>-2a, d>3c>=3a>=3b.

Note that c is preferred to each other candidate by a majority
of the agents. The profile is not single-peaked because there
are three alternatives that are ranked last (a, b, and d). It
is not single-crossing because agents 1 and 3 would have to
be next to each other (because of the alternatives a and b),
agents 2 and 3 would have to be next to each other (because
of alternatives b and c), and agents 1 and 2 would have to be
next to each other (because of alternatives c and d), which

“Since we assumed A to be a finite set, this part of the definition
is always trivially satisfied. Barbera and Moreno consider also more
general sets of alternatives and—to indicate the generality of their
definition—we decided to keep this requirement in the text.
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is impossible. However, the profile is top-monotonic with re-
spect to the order a > b > ¢ > d.

To see that the profile is top-monotonic, note that A(>)
{{a,b,c,d},{a,c,d}}. We have to check each S € A(>-)
and each two agents i and j. Let us take S = {a,c,d}, i =1
and j = 2. We have © € t1(S) = {a}, y € t2(S) = {c},
and we take z = d. It holds that a > ¢ > dand z = d ¢
t1(S) U ta(S) = {a,c}, so it is required that ¢ > d, and
this indeed holds. Checking top-monotonicity of the profile
using the definition would require checking all the remaining
combinations of S, 1, j, and z.

3 Results

The problem of determining a top-monotonic order of a pref-
erence profile is as follows: Given a finite set of alternatives
A, a finite set of agents IV, and a preference profile 3= (for
the agents in V) over A, find a top-monotonic order of %= or
decide that no such order exists. In this section we provide an
algorithm for this problem (we use notation as in Section 2).

The following definition, and Lemma 1 a bit later, consti-
tute an interface between the notion of top-monotonicity and
our main algorithm, which reconstructs the top-monotonic or-
der from allowed orders over triples of candidates.
Definition 5. For each triple of distinct alternatives S =
{z,y,2} C A and each pair of agents i,j € N, we define
the set of legal orderings, denoted by L', to be the set of
ordered sequences of alternatives x,vy, z, such that for each
sequence o = (01, 09,03) where {o1,09,03} = S, all the
following criteria are met:

[0'1 c tl(S) and o9 € tj(S)} -

{02 =i 03, ifos € t;(S)UtL;(9) 0
o2 =i 03, ifos ¢ t;(S) Ut;(9)
[o1 € t;(S) and o5 € t;(S)] =
{02 =, 03, ifos €t;(S)UtL;(9) )
o9 =j 03, ifosz ¢ t;(S)Ut;(S)
[o3 € t;(S) and o3 € t;(S)] =
{02 =01, ifor € 6(S)Ut;(S) 3)
o9 =i 01, ifor ¢ t;(S)Ut;(S)
[o3 € t;(S) and 02 € t;(S)] =
{02 =501, ifor € t;(S)Ut;(5) @
o9 =j o1, ifor ¢ t;(S)Ut;(S)
[o1 € t;(S) and o5 =; 03]
V
[o1 € t;(S) and o3 ~; 09]
v — 00 ¢ T 5)
[o3 € t;(S) and o1 =; 03]
\Y
(o5 € £;(S) and o1 = 09]
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To illustrate how the set of legal orderings is constructed,
let us consider the following example. We take S = {z,y, z}
and two agents ¢ and j with preference orders z >; y >; 2
and z »=; = >; y. Now we need to consider six differ-
ent orderings of candidates x, ¥y, z. Let us consider ordering
o = (z,z,y). We can see that it does not satisfy condition
(1) as z € t;(5), z € t;(S) but z >=; y is not true. Similarily,
if we consider ordering o’ = (x, y, z), and if we assume that
x,y,z € T, then we can see that it does not satisfy condition
(5) as z € t;(S) and = > y (so the left-hand side of the im-
plication is true) but y € T'. On the other hand, if we consider
ordering " = (z, x,y) then we can see that it satisfies all the
five conditions and therefore is going to be a part of the set of
legal orderings L'¢’. By analyzing the remaining three pos-
sible orderings we get the complete set of legal orderings for
the setup under consideration, L’ = {(z, z,y), (y,z,2)}.

Let QT be a family of sets of legal orderings for every
triple x, y, z such that x,y, 2 € T and every i, j € N (recall
that 7" is the set of candidates that are ever ranked on the
top by some agent). Let Q7 be another family of sets of
legal orderings, for every triple x,y, z, where z,y € T and
z € (A\T), and every i,j € N such that z € ¢;(A) and
y € t;(A). Note that for both definitions we allow for agents
i and j to be the same. In other words, family Q7 regards sets
of legal orderings for all agents and all triples of candidates
that appear on top of some preference orders, whereas Q™7 is
defined analogously, but for triples of candidates that contain
two candidates from tops of some preference orders and one
candidate that never appears on top (of any preference order).

Lemma 1. Let A be a set of alternatives, N be a set of agents,
and = be a preference profile over A. Let Q = QT U QNT.
There exists a linear order > over the set of alternatives
such that for each set X € (), there exists an element
o = (01,09,03) € X such that c1 > 09 > 03, if and only if
= is top-monotonic and > is a top-monotonic order over =.

We omit the proof of Lemma 1 due to restricted space
(in essence, Definition 5 and Lemma 1 jointly follow quite
closely the definition of top-monotonic preferences, but the
detailed proof, available upon request, is rather lengthy).

The greatest advantage of using Lemma 1 and Definition 5
over directly applying Definition 3 is that it allows us to focus
on sets of three candidates only (Definition 3 also uses the
whole set A since A € A(’=)). This property is crucial for
our technique. Due to limited space, we present a proof for
the following—simpler—variant of our main theorem. The
full proof uses a very similar approach (we comment on this
later).

Theorem 2. Let A be a set of alternatives, N be a set of
agents, and ‘= be a preference profile such that every alter-
native from A is top in A of some i € N. The problem of
determining if a top-monotonic order of = exists (and com-
puting it) is polynomial-time solvable.

Proof. Due to Lemma 1, it is sufficient to demonstrate that
finding an order > over A, such that for each X € (@ there
exists 0 = (01, 02,03) € X such that o1 > 02 > 03, can be
done in polynomial time. From now on we focus on this task.
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Since each of the alternatives is a top for some ¢ € N (with
respect to A), we have T = A and Q = Q”'. Let us now con-
sider some set of orderings from Q7. As they all correspond
to triples of alternatives from 7', there are only a few possi-
ble cases of how they may relate to each other in preference
orders of pairs of agents. Let us take some three alternatives
x,y,z € T; there are 21 different combinations of pairs of
preference orders that we need to consider (see second col-
umn of Table 1). All these combinations have their entries
in Table 1, precomputed according to Definition 5. To obtain
a set of legal orderings for some triple of candidates .S and
some agents ¢ and j, it suffices to assign these candidates to
variables z, y, z and choose an entry in Table 1 corresponding
to the preference orders of agents ¢ and j.

With Table 1 available, we can compute the set Q7 by
looking up appropriate values. We illustrate this process with
the example below.

Example 3. Let the set of alternatives be A’ = {a,b,c,d}
and let the preference profile =" be as follows (N’ = {1,2}):

!/ !/ / /! / /
ax1bxlc>1d, cryd>5a>50.

We see that T = {a, b, c,d} = A', as each of the alternatives
is on top for some agent. We have four possible triples of
alternatives and three possible pairs of agents (note that we
can make a pair that consists of the same two agents). Let
us start with triple {a,b,c} and agents 1 and 2. We get the
following relation between alternatives from this triple: a =
b =} cand ¢ > a >4 b, which matches rule no. 4 from
Table 1 (where x < ¢, y < a and z < b) and generates the
following set of legal orderings:

{(a, ¢, b),(c,a,b),(b,c,a),(b,a,c)}.

Similarly, if we now take triple {a,b,d} and agents 1 and 2,
the relation looks as follows: a ~4 b=} dand d >4 a =4 b,
which matches rule no. 10 (with x < a, y < b and
z < d). Therefore it generates the set of legal orderings
{(b,a,d),(d,a,b)}. If we follow in similar steps for triples
{a, c,d} and {b, ¢, d}, we will match rule no. 14 for the for-
mer and rule no. 6 for the latter, generating the two cor-
responding sets of legal orderings ({(a,c,d), (d,c,a)} and
{(b,¢,d),(d,c,b)}). On top of that, we have to consider
pairs that are made of the same two agents (that is 1 and 1;
2 and 2). As a result, family @ will have 12 elements and will
be:

Q= {{(aaca b)’ (Cv a7b)7 (ba &) a)a (baav C)}a
{(b,a,d),(d,a,b)},

{(b,a,c),(b,c,a),(c,a,b),(a,c,b),(c,b,a),(a,b,c)},
{(b,a,d), (a,b,d), (d,a,b),(d,b,a)},
{(c,a,d), (a,c,d),(d,a,c),(d,ca)},

a
c, b, d)7 (b7 C, d)7 (d= b, C)7 (dv b, a’)}v
C? b7 a)7 (07 a” b)7 (a,’ b, C)’ (b, a7 C)}’

d7 b7 a)’ (d7 a7 b)’ (d7 b7 C)’ (b7 a7 d)}7
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Comb. of agents i, j € N

Set of legal orderings

2CNF ordering formula

1 z=iy=izandz =5y =52 {(y,z,2),(z,y,2),(z,2,9), (z,y,2)} (zz V zy)A(yz V zz)

2 T =iy =i zand z YRz {(yvr Z)a (ZC Y,z )7 (Z z y)a (Z yvx)} (.’L‘Z 4 Zy) (yz \/Z:E)

3 T =iy =i zand x =iy >_j z {(y>$7z)7 (x>y7 Z)a (Z Z, y): (Z y7x)} (J}Z \4 zy)/\(yz \/Zf)

4 T =iy =i zand z Ny Y Rz {(y,-’L’,Z), (%Z/a Z)v (Z z y)a (Z yvx)} (.’L‘Z \4 zy)/\(yz \/ZZE)

5 z=iy=izandz =5z =y {(y,2,2),(z,2,9)} (zy V z2)A(yz V z2)A(yz V 2y)
6 w-izriyandzjy-;z {(y,2,2),(2,2,9)} (zy Vaz)A(yz V zz)A(yz V 2y)
7 z=iy=izandy =z >z {(y,z,2),(z,y,2),(z,2,9), (z,y,2)} (zz V zy)A(yz V zz)

8 yrizmizandz = y~;z {(y,7,2), (2,2,9)} (zy Vaz)A(yz V zz)A(yz V 2y)
9 x=iy=izandy =5 z =z {(z,9,2),(z,y,2)} (zy V zz)A\(zz V 2y)A(yz V yx)
10 z>xz>=yandax=;y>;2 {(y,z,2),(z,z,9)} (zy Vx2)A(yz V zz)A(yx V zy)
11 y=iz=zandz =y~ z {(y,z,2),(z,2,y)} (zy Vyz)A(zz Vyz)A(za V 2y)
12 z>=jy=izandz>;y>=;z {(z,9,2),(2,9,2)} (zy V zz)A(zz V zy)A(yz V yx)
13 z>y=;zandzm~jy>=; 2z {(y,z,2),(zz,y)} (zy Vaz)A(yz V zx)A(yx V zy)
14 z=jy=~;zandy>;z~;2z {(z29),(y,2,2)} (zy Vyz)A(zz Vyz)A(zz V zy)
IS zr-izmiyandz~jy =5z {(y,2,2), (2,9,2), (2,2,9), (2,y,2)} (zzV zy)A(yz V zx)

16 TR Y i & and RjY =iz {(yvxv Z)a (357%2)7 (Z xvy)7 (Z Y, T )} (.’EZ 4 Zy)/\(yz \4 ZIE)

17 zmiy=izadz~jy~;z {(y,2,2), (2,9,2), (2,2,9), (2,y,2) } (zzV zy)A(yz V zx)

18 zmjy=izanda=;z>;y {(y,z,2),(2,z,v9)} (zy Vx2)A(yz V zx)A(yx V zy)
19 T i Y~ zand x >j Yy=jz {(y,m,z)7 (yvsz)’ (271‘7y), (1‘7Z7y), (Z7y7 )7 (.ﬁL‘ Y, )} n/a

20 Iziy%izandm>—j Yy=j;z {(y7$72)a(y727$)7(2,$7?l 7(‘r7zzy)7(zvy7 )7(I Y, )} n/a

21l zmjy~zandr gy~ 2 {(y,w,2), (¥, 2,2), (2,2, ), (2, 2,9), (2,9, 2), (2,9, 2) ) n/a

Table 1: All possible settings of pairs of agents from Q7, with a corresponding sets of legal orderings (third column). The last column shows
a 2CNF representation of each ordering formulas (note that we can write yx instead of —(zy)).

{(d,¢,a),(d,a,c),(a,cd),(c,a,d),(a,d,c),(cda)},
{(b,¢,d),(c,b,d), (d,c,b),(d,b,c)}}

Taking order b >' a >' ¢ >' d, we see that for each set X €
Q there is at least one sequence o = (01,09,03) € X such
that o1 >' 09 >' o3 (corresponding items for each set are
underlined on the listing above). By Lemma 1, we conclude
that =" is top-monotonic and >' is its top-monotonic order.

Set Q consists of [ N]? x (I4!) elements, where each ele-
ment is of the form of one of the sets from the third column
of Table 1. We want to find a linear order > over the set of
alternatives such that for each X € () we can find at least
one sequence o = (01,09,03) € X with o1 > 09 > 03. It
turns out that we can express this problem as an instance of
the SAT-2CNF problem.

To illustrate this approach, let us consider rule no. 5 from
Table 1, with output {(y, z, 2), (z,z,y)}. If the desired or-
der > exists, it has to satisfy condition:

(y>z>z2)V(z>x>y) 6)

We can create a similar formula for each set of legal orderings
from (), and then expect the order > (if it exists) to satisfy the
conjunction of these formulas.

The crucial observation is that Eq. (6) (as well as formu-
las corresponding to all the other rules from Table 1) can be
expressed in conjunctive normal form with two literals per
clause (2CNF). To this end, we take our logical variables to
be zy, xz, and yz and we interpret them as representing ap-
propriate relations under order > (e.g., zy is true if z > y
holds; we also write, e.g., zx as an abbreviation for —xz).
Then, Eq. (6) can be equivalently expressed as:

(yr ANxz Ayz)V (zz Azy A zy)
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or, equivalently, as:

(mxy ANxz Ayz) V (mxz Azy A —yz).

This formula, on the other hand, is true if and only if the
following one is (see comments below):

(yz V —zz) A (mzy V —yz). (7

To check that the two formulas above are, indeed, equivalent,
one may try all possible truth assignments for our variables.
For example, if we take the following (1 denotes logical truth
and 0 denotes falsity):

(xz Vay) A

zy=1 xz=1 and yz=0

then both formulas evaluate to 0, whereas if we take:

zy=0, z2zz=1, and yz=1

then they both evaluate to 1. Formula (7) is in the 2CNF form
and, in fact, we can represent each of the possible sets of
legal orderings using 2CNF formulas, as presented in Table 1
(the only exception is that rules 19, 20, and 21 do not impose
any restrictions on the orderings and, thus, do not generate
formulas at all; we show later why this does not affect the
properties of the order that we want to calculate).’

We now show that a top-monotonic order exists if and only
if the global ordering formula is satisfiable.

Observation 1. A top-monotonic order for = exists if and
only if there is an assignment for the variables that satisfies
the global ordering formula.

The reader may wonder how we derived Formula (7) from For-
mula (6), or how we deduced that it can be translated to an equivalent
2CNF form. We are afraid that wishful thinking is our only response
here; we wanted to find a 2CNF formula and we made a brute-force
search for one that would work.
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To prove this result, we first note that if > has a top-
monotonic order then the global ordering formula is satis-
fiable. Let >’ be this top-monotonic order. Now consider
a variable assignment for the global ordering formula to be
such that for each two candidates p and ¢, we set the literal
pq = 1if p > ¢ (note that it may, in fact, mean setting vari-
able gp to 0, depending which one of pg and gp is used as a
variable in the global ordering formula and which one is rep-
resented as its negation). It is easy to see that such a variable
assignment is a valid solution for the global ordering formula.

Now it remains to show that if there is a satisfying assign-
ment for the variables of the global ordering formula, then the
profile is top-monotonic. Let us assume that the global order-
ing formula has a satisfying assignment and let relation >’ be
defined for each pair of alternatives p,q € A as follows: We
setp >’ g exactly if the literal pq evaluates to 1. By definition,
relation >’ satisfies the global ordering formula and we only
need to show that it, indeed, is an order over A. We show that
this is the case, by considering the three requirements that a
strict order must satisfy:

(a) Relation >’ is irreflexive, because we do not have literals
of the form zx in our global ordering formula.

(b) Relation >’ is assymetric, because for each z,y € A, if
2 > y then it is not the case that y >’ x because for
each z,y € A, xy = —wyx and, so, it cannot be that both
zy and yx are set to 1 at the same time.

(c) Relation >’ is transitive, that is, for every triple x, y, z €
Aifz >" yandy >’ zthenz >’ 2. This comes from the
fact that for every triple z,y, z € A we need to satisfy a
formula that corresponds to a set of legal orderings. It is
clear that any element from the set of legal orderings has
to satisfy the transitivity condition (as such an element
represents an order of alternatives). The only exception
is when a triple z,y, z € A matches either of the rules
19, 20, or 21 from Table 1 for every possible pair of
agents 7,7 € IN. However, in such a case it is easy to
see that it must be the case that y ~; z for every ¢ € N.
Therefore we can ignore this case as alternatives y and z
are indistinguishable form each other for all the agents.
We pick one of them to use in the algorithm (and remove
the other one from the profile); if it turns out that a top-
monotonic order exists, then we place these candidates
next to each other in this order (the algorithm computes
the position of one of them in the top-monotonic order,
and the other can be put on its either side).

So far, we have not yet argued that >’ is a total order and,
indeed, it may be partial. We let >* be a linear extension
of >’. Due to order-extension principle, since >’ is a strict
partial order, a linear extension >* of it exists. Since >* sat-
isfies the global ordering formula (as it is an extension of >")
and it is a linear order, >* is a top-monotonic order for >=.

Finally, we note that, since the global ordering formula
is in conjunctive normal form with at most two variables
per clause, there is a simple polynomial-time algorithm that
checks if it is satisfiable and, if so, produces a satisfying as-
signment. Further, the formula itself is of length polynomi-
ally bounded in the number of candidates and agents (we need
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O(N?-]A?) subformulas from Table 1, with at most O(] A|?)
variables). L]

Our main result holds without the assumption that each
candidate is a top for some agent.

Theorem 3. Let A be a set of alternatives, N be a set of
agents, and = be a preference profile over A. The problem
of determining whether top-monotonic order of = exists (and
computing it) is polynomial-time solvable.

The proof follows exactly the same path as that of Theo-
rem 3, but takes into account that the set Q™7 is not empty.
Thus, in addition to creating 2CNF formulas out of the sets of
legal orderings from Q7 (see Table 1), we also do the same
with the sets from Q™V7". As an example, let us consider a pair
of agents 7, j with preferences over three candidates x,y, w,
where © € t;(A), y € t;(A) andw € (A\ T), such that
T =; w>=; yandy ~; v >=; w. This setting yields 2CNF
formula (xy V yw) A (yx V wy). It turns out that based on
QNT we can generate fewer rules than based on Q7 (namely,
only 9 unique rules, as opposed to 21 generated for Q). This
is due to the fact that candidate w can never be preferred over
x by agent ¢ or over y by agent j. We see that the rules gen-
erated off of the restrictions given by Q™7 can be added to
the global ordering formula and, similarly as in the proof of
Theorem 3, we show that the global formula has a satisfiable
assignment if and only if a top-monotonic order exists.

4 Conclusion

We have given the first polynomial-time algorithm for rec-
ognizing if a profile of (possibly weak) preference orders is
top-monotonic. Top-monotonic preferences are in principle
very attractive. For example, they subsume single-peaked
and single-crossing ones, while ensuring that a (weak) Con-
dorcet winner always exists. However, they are not easy
to work with. We hope that our proof will enable further
researchers to show positive algorithmic consequences of
the top-monotonicity assumption. For example, it is nat-
ural to ask if the Chamberlin—Courant rule is polynomial-
time solvable under top-monotonic preferences (it is un-
der single-peaked [Betzler et al., 2013] and single-crossing
ones [Skowron et al., 2015]). It is also interesting to com-
pare the notion of top-monotonicity to that of value-restricted
profiles [Sen, 1966].
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