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Abstract

We investigate hedonic games under enemies aver-
sion and friends appreciation, where every agent
considers other agents as either a friend or an en-
emy. We extend these simple preferences by al-
lowing each agent to also consider other agents to
be neutral. Neutrals have no impact on her pref-
erence, as in a graphical hedonic game. Surpris-
ingly, we discover that neutral agents do not sim-
plify matters, but cause complexity. We prove that
the core can be empty under enemies aversion and
the strict core can be empty under friends apprecia-
tion. Furthermore, we show that under both pref-
erences, deciding whether the strict core is non-
empty, is NP™ -complete. This complexity extends
to the core under enemies aversion. We also show
that under friends appreciation, we can always find
a core stable coalition structure in polynomial time.

1 Introduction

Coalitions are a central part of economics, political, and so-
cial life. A natural question is whether a coalition structure
(which is a partition of the set of agents) exists that is stable.
In coalition formation games with hedonic preferences, each
agent only cares about her own coalition. Since the number
of coalitions that she can join is exponential, various compact
classes of hedonic games have been proposed.

In particular, Dimitrov et al. [2006] developed games in
which each agent divides the other agents into friends or ene-
mies. They propose two alternative preferences. One is ene-
mies aversion, where each agent prefers coalitions with fewer
enemies and in case of a tie, with more friends. The other is
friends appreciation, where each agent prefers coalitions with
more friends and in case of a tie, with fewer enemies. Under
enemies aversion, there always exists a core stable coalition
structure that is NP-hard to find; and under friends apprecia-
tion, there always exists a strict core stable coalition structure,
which can be found in polynomial-time.

In this paper, we examine a slight extension of this model
where each agent divides the others into three groups, friends,
enemies, and neutrals, who do not impact her preference, in
the fashion of graphical hedonic games [Peters, 2016]. In-
deed, in practice, agents commonly only care about a subset
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Enemies aversion

Friends appreciation

May be empty (Th. 1)*

Non-empty (Th. 9)*

EXIST is NPNP-¢ (Th. 4)*

Core | VERIF is coNP-c (Th. 5) CONSTRUCTION takes
ExIST is NPY—¢ (Th. 6)* | polynomial time (Th. 9)*

Strict May be empty (Ex. 1) May be empty (Th. 2)*

core | VERIFis coNP-c (Th. 3)* | VERIF is coNP-c (Th. 7)*

ExIsT is NP™-¢ (Th. 8)*

Table 1: Summary of results: new ones marked with *.

of other agents; the rest are neutral. One might think that
adding such a graphical assumption would simplify the com-
putational problems or that since neutral agents do not im-
pact preferences, the previous results in Dimitrov et al. [2006]
would still hold in this extended model.

It turns out that under enemies aversion, a core stable coali-
tion structure might not exist, and it might not exist under
friends appreciation for the strict core either. Then, we inves-
tigate the complexity of (VERIF) to verify whether a given
coalition structure is (strict) core stable and (EXIST) whether
the (strict) core is non-empty. Our findings are in Table 1.

Related work Lang er al. [2015] proposed friends-
neutrals-enemies hedonic games using the generalized
Bossong-Schweigert extension principle. Peters [2016] con-
sidered graphical hedonic games. If the agent graph has
a bounded treewidth and a bounded degree, deciding the
core’s existence is polynomial-time tractable. Aziz and
Brandl [2012] clarified the inclusions between stability con-
cepts such as core and Nash stability, and provided some ex-
istence results. Aziz et al. [2014] proposed conditions that
guarantee a core stable outcome in fractional hedonic games.
Aziz et al. [2016] proposed Boolean hedonic games where
an agent partitions a set of other agents into satisfactory and
unsatisfactory groups and showed core non-emptiness. Sung
and Dimitrov [2007] showed that the verification problem
for the core is coNP-complete in additive hedonic games.
Woeginger [2013] showed that the existence problem for the
core is NPNP-complete in additively separable hedonic games
(ASHG). Peters [2015] proved that the existence problem for
the strict core is NPN'-complete in ASHGs. Rey et al. [2016]
show that under enemy-aversion, deciding the existence of
the strict-core is DP-hard. Peters and Elkind [2015] devel-
oped a framework to prove the NP-hardness of existence
problems, which widely applies to various hedonic games
such as individually rational coalition lists [Ballester, 2004]
and hedonic coalition nets [Elkind and Wooldridge, 2009].
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2 Model

Let N = {1,...,n} denote the set of agents. A coalition
C C N is a subset of agents. A coalition structure 7 is a par-
tition of set N. Let 7(¢) denote the coalition to which agent
i belongs in 7. Let C denote the set of coalition structures.
For every agent i, her preference —; is based on the coali-
tions to which she belongs; let >; (respectively ~;) denote
the preference’s asymmetric (respectively symmetric) part. A
hedonic game (N, P) is defined by set of agents N and pref-
erence profile P = (7;)ien-

Coalition structure 7 € C¥ admits blocking coalition
) # X C N iff forevery i € X, X »; 7(i) holds. The
core is the set of coalition structures that do not admit any
blocking coalition. Similarly, coalition structure 7 € CV ad-
mits weakly blocking coalition X C N iff for every i € X,
X 7z m(i), and there exists j € X such that X >; 7(j). The
strict core is the set of coalition structures that do not admit
any weakly blocking coalition.! Coalition C is acceptable for
agent i if and only if C' =; {i} holds.?

In this paper, we consider the following simple (and com-
pact) preferences. For each agent ¢, set IV is partitioned into
{F;,E;, L;}. Agents F; are her friends, E; are her enemies,
and L ; are neutral agents (¢ €.1;).

Under enemies aversion, she first compares the number of
enemies. Hence, without loss of generality, any coalition that
contains an enemy is unacceptable. Within acceptable coali-
tions, she prefers coalitions with more friends, i.e., for two
acceptable coalitions, C' >=; D holds iff |C'N F;| > |D N F}|.

Under friends appreciation, she prefers coalitions with
more friends, and in case of a tie, she prefers the one with
fewer enemies: C' >; D holds iff (a) |C' N F;| > |D N F;|, or
b) |CNF;|=|DNF;land |CNE;| < |DNE;|.

In both preferences, C' ~; D holds iff |C' N E;| = | DN E;]
and |C N F;| = |D N F;|. The set of preference profiles
under enemies aversion (respectively friends appreciation) is
denoted by P (respectively by PT'). In PF there is additive
separability on weights {1,0, —n}, and in P¥ on {n, 0, —1}.
Definition 1 (HG/E and HG/F). An HG/E is a hedonic game
(N, (z:)ien) such that each =, is in P¥. Similarly, an HG/F

i
is a hedonic game (V, (*=;)ie ) such that each =; is in P,

Such hedonic games can be represented by a labeled di-
graph Gpry = (N, Agp U Ap U A ) where each vertex rep-
resents an agent, and arc (7, ) in set Ag labeled by E (re-
spectively by F, 1) indicates that for agent ¢, agent j is an
enemy (respectively friend, neutral).?

Example 1. [Dimitrov et al., 2006] Under enemies aversion,
in this three-agent HG/E, the following preferences hold:

@@ 1,2} = {1}
{1,2,3} »2 {1,2} ~o {2,3} =2 {2}
{2,3} >3 {3}

E
The coalition structures that do not admit a blocking coali-
tion, are set { {{1,2},{3}}, {{1},{2,3}} }. However,
there are weak deviations from these coalition structures, re-
spectively {2, 3} and {1, 2}, and thus, the strict core is empty.

I"The strict core is more demanding, thus contained in the core.
’If 7 (4) is unacceptable, 7 cannot be a member of the core.
3The size of this representation is ©(n?).
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Depending on the context, we sometimes omit one of the
three sets Ag, Ar or A, since it can be deduced from the
two others. For instance, omitting set A, graph Ggr
(N,Ag U Ap) shows a graphical hedonic game [Peters,
2016]. The following remark is also useful:

Remark 1. Under enemies aversion, consider an HG/E and
graph Gp, = (N, ApUA ] ), where only friendly and neutral
arcs are represented, and enemy arcs omitted. Given coalition
C, if arc (i, j) is missing in subgraph G g, [C], then agent j
is an enemy of ¢, and C' is unacceptable to her. Thus, (i) if
7 is a member of the (strict) core, for each C' € 7, subgraph
G r 1 [C] is necessarily a clique*, and (ii) given 7 where every
coalition C' € 7 induces clique G [C], a (weakly) blocking
coalition X C N necessarily induces clique G, [X].

3 Stable Coalitions May Not Exist.

In this section, we discuss the existence of a (strict) core sta-
ble coalition structure. Under enemies aversion, consider-
ing only friends and enemies (no neutrals), the possible non-
existence of a strict core stable coalition structure was shown
in Example 1 [Dimitrov et al., 2006] and implies that the strict
core can be empty, when neutral agents are also allowed.
This example does not extend to the (non strict) core in
the friends-and-enemies model and indeed a core stable coali-
tion structure always exists under enemies aversion [Dimitrov
et al., 2006]. However, when we add neutral agents to the
friends-and-enemies model, the following theorem holds.

Theorem 1. In an HG/E, the core can be empty.

To prove this theorem, we utilize the following example.

Example 2. Assume 15 agents who are divided into a cycle of
five groups, Cy, . . ., Cy, each of which contains three agents.
Citr (resp. Ci_) denotes Ciik mod s (X€sp. Ci_k mod 5)-
The sets of friends, neutrals and enemies are as follows:

« Agents in the same group are friends.

« Agents in C; consider agents in C'j+2 enemies.

« Agents in C; consider agents in C'j; friends.

« Agents in C; consider one agent in C';_; a neutral and

the other two agents to be friends.

We illustrate these preferences with a partial representation

of graph G by focusing on group Cj:

C4 Cl
o~ N 3 Friends 3 Friends i -
\ \ /-N /‘N /
\ ,/
! |
/, !
N r~__—

/
_7 2 Friends, 1 Neutral "<

\
7 "2 Friends, 1 Neutral ™

Proof of Theorem 1. Assume 7 is core stable in Example 2.
From Remark 1, only the agents in adjoining groups can form
a coalition. Also, note that if coalition C; U C} 1 is formed,
each member in C; is with 5 friends and each member in C; 1
is with 4 friends. First, we show that the agents in a same

*A digraph G = (W, B) is a clique iff V(i, j) € W2, (4,5) € B.
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group cannot be separated. For the sake of contradiction, as-
sume agent ¢ € () is separated from the other members in
Cy. There are three cases to study:

e When 7(i) N Cy # (): i is with at most 3 friends, and
j € Cy (j # 1) is with at most 3 friends. Each member
in Cy is also with at most 4 friends (since they are not
with 7). Then Cy U Cj is a deviation.

When 7 (i) N Cy # (: each member of Cy is with at
most 3 friends. Also, each member of C5 is with at most
4 friends. Then, C3 U C} is a deviation.

When 7 (i) = {i}: the only case for which C U C (or
CoUCYy) is not a deviation is when (Cp \ {¢}) UC4 forms
a coalition (such that at least one member in C'; does not
strictly prefer Cy U C7). Here, each member in C; is
with at most 4 friends. Then, consider the members of
Cs. The only way that a member of Cs is with 4 or
more than 4 friends is to form a coalition with 2 or 3
members of C3. However, in such a case, each member
of C5 is with at most 4 friends and each member in C} is
with at most 3 friends, and therefore, C3 U C4 becomes
a deviation. Thus, each member in C5 is with at most 3
friends, but then C; U (5 is a deviation.

Using a similar argument, we can prove that all the members
in the same group must be in the same coalition in 7. Also,
it is not possible that two adjoining groups, C; and Cj1, are
isolated, i.e., C; € mand Cj1 € 7, since C;UC, 11 becomes
a deviation. Therefore, consider coalition structure ™ where
no two consecutive groups are alone, which implies that ex-
actly one C); is alone. Without loss of generality, we assume
that just Cj is alone. Then the only coalition structure that is
not discarded by Remark 1 is 7 = {Cy, C; U C,C3 U Cy}.
Then each member in Cj is with 2 friends and each mem-
ber in C} is with 4 friends, and thus, C4 U (Y is a deviation.
Therefore, no core stable coalition structure exists. O

Under friends appreciation and considering only friends
and enemies, both the core and the strict core always exist
[Dimitrov et al., 2006]. However, if we add neutral agents,
then we have the following:

Theorem 2. In an HG/F, the strict core can be empty.

To prove this theorem, we utilize the following example.

Example 3. Consider N = {1, 2, 3} under friends apprecia-
tion based on partitions Fy = {1,2}, Ey = {3}, F» = {2},
Lo={1,3}, F3 = {2,3} and E; = {1}.

Proof of Theorem 2. The core contains all of the coalition
structures except {{2}, {1, 3}}. However, there is a weak de-
viation from all coalition structures in the core, either {1, 2}
or {2, 3}, and thus, the strict core is empty.

4 Problems and Complexity

The previous section showed that in an HG/E, both the
strict core and the core may be empty, and in an HG/F,
the strict core may be empty. These observations bring
to surface the following decision problems to decide the
non-emptiness of the strict core and the core for an HG/E
as well as the non-emptiness of the strict core for an
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HG/E: (i) HG/E/SC/EXIsT, (ii) HG/E/C/EXIST, and (iii)
HG/F/SC/EXIST. To examine whether they belong to class
NP, we also study the problem of verifying whether a given
coalition structure 7 is in the core or the strict core for a given
game: i.e., (a) HG/E/SC/VERIF, (b) HG/E/C/VERIF, and
(c) HG/F/SC/VERIF. We address the complexity of these
problems in the next sections.

Class NP corresponds to the set of decision problems
where ‘yes’-instances allow a polynomially-sized certificate
verifiable in polynomial-time. For instance, in a further proof,
we utilize problem MAXCLIQUE, which is among the com-
putationally most intractable problems in class NP. Indeed, it
is NP-complete: it is in NP and NP-hard.’

Definition 2 (Problem MAXCLIQUE). Given graph G =
(V, A) and lower threshold & € N, does a subset of & ver-
tices YW C V exist such that subgraph G[W)] is a clique?

Complementation consists in transposing the ‘yes’ and ‘no’
answers. Consequently, class coNP is symmetric to class
NP and corresponds to the set of decision problems where
‘no’-instances allow a polynomially-sized certificate verifi-
able in polynomial-time. For instance, the problem of veri-
fying that a given coalition structure is core stable belongs to
class coNP, since we can certify ‘no’-instances with a block-
ing coalition. One can show that a problem is coNP-complete
by proving that it is in coNP and that it is the complement of
an NP-hard problem, by symmetry of NP and coNP.

A decision problem may also neither allow a yes or a no
verification in polynomial-time, falling outside of NP and
coNP. Class NPM" corresponds® to the decision problems for
which ‘yes’-instances allow a polynomially-sized certificate
that is verifiable in polynomial-time using a constant-time
NP-oracle.” Class coNP™F is its complement.® Typically,
a problem in NPNP is extremely hard, since it consists in a
coNP problem nested into an NP problem. Problem MIN-
MAXCLIQUE is typical for this second level of the polyno-
mial hierarchy.

Definition 3 (Problem MINMAXCLIQUE). Given graph G =
(V, A), twosets I, J that partition set Vinto {V; ; | i € I, j €
J}, and lower threshold & € N, does, for every function ¢ :
I — J, subgraph G[U;e1V; 4(;], contain a k-sized clique?

Intuitively, V is partitioned into |I|-|J| subsets V; ;. Ac-
cording to function ¢, |I| subsets are chosen (for each i € I,
set V; 1(;))- Then for the union of these subsets, we consider
MAXCLIQUE. There are |.J|/!! variations of function ¢. Prob-
lem MINMAXCLIQUE lies in class coNPN'| since by infer-
ring the correct functiont : I — J (a ‘no’ certificate), the NP-
oracle can solve the MAXCLIQUE problem on G[Uic1V; 4(i)]
and verify the ‘no’ answer. Completeness is defined in a stan-
dard manner with polynomial-time reductions, and we know:

Lemma 1. /Ko and Lin, 1995] Problem MINMAXCLIQUE is
coNP"F-complete. (Their proof even holds when J = {0, 1}
and |V; 0| = |V;1| for everyi € 1.)

3> Any problem from class NP can be reduced to MAXCLIQUE in
polynomial-time; so that solving it efficiently would solve P vs NP.

®Class ©£ in the second level of the Polynomial Hierarchy.

7 A blackbox that solves any (co)NP problem in constant-time.

8Class I1%" in the second level of the Polynomial Hierarchy.
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5 Enemies Aversion and the Strict Core

In this section, under enemies aversion, we first address the
complexity of verifying that a given coalition structure is in
the strict core. Second, we address the complexity of deciding
whether the strict core is non-empty. We show the following:

Theorem 3. Problem HG/E/SC/VERIF is coNP-complete.

Hence the existence problem does not allow a classical ver-
ification procedure in polynomial-time. Indeed, it is not in NP
or coNP, since we show that:

Theorem 4. Problem HG/E/SC/EXIST is NP"F-complete.

Therefore, since this problem is at least as intractable as all
the problems that nest a coNP problem into an NP problem,
it is extremely intractable, despite the utter simplicity of ene-
mies aversion as a preference.

5.1 Proving Complexity of Verification

Proof of Theorem 3. Problem HG/E/SC/VERIF is in coNP,
since ‘no’-instances can be certified with a weakly block-
ing coalition. For coNP-hardness, we reduce problem MAX-
CLIQUE to the complement of problem HG/E/SC/VERIF.

Let graph G (V, A) and threshold k£ € N define
an instance of MAXCLIQUE. From it, we construct an
HG/E/SC/VERIF instance with vertex-agents V =V, k — 1
weight-agents in set K, and one fulcrum-agent ¢; therefore
with set of agents N = V U {¢} U K. Bearing Remark 1 in
mind, we depict graph G, in Fig. 1, and all other arcs are
enemies. Concerning set V, for every edge {i,j} in graph
G = (V,.A) we construct neutral arcs (4,7) and (j,4). In
set K, all £ — 1 agents are mutual friends. Between sets V'
and K, fulcrum-agent ¢ shares a mutual friendship with ev-
eryone. Finally, in given coalition structure 7, every vertex-
agent i € V is in singleton {i¢}, and the fulcrum-agent forms
a coalition with the £ — 1 weight agents.

In coalition structure m, there is a (weakly) blocking coali-
tion if and only if the fulcrum-agent can improve (from k — 1
to at least k friends) with a k-sized clique in set V/, and hence
if and only if a k-sized clique exists in graph G. O

5.2 Proving Complexity of Existence

Proof of Theorem 4. Problem HG/E/SC/EXIST is in NPNF,
For ‘yes’-instances, a coalition structure 7 in the strict core is
a certificate that can be verified using an NP-oracle. (Recall
that the verification problem is coNP-complete.)

We prove that problem HG/E/SC/EXIST is NPN-hard
by showing that the coNPNP-complete problem MINMAX-
CLIQUE (Lemma 1) can be reduced to the complement of
problem HG/E/SC/EXIST. Let graph G = (V, A), set I,
which partitions set V into {V;o,Vi1 | ¢ € I} and lower

m _ |V|Singletons One coalition
. .
| Modelof | I F' (L Cliqueof |
9=V AT TS k-1 friends | !

Figure 1: Reducing MAXCLIQUE to co-HG/E/SC/VERIF:
The edges of graph G become neutral arcs for agents V.

362

threshold £ € N define a restricted instance of MINMAX-
CLIQUE where Vi € I,|V; 0| = |Vi,1| holds. We construct
an instance of coHG/E/SC/EXIST addressing the MINMAX-
CLIQUE instance, as follows. Graph G is partially shown
in Fig. 2, by keeping Remark 1 on necessary cliques in mind.

(1) For every set of vertices V; j, we introduce set of
vertex-agents V; ; = V; ;. For every edge {z,y} in graph
G = (V,A), we introduce neutral arcs (z,y) and (y,x) be-
tween the agents of V' = J,;(V;,0U Vi 1). (There is no edge
between V; o and V; 1.) (2) We introduce two friend-cliques
Ky and K, each of which contains k£ — 2 mutual friends. Be-
tween them, agent y is a mutual friend with everyone in K|
and K. (3) Fulcrum-agent ¢ is a mutual friend with agent
1y, with everyone in clique K (but no one in clique K1) and
with everyone in set V. (4) Between every pair of sets V; o
and V; 1, we introduce |V; o| = |V;,1| inhibitors (specified be-
low) by pairing the agents of V; ¢ and V; ;. Each inhibitor,
which is a game connected to one vertex in V; ¢ and one in
V.1, makes the former vertex xor the latter non-available. (5)
To avoid inhibitors going to two different sides for one V; ;,
we connect to every set V; ; a circuit game L; ; (specified be-
low) in which the strict core is non-empty if and only if the
“every agent in V; ; is inhibited, or none is inhibited” condi-
tion is satisfied. (6) Other arcs are for enemies.

Recall that we want to show that our reduction addresses
problem MINMAXCLIQUE. Therefore, we want to show:

Vvt : I — {0,1}, 3k-sized clique € G[UserV; 1(s)]
& Vr e CN,3 weakly blocking coalition X C N

But first, observe that in our construct, assuming strict core
stability, fulcrum-agent ¢ is either grouped with y and K
(k — 1 friends) or with a clique in V of at least k£ friends.
If agent ¢ goes to a clique in V, then the game on agents
K, U {y} U K is isolated with an empty strict core. (If
y groups with Ky, then coalition {y} U K; weakly blocks;
and if y groups with K, then coalition {y} U K, weakly
blocks.) If agent ¢ goes to the right, then the strict core of
game {¢} U K1 U {y} U K is non-empty: agents ¢, Ko,y
group and agents K group. We say that an agent is available
for forming a coalition C' if she does not worse off.

(‘no’=‘no’): Let function t* : I — {0,1} be such
that subgraph G[U;crV; ¢+(;)] contains no clique of size k,
and construct a coalition structure with no weakly blocking
coalition. For every ¢ € I, we put all the inhibitors be-
tween V; o and V; 1 on V;1_-(;) (so that no circuit game L
generates a weakly blocking coalition). Hence, only agents

Figure 2: From MINMAXCLIQUE to coHG/E/SC/EXIST:
The corresponding graph G g specified above.
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Uier Vi = (s) are available for grouping with fulcrum-agent ¢,
but never in a clique larger that £ — 1 (based on the premise).
Therefore, by grouping agents ¢, y, and K, into one coali-
tion, fulcrum-agent ¢ would worse off by deviating within
UierVi t=(s)- To conclude, by forming singletons with each
agent in U;esV 4+(;) and a coalition with agents K3, this
coalition structure admits no weakly blocking coalition.
(‘yes’=‘yes’): Assume that for every function ¢t : I —
{0,1}, subgraph G[U;crV; 1(;)] contains a clique of size k,
and for the sake of contradiction let coalition structure 7 ad-
mit no weakly blocking coalition. Then there exists (™) such
that for every ¢ € I, all the inhibitors between V; ¢ and V; 4
go to side 1 —¢(™)(3), or otherwise circuit games Lipand L;
contain a weakly blocking coalition. Consequently, fulcrum-
agent ¢ is not grouped with agents y and K, but at least with
a k-sized clique in Gp [UieIVi’t(ﬂ)(i)] that exists based on
the premise. Then the game on agents Ky U {y} U K is
isolated. However, its strict core is empty, a contradiction.

Inhibitors pair every vertex x in set V; ¢ with a vertex y in
Vi.1. Their construction is depicted in graph G below.
. Crucially, each inhibitor is an en-
| emy of the other agents, preventing
i T Xor y to participate in the game.
| We show that inhibitor-clique
{a, ¢, b} is either grouped with agent
x xor agent y, and if it is grouped
with agent x (resp. y), then agent
x (resp. y) prefers to stay with the
inhibitor upon every other coalition,
since she has two friends in it.

If agent c joins z, then a and b fol-
low. Similarly, if ¢ joins ¥, then b and
! a follow. Finally, if ¢ is not grouped
| with x or y, then a and b join x and
iy, and c is interested in joining x or
'y, and @ and b follow c.

Each circuit game L; ; is connected to the agents of set V; ;
and constructed so that its strict core is non-empty if and only
if “every agent in V; ; is inhibited, or none is inhibited.” This
construction relies on a combination of smaller gadget games
that model any logical gate under the interpretation where an
agent available amounts to Boolean true. Gates NOT, OR,
and DUPLIC with inputs 2 and outputs y (Fig 3) are sufficient
to obtain a Boolean algebra. In gate NOT, the availability of
z makes y non-available. In gate OR, the availability of x; or
9 makes a non-available and y available. In gate DUPLIC,
the availability of z is duplicated into y; and y». Note that
gate AND(z1,z2) equals NOT(OR(NOT(z;), NOT(z2))),
and gates OR and AND generalize from binary operators to
multinary ones.

By combining these gadget games, circuit game L, ; is

constructed to obtain formula ( Nzevi, x) V ( Nazevi, ™

as the following availability of output agent y: “everyone or
no-one” (Fig. 4). To ensure that the entire game (of the re-
duction) is not altered by the agents of the logic game, every
agent x in set V; ; is separated from L; ; by a (double nega-
tion) gate where agent s is mutually neutral with every other

x
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! ! ! \' L;, ;: combination of gates for
' Vi s %ﬁ
o ‘ (/\16“1,1 I) v (/\me"m ﬁx)

Finally, the validity of the formula and the availability of
agent y make z non-available for v and v who remain sta-
ble singletons. Otherwise, the game on agents {u,z,v} is
isolated and has an empty strict core. To summarize, the cir-
cuit game has a non-empty strict core if and only if formula
(/\g;evi,jl‘) V (/\ﬁevw. _‘.%‘) holds. O

6 Extension to Enemies Aversion and the Core

In this section, under enemies aversion, we extend the results
on complexity of existence obtained for the strict core to the
core. First, the complexity of verification was addressed in
the proof of (Th.1) [Sung and Dimitrov, 2007]:

Theorem 5 ([Sung and Dimitrov, 2007], Proof of Th.I).
Problem HG/E/C/VERIF is coNP-complete.

There might be no polynomial-time verification procedure
for the existence problem. Indeed, we show the following:

Theorem 6. Problem HG/E/C/EXIST is NP*-complete.

Proof (sketch). First, problem HG/E/C/EXIST is in NPNF,
since, for ‘yes’-instances, a coalition structure 7 in the core
is a certificate that can be verified easily using an NP-oracle.
As previously, we prove that HG/E/C/EXIST is NPNF-
hard by showing that MINMAXCLIQUE can be reduced to
coHG/E/C/EXIST. The proof follows the same ideas de-
veloped for the strict core, relying on inhibitors and circuit
games. However, due to the structure of circuit games here,
we need to introduce vertex-cliques (resp. a fulcrum-clique)
instead of vertex-agents (resp. a fulcrum-agent), as follows:
(1) First, for each vertex x in )V we introduce a vertex-
clique, K, that contains k' mutual friends (k' is specified
below). For all edges {x,y} in graph G = (V, A), we intro-
duce mutual neutral arcs between each 2’ € K, andy’ € K,,.
(2) Second, we introduce a generalization of Example 2 with
five cliques {Cy, ..., C4}, each of which contains (k" — 1)
mutual friends (k" is specified below). (3) Third, we intro-
duce a fulcrum-clique of £” mutual friends, /. Each agent
in K, is a mutual friend with each agent in Cj and with
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Figure 5: Gates NOT, OR and DUPLIC (in: K, out: Ky)

everyone in set V. (4) Finally, inhibitors and circuit games
(specified below) play the same role as for the strict core.

The main argument for this reduction’s validity is the same
as for the strict core setting. Fulcrum-clique K, is either
grouped with Cy ((k” — 1) friends) or with at least a k"' -sized
clique in V, in a core stable coalition. Therefore, we only
present the inhibitors and the circuit games.

An inhibitor is a clique that contains (k" + 1) mutual
friends and pairs a vertex-clique K, in V; o with a vertex-
cliqgue K, in V; ;. Each agent of the inhibitor-clique is a
mutual friend with every agent in K, and K,. Thus, the
inhibitor-clique either groups with K, or K, in a core sta-
ble coalition structure. If the inhibitor-clique is grouped with
K, (resp. K,), then K (resp. K,) prefers to stay with the
inhibitor upon every other coalition.

Each circuit game L; ; follows the same principle as in
Theorem 4, relying on logic gates NOT, OR, and DUPLIC
(Fig. 5) to obtain a Boolean algebra. However, in gate OR,
we have to assume that K, or K, are two friends-cliques
with identical size ¢, and we set the size of K, and K, to
(t — 1). Then the availability of K, or K, makes K, non-
available and K, available. In gate DUPLIC, assuming the
size of K, is t > 3, we set the sizes of Kz, and Kjg, to
(t — 2), and the size of K, and K,, to (¢ — 1). Then the
availability of K is duplicated into K, and K,.

As in Theorem 4, using these gates, circuit game L; ; can
be constructed, and we connect its output to a specific in-
stance of Example 2 with five cliques of size 3. Also, between
each vertex-clique K, and L; ;, we introduce a double nega-
tion, composed of a separating-clique of size &’ and a second
clique of size (k' — 1). To conclude, since the circuit game
leads us to set k¥’ = 9, we set k”/ = 18k because the agents
of the separating-clique have to be mutual friends with each
agent of the fulcrum-clique to guarantee core stability. O

7 On Friends Appreciation

In this section, we consider hedonic games under friends ap-
preciation. Even though with only friends and enemies the
existence of a strict core stable coalition structure is guaran-
teed, Theorem 2 shows that the existence is not guaranteed
with neutral agents. Furthermore, we show the following:

Theorem 7. Problem HG/F/SC/VERIF is coNP-complete.

Proof (sketch). Surprisingly, the same reduction as for The-
orem 3 works with a slight modification: vertex-agents are
neutral toward the fulcrum. Then the preferences of vertex-
agents and the fulcrum lie in P¥ N PF. Moreover, the clique
of friends cannot be grouped with vertex-agents. O
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Theorem 8. Problem HG/F/SC/EXIST is NPM -complete.

Proof (sketch). The proof follows a similar sketch as for the
strict core and enemies aversion (i.e., a fulcrum-agent be-
tween MINMAXCLIQUE, inhibitors, circuit games and Ex-
ample 3). However, Remark 1 does not hold with friends ap-
preciation. However, we are still able to model gadget games
and inhibitors. Here is the main idea for a construction: each
agent can be forced to choose between two coalitions where
her number of friends is the same but the number of enemies
differ. Thus, she will prefer to be in the coalition with the
lowest number of enemies if and only if it is available. O

Although these results show the extreme intractability of
the strict core under friends appreciation, the complexity-
landscape changes radically to easiness for the core:

Theorem 9. Given an HG/F; (1) the existence of a core-stable
coalition structure is guaranteed, and (2) it can be computed
in polynomial-time as the strongly connected components of
graph Ggp = (N, Ar).

Proof. The idea of using strongly connected components is
similar to a previous result with only friends and enemies
[Dimitrov et al., 2006], which can be computed in time O(n?)
[Tarjan, 1972]. We extend it to neutrals, with a much shorter
proof. Let 7 = {C1,...,Cy} be the coalition structure
corresponding to a decomposition of graph Gp = (N, Ap)
into strongly connected components, and let us show that it
is strict core stable. Since the condensation graph, where
each Cj; is contracted into one vertex, is a directed acyclic
graph, it has at least one sink, which we call C. No subset
Y C C can be part of any blocking coalition X D Y, since
ifY C C,) at least one would loose friends or (if Y = Cj)
one may gain enemies. By repeating this argument on the
condensation graph from which C; was removed, we obtain
that no agent can be in a blocking coalition. O

8 Conclusion

We studied the computational complexity of coalitional sta-
bility in hedonic games under enemies aversion and friends
appreciation, by introducing neutral agents. It was known
that without neutral agents, coalitional stability is just NP-
hard, while in the very general ASHGs it is NPNP-complete,
hence a computationally extremely hard requirement. Be-
tween these two models, to the best of our knowledge, our
models are among the simplest cases of extreme intractabil-
ity for coalitional stability in hedonic games. An interest-
ing prospect is to explore assumptions that make verification
tractable, in order to bring the existence problem to class NP.
Also, we did not extend our results to if friend/enemy rela-
tions are symmetric. Furthermore, since very few algorithms
and methods have been proposed to achieve coalitional sta-
bility, numerical experiments could be a good challenge.
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