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Abstract
We study the problem of finding a small subset of
items that is agreeable to all agents, meaning that
all agents value the subset at least as much as its
complement. Previous work has shown worst-case
bounds, over all instances with a given number of
agents and items, on the number of items that may
need to be included in such a subset. Our goal
in this paper is to efficiently compute an agree-
able subset whose size approximates the size of the
smallest agreeable subset for a given instance. We
consider three well-known models for representing
the preferences of the agents: ordinal preferences
on single items, the value oracle model, and addi-
tive utilities. In each of these models, we establish
virtually tight bounds on the approximation ratio
that can be obtained by algorithms running in poly-
nomial time.

1 Introduction
A typical resource allocation problem involves dividing a set
of resources among interested agents. We are often concerned
with the efficiency of the allocation, e.g., achieving high so-
cial welfare or ensuring that there is no other allocation that
would make every agent better off than in the current allo-
cation. Another important issue is the fairness of the allo-
cation. For example, we might want the resulting allocation
to be envy-free, meaning that every agent regards her bundle
as the best among the bundles in the allocation [Foley, 1967;
Varian, 1974], or proportional, meaning that every agent ob-
tains at least her proportionally fair share [Steinhaus, 1948].
A common feature of such problems is that one agent’s gain
is another agent’s loss: the setting inherently puts the agents
in conflict with one another, and our task is to try to resolve
this conflict as best we can according to our objectives.

We consider a variant of the resource allocation problem
where instead of the agents being pitted against one another,
they belong to one and the same group. We will collectively
allocate a subset of items to this group, and our goal is to
make this subset “agreeable” to all agents. Agreeability can
be thought of as a minimal desirability condition: While an
agent may be able to find other subsets of items that she per-
sonally prefers, the current set is still acceptable for her and

she can agree with the allocation of the set to the group. With-
out further constraints, the problem described so far would be
trivial, since we could simply allocate the whole set of items
to the agents. We therefore impose a constraint that the allo-
cated subset should be small. This constraint on size is rea-
sonable in a variety of settings. For instance, the agents could
be going together on a trip and there is limited space in the
luggage. Alternatively, they could be receiving some items
in a resource allocation setting where the preferences of the
other groups are not known or are given lower priority, per-
haps because the groups have not arrived or are placed lower
in a team competition, so we want the subset to be agreeable
to the first group while leaving as many items as possible to
the remaining groups.

The problem of allocating a small agreeable subset of items
was first studied by Suksompong, who defined the notion
of agreeability based on the fairness notion of envy-freeness
[Suksompong, 2016]. A subset of items is said to be agree-
able to an agent if the agent likes it at least as much as
the complement set. Agreeability, or minor variants thereof,
has been considered in the context of fair division, where
each group consists of a single agent [Bouveret et al., 2010;
Brams et al., 2012; Aziz et al., 2015]. In the example of
agents going together on a trip, a subset of items that they
take is agreeable if they weakly prefer it to the complement
subset of items left at home. In the resource allocation exam-
ple, assuming that we allocate resources between two groups,
a subset is agreeable to the first group if no agent in the
group would rather switch to the second group. Suksompong
showed a tight upper bound on the number of items that may
need to be included in the set in order for it to be agreeable
to all agents. In particular, for every additional agent, the
worst-case bound increases by approximately half an item.
This result is rather surprising, since agents can have very
different preferences on the items, and yet we only need to
pay a relatively mild cost for each extra agent to keep agree-
ability satisfied for the whole group. When there are two or
three agents, Suksompong also gave polynomial-time algo-
rithms that compute an agreeable subset whose size matches
the worst-case bound.

While Suksompong’s results are quite intriguing, some im-
portant issues were left unaddressed by his work. Firstly, in
many instances, an agreeable subset of smallest size is much
smaller than the worst-case bound over all instances with that
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number of agents and items. Indeed, an extreme example
is when there is a single item that every agent likes better
than all of the remaining items combined. In this case, it suf-
fices to allocate that item. This results in a much smaller set
than the worst-case bound, which is at least half of the items
for any number of agents. Secondly, even if we were con-
tent with finding a subset that matches the worst-case bound,
we might not be able to compute it efficiently, thus rendering
the existence result impractical when the number of agents or
items is large. A related issue is that of eliciting the prefer-
ences on subsets of items from the agents. Since there are
an exponential number of subsets, the burden on the agents
to determine their preferences and the amount of informa-
tion that they need to submit to our algorithm is potentially
huge. This issue can be circumvented by relying on prefer-
ences over single items or allowing the algorithm to query the
agents’ preferences on a need-to-know basis, as is the case for
Suksompong’s polynomial time algorithm for two and three
agents, respectively.1

In this paper, we address all of these issues and investigate
the problem of computing an agreeable subset of approxi-
mately optimal size for a given instance, as opposed to one
whose size is close to the worst-case bound over all instances
with that number of agents and items. We tackle the prob-
lem using several models that are well-studied in the literature
and present computationally efficient algorithms for comput-
ing an agreeable subset of approximately optimal size in each
of them. Moreover, in all of the models we show that our
approximation bounds are virtually tight.

In Section 3, we assume that we only have access to the
agents’ ordinal preferences on single items rather than sub-
sets of items. Models of this type offer the advantage that
the associated algorithms are often simple to implement and
the agents do not need to give away or even determine their
entire utility functions; such models have therefore received
widespread attention [Kohler and Chandrasekaran, 1971;
Bouveret et al., 2010; Aziz et al., 2015]. With only the or-
dinal preferences on single items in hand, however, most of
the time we cannot tell whether a certain subset is agreeable
to an agent or not. Nevertheless, by assuming that preferences
are responsive, we can extend preferences on single items to
partial preferences on subsets. We show that for any constant
number of agents, there exists a subset of m2 +o(m) items that
is always agreeable as long as the full responsive preferences
are consistent with the rankings over single items. Since a
necessarily agreeable subset always consists of at least m

2
items even for one agent, this bound is essentially tight. We
also present a simple randomized algorithm and a determin-
istic algorithm, both running in polynomial time, to compute
such a subset.

Next, in Section 4, we consider general preferences using
the value oracle model [Feige et al., 2011], where the prefer-
ences of the agents are represented by utility functions and we
are allowed to query the utility of an agent for any subset. We
exhibit an efficient approximation algorithm with approxima-

1Note that if the algorithm elicits the whole preference relations
from the agents, this elicitation step alone already prevents the algo-
rithm from running in time polynomial in the number of items.

tion ratio O(m ln lnm/ lnm) in this model. While this may
not seem impressive since the trivial algorithm that always
outputs the whole set of items already achieves approxima-
tion ratio O(m), we also show that our ratio is essentially the
best we can hope for. In particular, there does not exist a poly-
nomial time algorithm with approximation ratio o(m/ lnm).

Finally, in Section 5, we assume that the agents are en-
dowed with additive utility functions. Additivity provides a
reasonable tradeoff between simplicity and expressiveness; it
is commonly assumed in the literature, especially recently
[Amanatidis et al., 2015; Bouveret and Lemaı̂tre, 2016;
Caragiannis et al., 2016]. We show that under additive valu-
ations, it is NP-hard to decide whether there exists an agree-
able set containing exactly half of the items even where there
are only two agents. On the other hand, using results on cov-
ering integer programs, we demonstrate the existence of an
O(lnn)-approximation algorithm for computing a minimum
size agreeable set. Moreover, we show that this is tight: It
is NP-hard to approximate the problem to within a factor of
(1− δ) lnn for any δ > 0.

2 Preliminaries
Let N = {1, 2, . . . , n} denote the set of agents, and S =
{x1, x2, . . . , xm} the set of items. The agents in N will be
collectively allocated a subset of items in S. Denote by S
the set of all subsets of S. Each agent i is endowed with a
preference relation �i, a reflexive, complete, and transitive
ordering over S . Let �i denote the strict part and ∼i the
indifference part of the relation �i. For items x and y, we
will sometimes write x � y to mean {x} � {y}. We assume
throughout the paper that preferences are monotonic, i.e., T ∪
{x} � T for all T ⊆ S and x ∈ S.

We are interested in when a set of items is agreeable to an
agent. To this end, we must precisely define what agreeabil-
ity means. The notion of agreeability, defined by Suksom-
pong [Suksompong, 2016], is based on the fairness concept
of envy-freeness. A subset is considered to be agreeable to
an agent if the agent likes it at least as much as the comple-
ment set. Put differently, if the complement set is allocated to
another agent, then the former agent does not envy the latter.
Definition 1. A subset T ⊆ S of items is said to be agreeable
to agent i if T �i S\T .

Next, we define a property of preferences called respon-
siveness, which says that an agent cannot be worse off when-
ever an item is added to her set or replaced by another item
that she weakly prefers to the original item. Responsiveness
is a reasonable assumption in many settings and has been
widely studied in the literature [Brams and Fishburn, 2000;
Brams et al., 2012].
Definition 2. A preference � on S is called responsive if it
satisfies the following two conditions:
• T ∪ {x} � T for all T ⊆ S and x ∈ S (monotonicity);
• T\{y} ∪ {x} � T for all T ⊆ S and x, y ∈ S such that
x � y, x 6∈ T and y ∈ T .

When preferences are responsive, it sometimes suffices to
know an agent’s preference on single items (i.e., the restric-
tion of �i to subsets consisting of single items) in order to
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deduce that the agent regards a subset as agreeable. This in-
tuition is formalized in the next definition.

Definition 3. Fix a preference �sing on single items in S. A
subset T ⊆ S is necessarily agreeable with respect to �sing
if T � S\T for any responsive preference � on S consistent
with �sing .

The following characterization of necessary agreeability
will be useful for our results in Section 3.

Lemma 1 ([Suksompong, 2016]). Fix a preference �sing on
single items in S with

x1 �sing x2 �sing · · · �sing xm.

Let T ⊆ S, and define Ik = {x1, x2, . . . , xk} for all k ∈
{1, 2, . . . ,m}. If

|Ik ∩ T | ≥
k

2

for all k ∈ {1, 2, . . . ,m}, then T is necessarily agreeable
with respect to �sing . The converse also holds if the prefer-
ence �sing is strict.

3 Ordinal Preferences on Single Items
In this section, we assume that we only have at our disposal
the agents’ ordinal preferences on single items. We are inter-
ested in computing a small necessarily agreeable subset that
is consistent with these preferences. If we had access to the
agents’ preferences over all subsets of items, it is known that
we could always find a subset of size

⌊
m+n

2

⌋
that is agree-

able to all n agents [Suksompong, 2016]. It is not clear, how-
ever, how much extra “penalty” we have to pay for the in-
formation restriction that we are imposing. It could be, for
example, that with three agents there exist preferences for
which we have to include up to 2m

3 or 3m
4 items in a nec-

essarily agreeable subset. We show that this is in fact not the
case—there always exists a necessarily agreeable subset of
size m

2 + O(
√
m log logm) as long as the number of agents

is constant.
For the proof of our first result, we will require the law of

the iterated logarithm, which gives a bound for the fluctua-
tions of a random walk.

Lemma 2 (Law of the iterated logarithm [Khintchine, 1924;
Kolmogoroff, 1929]). Let X1, X2, . . . be independent and
identically distributed random variables with mean 0 and
variance 1. Let Sn := X1 + · · ·+Xn. Then

lim sup
n→∞

Sn√
n log log n

=
√

2

almost surely.

Theorem 1. If the number of agents is constant, then there
exists a subset of size m

2 +O(
√
m log logm) that is necessar-

ily agreeable with respect to the preferences on single items
of all agents.

We remark that when there are two agents, Suksompong’s
algorithm computes a necessarily agreeable subset of size⌊
m
2

⌋
+ 1, which is also the optimal bound for an agreeable

subset for two agents even if we know their full preferences.

Proof. Let X1, X2, . . . , Xm be independent random vari-
ables taking values 1 or −1. We will take Xi = 1 to mean
that item xi is included in our subset, and Xi = −1 to mean
that it is excluded from the subset.

Consider an arbitrary agent j. Suppose that she ranks the
single items as

xσj(1) �j xσj(2) �j · · · �j xσj(m).

Using Lemma 1, we find that our subset is necessarily agree-
able for the agent if

Xσj(1) + · · ·+Xσj(i) ≥ 0

for all 1 ≤ i ≤ m.
Let Sji := Xσj(1)+· · ·+Xσj(i), and independently set each

Xi to be 1 or −1 with probability 1
2 each. Lemma 2 implies

that for large enough k (and m), we have Sji ≤ 2
√
i log log i

(and by symmetry, −Sji ≥ −2
√
i log log i) for all i ≥ k with

high probability. This means that for large enough m, |Sji | ≤
2
√
m log logm for all 1 ≤ i ≤ m with high probability as

well.
Since n is constant, by the union bound we find that for

sufficiently large m, we can initialize the random variables
X1, . . . , Xm so that |Sji | ≤ 2

√
m log logm for all 1 ≤ i ≤ m

and all j. We will modify the choice of Xi’s slightly. For
each agent, include her most preferred

√
m log logm items

that have so far been excluded. Thus, we have Sji ≥ 0 for all
1 ≤ i ≤ m and all j, and our selected subset includes at most
m

2
+ (n+ 1) ·

√
m log logm =

m

2
+O(

√
m log logm)

items, as desired.

Theorem 1 yields a simple randomized polynomial time
algorithm that finds a necessarily agreeable subset for mul-
tiple agents by first choosing independently and uniformly at
random whether to include each item, and then modifying the
selection by including the most preferred

√
m log logm items

of each agent that have been excluded.
Next, we present a deterministic polynomial time algo-

rithm that finds a necessarily agreeable subset of size m/2 +
o(m) for all agents. We will need the following classical re-
sult in combinatorics.
Lemma 3 ([Erdős and Szekeres, 1935]). Any sequence of at
least (r − 1)(s − 1) + 1 distinct real numbers contains ei-
ther an increasing subsequence of length r or a decreasing
subsequence of length s.
Theorem 2. If the number of agents is constant, then there
exists a deterministic algorithm, running in time polyno-
mial in the number of items, that computes a subset of size
m
2 + o(m) that is necessarily agreeable with respect to the

preferences on single items of all agents.

Proof. We first observe that when there are m items and two
agents whose preferences on these items are the opposite of
each other, we can choose a subset of size at most m2 + 1 that
is necessarily agreeable to both agents. To see this, suppose
that the preferences on single items of the two agents are

x1 �1 x2 �1 · · · �1 xm
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and
xm �2 xm−1 �2 · · · �2 x1.

If m is odd, it suffices to choose items x1, x3, x5, . . . , xm,
while if m is even, it suffices to choose items
x1, x3, x5, . . . , xm−1 along with item xm.

Now, consider our group of n agents. Assume without loss
of generality that the preference on single items of agent 1 is

x1 �1 x2 �1 · · · �1 xm.

Using Lemma 3, from the preference on single items of agent
2, we can find either an increasing subsequence or a decreas-
ing subsequence of length

√
m on the indices of the items.

Applying Lemma 3 again, we find a subsequence of this sub-
sequence of length m1/4 that is either increasing or decreas-
ing in the preference on single items of agent 3. Proceeding in
this manner, we find a subsequence of m1/2n−1

items whose
indices appear either in that order or in the reverse order in
every agent’s preference on single items. By our observation
above, we can choose a subset of at most 1

2m
1/2n−1

+1 items
that is necessarily agreeable for every agent with respect to
this set of m1/2n−1

items.
Let t := 2n−1. Note that if a set A of items is necessarily

agreeable when the universe of items is taken to be B ⊇ A,
and another set C of items is necessarily agreeable with re-
spect to the same preference on single items when the uni-
verse of items is D ⊇ C disjoint from B, then A ∪ C is nec-
essarily agreeable with respect to that preference when the
universe of items is B ∪D. To obtain our necessarily agree-
able subset for all agents, we proceed as follows. When there
are k items left, we choose a subset of k

1
t items as above.

Within that subset, we choose a subset of at most 1
2k

1
t + 1

items that is necessarily agreeable for all agents with respect
to the k

1
t items, and we remove the k

1
t items from consider-

ation. In the first step, we decrease the number of items by
a factor of 1 − 1/m(t−1)/t, and this factor only decreases in
subsequent steps. Hence the number of steps is at most

log 1
m

log
(
1− 1

m(t−1)/t

) ≈ logm
1

m(t−1)/t

= m
t−1
t logm,

which implies that our chosen subset exceeds half of the items
by o(m) items. Moreover, since each step involves finding a
longest increasing or decreasing subsequence from a list of
length at most m for a constant number of agents, the algo-
rithm runs in polynomial time.

Although the algorithm in Theorem 2 has the advantage
of being deterministic, the expected number of repetitions of
the randomized algorithm in Theorem 1 is very low; in fact,
this value is roughly 1 since the algorithm succeeds with high
probability. Therefore, we think that the algorithm from The-
orem 1 should be preferred in general due to its speed and
ease of implementation as well as its superior guarantee.

4 General Preferences
While our algorithms from the previous section always find
an agreeable set of size at most m2 + o(m), it is unclear how

small this set is compared to the optimal if we have informa-
tion beyond preferences on single items. In other words, our
results so far do not yield any guarantee on the approxima-
tion ratio beyond the obviousO(m) upper bound for arbitrary
preferences over subsets of items. The goal of this section is
to explore the possibilities and limitations of achieving better
approximation ratios in this general setting.

Before we move on to our results, let us be more pre-
cise about the model we are working with. First, since each
agent’s preference is reflexive, complete and transitive, there
is a utility function ui : S → [0, 1] such that T �i T ′ if and
only if ui(T ) ≥ ui(T ′); for convenience, we work with these
utility functions instead of working directly with the prefer-
ences themselves. Since the number of subsets in S is ex-
ponentially large, the utility functions take exponential space
to write down. Hence, it is undesirable to include them as
part of the input. Instead, we will work with the value or-
acle model [Feige et al., 2011], in which the algorithm can
query u1(T ), . . . , un(T ) for each subset T ⊆ S.2 Finally,
we note that we do not assume responsiveness of the agents’
preferences in this section.

Our first result is a simple polynomial time approximation
algorithm with approximation ratio O(m ln lnm/ lnm).
Even though this approximation guarantee is only
Ω(lnm/ ln lnm) better than the obvious O(m) bound,
we will see later that this is almost the best one can hope for
in polynomial time.
Theorem 3. For any constant ε > 0, there exists a determin-
istic (εm ln lnm/ lnm)-approximation algorithm for finding
a minimum size agreeable set that runs in time polynomial in
the number of agents and items.

Our algorithm works as follows. First, we query
the agents’ utilities on (lnm/ ln lnm)-size subsets
T1, . . . , Tpoly(m), which are to be specified. If any of
these subsets are agreeable, then we output one such subset.
Otherwise, we output the whole set S.

To argue about the approximation ratio of the algorithm,
we need to show that, if there is a small agreeable subset
T ∗ ⊆ S (of size O(lnm/ ln lnm)), then at least one of
T1, . . . , Tpoly(m) is agreeable. A sufficient condition for this
is that every subset T ⊆ S of small size is contained in at
least one Ti. A similar question has been studied before in
combinatorics under the name covering design [Gordon et al.,
1996]. Here we will use a construction by Rees et al., stated
formally below.
Lemma 4 ([Rees et al., 1999]). For any set S with |S| =
m and any positive integers p, q such that pq ≤ m,
there exists a deterministic algorithm that outputs subsets
T1, . . . , T(dm/pe

q ) ⊆ S of size pq such that, for any subset
T ⊆ S of size at most q, T is contained in Ti for some i.
Moreover, the running time of the algorithm is polynomial in
m and

(dm/pe
q

)
.

2When a polynomial number of queries are allowed, it is not
hard to see that the value oracle model can be simulated with the
preference oracle model (e.g., [Suksompong, 2016]), in which the
algorithm is allowed to query the relative preference of an agent be-
tween any two subsets, and vice-versa.
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We give a short proof of Lemma 4, which is taken from
Rees et al.’s work but modified with the desired range of the
parameters.

Proof of Lemma 4. First, partition S into dm/pe parts
S1, . . . , Sdm/pe where each part is of size at most p. Each
set Ti is simply a union of q different Sj’s. Note that if the
union is of size smaller than pq, we can simply add arbitrary
elements of S into it to make its size exactly pq. Clearly,
there are

(dm/pe
q

)
such unions and T1, . . . , T(dm/pe

q ) satisfy
the properties required in the theorem.

With this lemma in place, we are ready to prove Theorem 3.

Proof of Theorem 3. Our algorithm starts by evoking the al-
gorithm from Lemma 4 with q = blnm/(ε ln lnm)c and p =
bεm ln lnm/(q lnm)c to produce subsets T1, . . . , T` ⊆ S

of size pq where ` =
(dm/pe

q

)
. For each i = 1, . . . , `, we

query u1(Ti), . . . , un(Ti), u1(S\Ti), . . . , un(S\Ti) to check
whether Ti is agreeable. If any Ti is agreeable, we output it.
Otherwise, output the whole set S. Clearly, the output set is
always agreeable.

Moreover, observe that, from our choice of p, q, we have

` =

(
dm/pe
q

)
≤ (edm/pe/q)q

= (O(lnm))q

= exp(O(q ln lnm))

= exp(O(lnm)),

which is polynomial in m. Hence, the running time of our
algorithm is polynomial in m and n.

To prove the algorithm’s approximation guarantee, let us
consider two cases. First, if the optimal agreeable set has size
more than q, then since we output a set of size at most m,
we obtain an approximation ratio of at most m/(q + 1) ≤
εm ln lnm/ lnm.

On the other hand, if the optimal agreeable set T ∗ has size
at most q, then by construction, there exists i such that T ∗ ⊆
Ti. Since T ∗ is agreeable, Ti is also agreeable. Hence, our
output set has size pq ≤ εm ln lnm/ lnm, which implies an
approximation ratio of εm ln lnm/ lnm as well.

While our algorithm may seem rather naive, we will show
next that its approximation guarantee is, up toO(ln lnm) fac-
tor, essentially the best one can hope for, even when there is
only one agent:

Theorem 4. For every constant c > 0 and every sufficiently
large m (depending on c), there is no (possibly randomized
and adaptive) algorithm that makes at mostmc/8 queries and
always outputs an agreeable set with expected size at most
m/(c lnm) times the optimum, even when there is only one
agent.

In other words, the above theorem implies that there
is no polynomial time algorithm with approximation ra-
tio o(m/ lnm). We note here that our lower bound is
information-theoretic and is not based on any computational
complexity assumptions. Moreover, it rules out any algorithm

that makes a polynomial number of queries, not only those
that run in polynomial time.

To prove Theorem 4, we define two functions g, fT∗ :
S → [0, 1], where T ∗ is a randomly chosen subset of S
of size bc lnm/4c. On the one hand, we let g(T ) = 1 if
|T | ≥ m/2, and g(T ) = 0 otherwise. On the other hand, we
let fT∗(T ) = 1 if |T | ≥ m/2 or T ∗ ⊆ T , and fT∗(T ) = 0
otherwise. That is, fT∗ is g together with a planted solu-
tion T ∗. The key idea of the proof is that it is unlikely that
an algorithm A can distinguish between g and fT∗ using at
most mc/8 queries. As a result, if A is presented with fT∗ ,
with constant probability it must output an agreeable set of g,
which is of size at leastm/2. However, the optimal agreeable
set for fT∗ has size only bc lnm/4c. Therefore, the expected
size of the output of A is more than m/(c lnm) times the
optimum. The details of the proof can be found in the full
version of this paper [Manurangsi and Suksompong, 2017].

5 Additive Utilities
In this section, we assume that the agents’ preferences are
represented by additive utility functions. Each agent i has
some nonnegative utility ui(xj) for item xj , and ui(T ) =∑
x∈T ui(x) for any i ∈ N and any subset of items T ⊆ S.
Clearly, the problem of deciding whether there exists an

agreeable set of a certain size is in NP. Moreover, the follow-
ing theorem shows that it is indeed NP-complete, even when
there are two agents with additive utility functions.

Theorem 5. Even when there are two agents with additive
utility functions, it is NP-hard to decide whether there is an
agreeable set of size exactly m

2 .

Proof. We will reduce from the following problem called
BALANCED 2-PARTITION: given a multiset A of non-
negative integers, decide whether there exists a subset B ⊆
A such that |B| = |A \ B| = |A|/2 and

∑
a∈B a =∑

a∈A\B a =
∑
a∈A a/2.

Like the well-known 2-PARTITION where the cardinality
constraint is not included, BALANCED 2-PARTITION is NP-
hard. We leave the proof to the full version [Manurangsi and
Suksompong, 2017].

The reduction from BALANCED 2-PARTITION proceeds as
follows. Let a1, . . . , a|A| be the elements ofA. The set S con-
tains |A| items x1, . . . , x|A|, each associated with an element
of A. The utility function is then defined by u1(xi) = ai and
u2(xi) = M − ai where M =

∑
a∈A a. We will next show

that this reduction is indeed a valid reduction.
(YES Case) Suppose that there exists B ⊆ A such that

|B| = |A|/2 and
∑
a∈B a =

∑
a∈A a/2. We can simply pick

T to be all the items corresponding to the elements in B. It is
obvious that T has size |A|/2 = m/2 and that T is agreeable.

(NO Case) We prove the contrapositive; suppose that there
is an agreeable subset T ⊆ S of size m/2. Let B be the
corresponding elements in A of all the items in T . Since T
is agreeable,

∑
x∈T ui(x) ≥

∑
x∈S\T ui(x) for i ∈ {1, 2}.

When i = 1, this implies that
∑
a∈B a ≥

∑
a∈A a/2. More-

over, when i = 2, using the fact that |T | = m/2, we have

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

342



∑
a∈B a ≤

∑
a∈A a/2. Thus,

∑
a∈B a =

∑
a∈A a/2. Fi-

nally, note that |B| = m/2 = |A|/2. Hence, A is a YES
instance for BALANCED 2-PARTITION.

Theorem 5 shows that the problem is weakly NP-hard even
when there are two agents. Nevertheless, when the number
of agents is constant, there exists a pseudo-polynomial time
dynamic programming algorithm for computing an optimal
agreeable set. In particular, the problem is not strongly NP-
hard for a constant number of agents. On the other hand,
when the number of agents is not fixed, the problem be-
comes strongly NP-hard. In other words, there is no pseudo-
polynomial time algorithm for this variation unless P=NP. We
formally describe these results and their proofs in the full ver-
sion of this paper [Manurangsi and Suksompong, 2017].

Given that finding an agreeable set of minimum size is NP-
hard, it is natural to attempt to find an approximation algo-
rithm for the problem. When the utilities are additive, this
turns out to be closely related to approximating the classical
problem SET COVER. In SET COVER, we are given a ground
set U and a collection C of subsets of U . The goal is to select
a minimum number of subsets whose union is the entire U .

SET COVER was one of the first problems shown to be NP-
hard in Karp’s seminal paper [Karp, 1972]. Since then, its
approximability has been intensely studied and has, by now,
been well understood. A simple greedy algorithm is known
to yield a (ln |U | + 1)-approximation for the problem [John-
son, 1974; Lovász, 1975]. On the other hand, a long line of
work in hardness of approximation [Lund and Yannakakis,
1994; Raz and Safra, 1997; Feige, 1998; Alon et al., 2006;
Moshkovitz, 2015] culminates in Dinur and Steurer’s work,
in which a (1− ε) ln |U | ratio NP-hardness of approximation
for SET COVER was proved for every constant ε > 0 [Dinur
and Steurer, 2014].

The first connection we will make between SET COVER
and approximating minimum size agreeable set is on the neg-
ative side—we will show that any inapproximability result of
SET COVER can be translated to that of approximating min-
imum size agreeable set as well. To do so, we will first state
Dinur and Steurer’s result more precisely.
Lemma 5 ([Dinur and Steurer, 2014]). For every constant
ε > 0, there is a polynomial time reduction from any 3SAT
formula φ to a SET COVER instance (U, C) and f(U) =
poly(|U |) such that

• (Completeness) if φ is satisfiable, the optimum of (U, C)
is at most f(U).

• (Soundness) if φ is unsatisfiable, the optimum of (U, C)
is at least ((1− ε) ln |U |)f(U).

We are now ready to prove hardness of approximation for
minimum size agreeable set.
Theorem 6. For any constant δ > 0, it is NP-hard to
approximate minimum size agreeable set to within a factor
(1− δ) lnn of the optimum.

Proof. Let ε = δ/2. Given a 3SAT formula φ, we first use
Dinur-Steurer reduction to produce a SET COVER instance
(U, C). Let there be |U | agents, each of whom is associated
with each element of U ; it is convenient to think of the set of

agents as simply N = U . As for the items, let there be one
item for each subset C ∈ C and additionally let there be one
special item called t; in other words, S = C ∪ {t}.

The utility for each a ∈ U is then defined by

ua(s) =


|{C ∈ C | a ∈ C}| − 1 if s = t,

1 if s ∈ C and a ∈ s,
0 otherwise.

We show next that this reduction indeed gives the desired in-
approximability result.

(Completeness) If φ is satisfiable, then there are f(|U |)
subsets from C that together cover U . We can take T to con-
tain all these subsets and the special item t. Clearly, T has
size f(|U |) + 1 and is agreeable.

(Soundness) If φ is unsatisfiable, then any set cover of
(S, C) contains at least ((1 − ε) ln |U |)f(|U |) subsets. Con-
sider any agreeable set T . For each a ∈ U , from our choice
of ua(t), T must include at least one subset that contains a.
In other words, T \ {t} is a set cover of (S, C). Hence, |T |
must also be at least ((1− ε) ln |U |)f(|U |).

Thus, it is NP-hard to approximate minimum size agree-
able set to within ((1−ε) ln |U |)f(|U |)

f(|U |)+1 of the optimum. This ra-
tio is at least (1−δ) lnnwhen the number of agents, n = |U |,
is sufficiently large.

Unlike the above inapproximability result, it is unclear how
algorithms for SET COVER can be used to approximate min-
imum size agreeable set. Fortunately, our problem is in fact a
special case of a generalization of SET COVER called COV-
ERING INTEGER PROGRAM (CIP), which can be written as
follows:

minimize cTx
subject to Ax ≥ 1,

0 ≤ x ≤ u
x ∈ Zm

where c, u ∈ Rm and A ∈ Rn×m are given as input.
The problem of finding a minimum size agreeable set can

then be formulated in this form simply by setting c, u and A
as follows.

cs = 1 ∀s ∈ S
us = 1 ∀s ∈ S

Ai,s =
2ui(s)∑
s′∈S ui(s

′)
∀i ∈ N, s ∈ S

Similarly to SET COVER, approximability of CIP has been
well studied; specifically, the problem is known to be ap-
proximable to within O(lnn) of the optimum in polynomial
time [Kolliopoulos and Young, 2005]. This immediately im-
plies an O(lnn)-approximation algorithm for finding a mini-
mum size agreeable set as well:

Theorem 7. When the agents’ utility functions are additive,
there is a polynomial time O(lnn)-approximation algorithm
for finding a minimum size agreeable set.
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[Lovász, 1975] László Lovász. On the ratio of optimal
integral and fractional covers. Discrete Mathematics,
13(4):383–390, 1975.

[Lund and Yannakakis, 1994] Carsten Lund and Mihalis
Yannakakis. On the hardness of approximating minimiza-
tion problems. Journal of the ACM, 41(5):960–981, 1994.

[Manurangsi and Suksompong, 2017] Pasin Manurangsi and
Warut Suksompong. Computing an approximately
optimal agreeable set of items. Preprint, 2017.
http://arxiv.org/abs/1705.02748.

[Moshkovitz, 2015] Dana Moshkovitz. The Projection
Games Conjecture and the NP-hardness of ln n-
approximating set-cover. Theory of Computing, 11:221–
235, 2015.

[Raz and Safra, 1997] Ran Raz and Shmuel Safra. A sub-
constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In
STOC, pages 475–484, 1997.

[Rees et al., 1999] Rolf S. Rees, Douglas R. Stinson,
Ruizhong Wei, and G. H. John van Rees. An application
of covering designs: Determining the maximum consistent
set of shares in a threshold scheme. Ars Combinatoria, 53,
1999.

[Steinhaus, 1948] H. Steinhaus. The problem of fair divi-
sion. Econometrica, 16(1):101–104, 1948.

[Suksompong, 2016] Warut Suksompong. Assigning a small
envy-free set of indivisible items to multiple players. In
IJCAI, pages 489–495, 2016.

[Varian, 1974] Hal R. Varian. Equity, envy, and efficiency.
Journal of Economic Theory, 9:63–91, 1974.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

344


