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Abstract

In the quest for market mechanisms that are easy
to implement, yet close to optimal, few seem as vi-
able as posted pricing. Despite the growing body of
impressive results, the performance of most posted
price mechanisms however, rely crucially on “price
discrimination” in the presence of large supply or
non-linear production costs. With this in mind, we
study the problem of designing non-discriminatory
pricing mechanisms for social welfare maximiza-
tion in a Bayesian setting where the seller only has
stochastic information regarding buyer valuations.
Our main contribution is a framework for static
item pricing in the face of production costs, i.e.,
the seller posts one price per good and buyers ar-
rive sequentially and purchase utility-maximizing
bundles. The framework yields constant factor ap-
proximations to the optimum welfare when buyer
valuations are fractionally subadditive, and extends
to settings where the seller is completely oblivious
to buyer valuations. Our results indicate that even
in markets with complex buyer valuations and non-
linear costs, it is possible to obtain good guarantees
without price discrimination, i.e., charging buyers
differently for the same good.

1

In the quest for market mechanisms that are simple, yet ap-
proximately optimal [Hartline and Roughgarden, 2009], few
candidates seem as appealing as posted price mechanisms,
where the seller simply posts prices on the items and buy-
ers consume utility-maximizing sets of goods. This opti-
mism towards posted prices is not without cause: a long
line of research has established that in addition to a slew
of favorable properties, mechanisms based on posted pric-
ing provide near-optimal performance guarantees in a num-
ber of diverse applications [Blumrosen and Holenstein, 2008;
Feldman et al., 2015; Maehara et al., 1. More recently, some
of these results have been extended to settings with gen-
eral buyer valuations, where sellers only possess distribu-
tional information regarding the same [Feldman et al., 2015;
Hsu et al., 2016]; such results are a crucial first step towards
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the larger goal of understanding the performance of posted
prices in more realistic, and general markets.

Real markets, however, often feature sellers who pos-
sess multiple copies of goods or more generally, costs as-
sociated with producing or transporting each copy of good.
Here, our picture of posted pricing mechanisms is far from
complete. Papers dealing with multi-unit supply in com-
binatorial auctions have often resorted to price discrimi-
nation, i.e., charging buyers differing prices for the same
good, in order to extract good performance bounds [Blum
et al., 2011; Chakraborty et al., 2010; Cohen-Addad et al.,
2016]. In the literature, one also encounters discrimina-
tive pricing policies under more benign labels such as dy-
namic pricing [Chakraborty et al., 2009], sequential posted-
pricing [Chawla er al., 2010] or non-anonymous reserve
prices [Daskalakis and Pierrakos, 2011]. Looking beyond
multi-unit supply to the more general case of production
costs, little is known about the performance of posted price
mechanisms when the underlying costs are non-linear, even
less so in Bayesian settings.

Is discriminatory pricing essential for good per-
formance in the presence of multi-unit supply?
Do posted prices give desirable guarantees in a
Bayesian setting involving production costs?

These are the questions that we seek to answer in this work.
Our work is motivated by both theory and practice; price dis-
crimination, while accepted practice in some industries (air-
line, taxis), is inherently unfair to the buyers and can lead to
adverse effects in the long-run [Anderson ez al., 2010]. On the
other hand, extending the state-of-the-art in Bayesian Mech-
anism Design to markets with general buyer valuation func-
tions and production costs often necessitates blurring the line
between good and copy, resulting in mechanisms that price
each copy of a single good as if it were a distinct good.

Our central result answers both the questions posed above
for Bayesian settings with fractionally subadditive (XoS)
buyer valuations and convex production costs. Specifically,
we design an incentive compatible, non-discriminatory mech-
anism based on static posted prices that extracts a constant
fraction of the optimum social welfare. At a high level, our
work presents a strong case for treating buyers fairly: by
bounding the gains obtained via discriminatory pricing, we
argue that the incentives for discrimination may not offset the
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negative impact of treating buyers unfairly.

Market Model We consider a market with a set Z of m
goods and N buyers having combinatorial valuation func-
tions: v : 22 — R* U {0}, ie., v;(S) denotes buyer j’s
value for a set S C Z of goods. The seller faces a convex
production cost function with non-decreasing marginal costs
for each good, i.e., for every ¢ € Z, the seller incurs a cost of
C;(¥) for producing ¢ units of this good. Such convex costs
strictly generalize settings with limited supply. For the ma-
jority of this work, we assume a Bayesian setting with prior
F = F; x Fy...x Fy: buyer ¢’s private valuation is drawn
independently from distribution F;, which is known to the
seller. Our objective is to maximize the social welfare, which
is defined as the total value derived by the buyers minus the
production cost incurred by the seller. Towards this goal, we
propose two types of posted pricing mechanisms depending
on whether or not the seller has to commit to producing an
exact amount of each good in advance. Both these mecha-
nisms follow a simple template: () the seller posts a single
price per good applicable to all buyers, and (i7) buyers arrive
sequentially in some arbitrary, possibly adversarial order and
purchase utility maximizing subsets of the available goods.

1. On the Fly Mechanisms (OTF): The seller fixes an up-
per bound on the number of copies of each good that he
is willing to produce and incurs a production cost only
for the items that are actually sold. Once the number of
copies of a good sold reaches the upper bound, the item
becomes unavailable for future buyers.

Commitment Mechanisms: The seller commits to pro-
ducing a certain quantity of each good and incurs pro-
duction costs whether or not those items are sold.

When the seller has limited supply, the two classes of
mechanisms are equivalent. However, for strictly non-linear
production costs, on the fly mechanisms are a relaxation of
commitment mechanisms. Finally, all of the mechanisms in
this work are trivially dominant strategy incentive compati-

ble.

Comparisons to Existing Work: Dynamic Pricing and
Unit Supply

To the best of our knowledge, there are no previous results in
Bayesian mechanism design dealing with convex production
costs (specifically with a view towards non-discriminatory
pricing). This is particularly surprising given that increasing
marginal costs are a natural consideration in many markets
since the “limited supply assumption is too pessimistic and
additional sources can often be found at higher cost” [Blum
etal.,2011].

At the same time, the current work acts as a bridge be-
tween the closely related streams of literature pertaining
to multi-unit combinatorial auctions [Bartal et al., 2003;
Blum er al., 2011; Huang and Kim, 2015] and posted pric-
ing with unit-supply [Feldman er al., 2015]. The literature on
multi-unit combinatorial auctions has yielded constant-factor
approximations for maximizing social welfare in the presence
of limited supply and production costs, albeit by offering dif-
ferent posted prices to different buyers. In this work, we study
the same setting and approximate social welfare via the more
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demanding class of static, non-discriminatory pricing mech-
anisms instead of dynamic pricing as in previous work '. On
the other hand, in [Feldman et al., 2015], the authors use non-
discriminatory posted prices to maximize welfare when the
seller has exactly one unit supply of each good. We extend
their result to settings with non-linear production costs on the
goods.

1.1 Summary of Contributions

Central Result: 4-approximate On the Fly Mechanism

We begin with the class of OTF mechanisms for buyers hav-
ing XoS valuations, which generalize submodular functions.
We present a black-box reduction that transforms any ap-
proximation algorithm Alg for the allocation problem: ‘the
problem of allocating goods to buyers to maximize social
welfare’, into a non-discriminatory posted price mechanism
that ensures a social welfare of £ Bz z[SW (Alg(7))], where
SW (Alg(D)) is the welfare guaranteed by Alg on input val-
uations U. The black-box result makes use of both a de-
mand oracle and an XoS oracle for the buyer valuations.
To supplement the reduction, we also present a poly-time
2-approximation algorithm (Alg) for the allocation problem
with XoS buyers and convex costs. Together, they yield our
main computational result: a mechanism that posts a single
price per good and extracts one-fourth of the optimum wel-
fare for arbitrary buyer arrival orders and convex costs.
(Significance of the Result) Previously, posted pricing mech-
anisms with good welfare approximations were only known
for restrictive settings with one unit supply of each good and
no production cost [Feldman ef al., 2015]. Although their
result could arguably be extended to markets with increased
supply, this would require posting different prices for differ-
ent copies of the same item, i.e., by treating identical copies of
a good as distinct goods, any problem with multi-unit supply
can be reduced to one with unit supply. On the contrary, our
mechanism offers the same price on all copies of a good and
makes no assumption on the cost function other than convex-
ity, which is standard in market design [Blum et al., 2011].
Commitment Mechanism and XoS valuations: For the
challenging class of commitment mechanisms, our frame-
work yields welfare guarantees that are sensitive to the struc-
ture of the allocation returned by the algorithm. Formally, we
define an instance to be a-bounded (as in [Feige er al., 2013])
with respect to an allocation algorithm Alg, if in the solution
returned by the algorithm, the expected value derived by the
buyers is at least a factor « times the expected production cost
incurred by the seller. Then, our mechanism obtains ‘desir-
able welfare guarantees’ when « is large, i.e., for instances
where the algorithm returns a solution whose expected social
welfare is large compared to the cost incurred.

More specifically, we present a non-discriminatory com-
mitment mechanism whose approximation factor to the op-
timum welfare is 4% Sor XoS buyers (o« > 2). If the cost
functions are ‘sufficiently convex’, then « is large irrespective

'Tt is noteworthy that the results in [Blum et al., 2011] were
obtained for a prior-free setting; we obtain stronger approximation
guarantees under a distributional assumption.
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of the buyer valuations, and our mechanism provides good
bounds.

Sampling Buyer Distributions: Our mechanisms for the
Bayesian setting exhibit a runtime polynomial in the sup-
port size of the product distribution F. However, one can
convert these mechanisms into computationally efficient pro-
cedures in a straightforward manner by repeatedly sampling
valuation profiles and computing allocations for the sampled
valuations. Specifically, applying the sampling techniques
in [Feldman et al., 2015], we obtain mechanisms that run
in time polynomial in N, m, and % with an additive welfare
loss of € from the stated bound. In order to clearly illustrate
our technical ideas and avoid messy notation, we suppress the
sampling aspect of our mechanisms for the rest of this work.

1.2 Other Related Work

This paper also bridges the gap between two closely re-
lated fields: auction theory, and envy-free item pricing. Al-
though the mechanisms in this work technically fall under
the purview of Bayesian mechanism design [Chawla et al.,
2010], they are not auctions in the traditional sense as they do
not elicit any input from the buyers; hence, they are trivially
dominant strategy incentive compatible (DSIC). Our work is
closer in spirit to envy-free pricing algorithms for comput-
ing Walrasian equilibrium [Roughgarden and Talgam-Cohen,
2015]. Since Walrasian equilibria do not exist [Gul and Stac-
chetti, 1999] for complex valuations such as XoS, one could
view the pricing mechanisms in this work as relaxations that
sacrifice envy-freeness but guarantee existence and welfare.

To the best of our knowledge, there are no mechanisms in
the literature that meet all of the desiderata fulfilled by our
framework: (i) general buyer valuations (XoS), (ii) (con-
vex) production cost functions, (#i¢) non-discriminatory pric-
ing, (iv) non-identically distributed buyers, and (v) dom-
inant strategy incentive compatibility. However, if we re-
lax some of these constraints, we stumble upon a number of
closely related works (see for example [Bei and Huang, 2011;
Branzei et al., 2014]).

Owing to their popularity in real-world applications, there
has been a surge in the theoretical investigation of dy-
namic pricing mechanisms. Specifically, [Blum et al., 2011;
Huang and Kim, 2015] look at an OTF-like mechanism where
the seller offers different prices in each round and prove wel-
fare bounds that depend on the nature of the production cost
function. On the other hand, our mechanism guarantees fair-
ness as the prices remain static throughout. Moreover, our
OTF mechanism obtains a 4-approximation to the optimum
welfare for arbitrary convex production costs.

2 Model and Preliminaries

As defined previously, we consider a set Z of m goods:
each ¢ € 7 has a convex production cost, i.e., for any ¢,
the seller incurs a (marginal) cost of ¢;(¢) for producing the
¢*h copy of this good, and c;(¢) is non-decreasing as ¢ in-
creases. The seller can choose to produce any number of
goods for which he faces an aggregate production cost of

Ci(0) = Z£:1 ¢i(r). Such convex costs strictly general-
ize limited supply. For instance, ¢;(¢) = 0 for ¢ < k and
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¢i(£) = oo otherwise, indicates a fixed supply of k units.

Given an allocation § = (S1,S52,...,SNn) where S; is
the set of goods allocated to buyer j, suppose that Vi € Z,
k; represents the number of units of this good allocated to
the buyers. Then, the social welfare of this allocation is
SW(S) = Zjvzl v;(8S5) — > _;c7 Ci(k;). For the rest of this
work, we will assume that all buyers have monotone non-
decreasing XoS valuations, which strictly generalize many
well-studied functions such as unit-demand, budget additive,
and submodular valuations [Dobzinski et al., 2010].

Fractionally Subadditive (or ‘XoS’) Valuations 3 a set of
additive functions (a1, ...,a,) such that for any 7' C
Z, v(T) = maxj_, a;(T). An additive function (also
known as a clause) a; has a single value a; () for each
i € T so that for a set T of goods, a;(T) = >, a; ().

Oracle Access The standard approach in the literature while
dealing with set functions (where the input representation is
exponential in size) is to assume the presence of an oracle
that allows indirect query access to the valuation. All of our
results in Sections 3 and 4 assume black-box access to two
types of oracles: (i) a demand oracle that when queried with
a vector of prices p'returns a set .S that maximizes the quan-
tity v(S) — >_,c g Pi» and (i) an XoS oracle that for an XoS
function v and a set T' C 7 returns the additive clause a; that
maximizes a;(T"). We refer the reader to [Dobzinski et al.,
2010] for a thorough comparison of these two oracles.

Seller’s Mechanism: Static Posted Prices
A posted pricing mechanism with item prices is said to be
static or non-discriminatory if no two buyers are offered the
same good at different prices. We now formally define the
two types of mechanisms considered in this work. Note that
both our mechanisms do not elicit any input from the buyers.
On the fly mechanism In an OTF mechanism, a seller in-
curs production costs only for the goods that are actually sold
to the buyers.

1. the seller posts a price vector p where p; is the price of
good i € Z, and fixes an upper bound k; on the number
of copies of each good ¢ that he is willing to produce.

buyers arrive in some arbitrary order; each buyer looks
at the set of available goods and purchases her utility
maximizing bundle.

an item becomes unavailable once the number of copies
purchased equals the upper bound.

The upper bound can be thought of as the seller preparing
his machinery for producing a certain number of goods, but
stopping short of actually producing them.

Commitment Mechanism In a commitment mechanism,
the seller produces the goods before the buyers arrive and
thus incurs an additional cost for any goods that are not sold.
From an algorithmic perspective, these mechanisms are much
harder than on the fly mechanisms.

1. the seller posts a single price per good and produces a

fixed quantity of each good in advance.

2. buyers arrive in some arbitrary order, and each buyer

purchases her utility maximizing bundle from the re-
maining items.
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3 On the fly mechanism for XoS buyers

In this section, we present our main result: an OTF mecha-
nism that obtains a 4-approximation to the optimum welfare.
The mechanism comprises of two independent components:
(7) a black-box reduction for transforming any algorithm for
the allocation problem into a posted price mechanism that
guarantees the half of the social welfare of the algorithm (7)
a 2-approximation algorithm for the allocation problem. We
first state the black-box result formally.

Claim 3.1. Given a product distribution F, an algorithm
Alg, demand and XoS oracles, we can compute in poly-time a

price vector p* and supply upper bound k* such that the OTF
mechanism with these parameters provides a welfare guaran-
tee (in expectation) of 5 Ez.x[SW (Alg(7))].

Such black-box reductions (from pricing to the allocation
problem) have recently gained traction in mechanism de-
sign [Bei and Huang, 2011; Dughmi ef al., 2017; Feldman et
al., 2015] as they allow us to reuse the extensive techniques
developed for computing welfare maximizing allocations in
order to derive prices that indirectly result in desirable alloca-
tions. However, the black-box techniques developed in [Bei
and Huang, 2011; Dughmi et al., 2017] only yield Bayesian
incentive compatible (BIC) mechanisms, whereas the above
claim trivially indicates dominant strategy incentive compat-
ibility.

Claim 3.1 strictly generalizes the black-box result in [Feld-
man et al., 2015] for deriving welfare-maximizing prices for
settings with unit supply and our proof is inspired by the ap-
proach developed in that paper. However, owing to the non-
linear nature of the production costs, the pricing scheme that
we propose is more involved than the one used by [Feldman et
al., 2015]. More specifically, when dealing with unit supply,
one can achieve good social welfare by simply pricing each
item at a fraction of its (expected) contribution towards the so-
cial welfare of some allocation. However, this approach does
not yield desirable guarantees with production costs. Instead,
we generalize the single-item pricing scheme from [Feldman
et al., 2015] in a non-trivial direction by pricing each item at
the average of its contribution towards the buyer welfare and
its contribution towards the production cost, i.e., for every
copy of the item produced, we create a dummy buyer whose
valuation equals the marginal production cost and then price
the item at its average contribution towards social welfare.

We reiterate the important point that when the representa-
tion of F is not polynomial, using standard sampling tech-
niques [Feldman er al., 2015], we can get a welfare guarantee
of +Eg.x[SW(Alg(7))] — € in poly-time. Before proving
the theorem, we state the concomitant ‘allocation algorithm’.

Algorithm for Allocating Goods to XoS buyers

The secondary algorithmic contribution of this section is a
2-approximation algorithm for the following allocation prob-
lem: given a set I of goods with convex production costs
and deterministic XoS valuations, compute an allocation S =
(S1, ..., SN) that maximizes social welfare. Note that the al-
location algorithm is only applicable for a single profile of
buyer valuations, i.e., the deterministic setting. Our pricing
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mechanism uses this algorithm as a black-box for different
valuations drawn from F.

Claim 3.2. (Allocation Algorithm) For any given input with
XoS buyer valuations, Algorithm I returns an allocation of
goods to buyers such that the resulting social welfare is at
least one-half of that of the welfare maximizing allocation.

Algorithm 1 Allocation Algorithm for XoS buyers

Input: Access to buyer valuations in the form of De-
mand, XoS oracles
Initialization Phase

1: 81,85,,...,SN < 0/ Initial Allocation

2: Define p's.t. p; = ¢;(1) Vi € Z // Internal Prices
Allocation Phase: For each buyer j € 1,2,..., N

3: Let SJ’. be the utility-maximizing bundle demanded
by buyer j at prices P set S; = SJ/»
4: Let (al) denote the maximizing XoS clause for
buyer j and set S;. Set ¢; (i) = al(i) foralli € S;.
5. Update: For each item ¢ € S, let X; be the set of
buyers who have received a copy of ¢ so far.
6: If p; corresponds to ¢;(i) for some j € X, re-
move j from X; and remove item ¢ from j’s allocation.
7: Update p; = min{¢; (| X;| + 1), minjex, ¢;(2)}.

The functioning of Algorithm 1 can be interpreted as fol-
lows: the market consists of N + 1 buyers (buyer O is
the seller) who arrive sequentially in some arbitrary order.
Each new buyer can acquire their maximum utility bundle
by purchasing each item from either the seller (at the current
marginal production) or from previous buyers (at a price de-
rived from the XoS clause corresponding to that buyer). Note
that while Algorithm 1 uses prices as an internal device, its
final output is simply an allocation and does not involve any
pricing. Our algorithm generalizes the 2-approximation algo-
rithm for XoS buyers and unit-supply first studied in [Dobzin-
ski et al., 2010] to settings with production costs.

The main implication of Claims 3.1 and 3.2 is a compu-
tationally efficient posted pricing mechanism whose welfare
guarantee is one-fourth that of the optimum allocation.

Theorem 3.3. We can compute in poly-time a price vector
p* and supply vector k* such that for any arrival order, the
expected welfare of the posted price mechanism with these
prices is at least one-fourth of the optimum social welfare.

All of the heavy-lifting for the above theorem is done by
Claim 3.1, and it suffices to prove the claim.
Proof of Claim 3.1 We now present a general framework for
non-discriminatory pricing in the presence of convex produc-
tion costs. The framework consists of two ingredients: first,
we provide a technique to derive prices for each good sepa-
rately. Second, we provide some sufficient conditions for ob-
taining pricing mechanisms with good welfare for arbitrary
valuations.

Framework Part I: Profit-Surplus Equivalence

We now restrict our attention to markets with a single good
1 and show how to derive prices that obtain good welfare.
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Suppose we allocate k units of this good to buyers whose
valuations for the good are v1 > vy > ... > v;. The total
welfare due to this particular allocation is Z’;Zl [ve — ¢ (0)].
We are not interested in negative welfare, so we assume that
Sk v > Y, ¢i(£). Define the following functions: (i)
Buyer Surplus: f;(p) = Zif:l [ve — p] (this denotes the total
utility derived by the buyers at price p) and (i7) Seller Profit:
mi(p) = pk — oy ci(0).

The purpose of this section is to identify a convenient price
where profit and surplus coincide (see Lemma 3.4); such a
price is desirable for both the buyers and the seller. The
choice of this price is justified in Lemma 3.5. Observe that
both 7;(p) and f;(p) are continuous and monotone in p with
£i(0) > m;(0) whereas f;(vy) < m;(v1). So, there must exist
some price p} € [0, v1] satisfying the following condition.

(H
Lemma 3.4. The total profit if all k items are sold at price
p; is exactly half the social welfare due to i, i.e., m;(pl) =

% (Z];:ﬂ”é - Cz(f)})

The lemma follows from Equation 1 using simple algebra.

(Profit-Surplus Equivalence) f; (p;) = m;(p} ).

Framework Part 2: Sufficient Conditions
We now identify sufficient conditions that lead to OTF mech-
anisms having good welfare guarantees for XoS valuations.
Specifically, suppose that we are given as input an allocation
algorithm Alg. We propose three conditions that a price vec-
tor must satisfy so that the OTF mechanism with these prices
provides an expected welfare that is comparable to that of the
allocation returned by Alg in expectation over F

Notation: Let Alg(¥) = (A1(?),. AN( 0)) denote the
allocation output by Alg for valuation proﬁle 4. Suppose that
under this allocation, NV;(¥) represents the set of buyers to
whom good ¢ is allocated, and k;(¥) = |N;(¥)|. Fixing 7, let
0; be the XoS clause corresponding to buyer j that maximizes
0j(A;(7)), i.e., 0;(A;(7)) = v;(A;(¥)). Then, we define the
total value derived from good 4, Vi(¥) = ey, (5 05 (),
and also V; = Ez.z[V;(¥)]. Similarly, we can also de-
fine the quantity representative of social welfare SW;(¥)

ki
e 0s() = S0 (o),
Lemma 3.5. Given an approximation algorithm Alg, sup-

pose that there exists a price vector p* and an upper bound
supply vector k*, satisfying the following conditions

), and its expected value SW,.

1. for every good i, pik} — C;(kf) > 0;
2. for every good i, V; — p; Eg.r[ki(0)] > £ SW;;
3. forevery good i, pfki — C;(k¥) > éSW,-.

Then, an on the fly mechanism with parameters (p*, /4;_;) re-
By r[SW (Alg(D)]

sults in a welfare of =

Proof. Fix some valuation profile ¥ ~ F, and a buyer j. Sup-
pose that for this valuation, Sold,(?) is the set of goods that
are sold out (supply limit reached) when buyer j arrives. Con-
sider another valuation profile @_ ; for buyers other than j, so
that this valuation is independent of ¢. Define & = (v;,d_),
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and define o; to be the XoS clause that maximizes A; (d@),ie.,
v (A;(@)) = 0;(A;(@) = Xica, @) 05 (1)

Under the fixed valuation ¢ and for each @_ ;, buyer j could
have purchased the set of goods in A; (&) \ Sold, (7). There-
fore, the utility of this buyer under the fixed valuation is at
least B, [z 1(j € Ni(@))-1( ¢ Sold; (7)) 05(i) —pi].

Observe that Sold;(U) does not depend on @_; whereas
N;(a@) and 0;(4) depend only on @. Therefore, summing up
the above quantity for all buyers and taking the expectation
over ¥, we get that the expected total surplus (buyer util-
ity) is at least 3, 7 SN Es[1(i ¢ Sold;(v))|Ez[1(j €
N;(@)).0;(i) — pf]. Applying the definition of V;, this quan-
tity can be rewritten as ), Pr(i is not sold out) E5[V; (¥) —
k;(¥)pF]. Finally, from Condition (2) of the lemma, we get
our final lower bound on the aggregate buyer utility (surplus).

N

Egor[Y u;(9)]

Jj=1

1
> — Pr(i t sold out) SW;.
_a; (i is not sold out)

Next, for any fixed valuation ¥, let S(¥) and U (¥) be the set
of items that are sold out (all k] copies), and the ones that are
not respectively. Suppose that for any ¥, ¢;(?) is the number
of copies of good ¢ sold by the mechanism. Then, the seller’s
profit (in expectation) is exactly Egy x[)_;. S(7) (kipr —

Ci(k3)) + 2iev(m (ta(0)p] — Ci(t:(V)))].
Moreover, it is not hard to deduce that the term ¢, (¥)p} —

Zz (11’) ¢;(¢) is non-negative for all 7 as per our choice of

p;. Therefore, ignoring the profit due to the unsold items,
we can apply the third condition in the lemma statement
and get the following lower bound on the expected profit:
L5 ez Pr(iis sold out) SW;.

By definition, social welfare is simply the expected buyer
surplus plus the expected seller profit. Adding up our two
lower bounds, we can complete the proof of the lemma. [

Final leg: Showing the Black-Box Result

Armed with our framework from the previous sections, we
are now ready to prove the black-box reduction in Claim 3.1.
Specifically, we will compute prices based on the first part of
the framework and then show that a mechanism with these
prices satisfies the conditions of Lemma 3.5 for o = 2.

e Pricing Scheme: For every good i, set (i) p} = o= +

w and (ii) kf = Eg 7 [ki(7)).

Note that p; denotes the price that results in profit-surplus
equivalence, taken in expectation over F. We assume without
loss of generality that k] is integral for all <. It only remains
to prove that these prices and supply constraints satisfy the
conditions of Lemma 3.5 with o = 2.

1. Condition (1): p;k; — C;(k}) > 0: By definition,
pikf — Ci(ky) = Y + LE; #[Ci(ki(D)] — Ci(k}).
Since the cost functions are convex, we can apply
Jensen’s inequality and get that Fg.x[C;(k;(7)] >
Ci(Egrlki(0)]) = Ci(kF). Therefore, we get that

Pk — Cy(kY) > Vi anf[gi(ki(ﬁ)] — %SWi > 0.
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2. Condition (2): V; — pfEz.x[k:(0)] > iSWi: As
per the definition of p}, we have that p{k; = 1(V; +
Es.7[Ci(k;(¥))]). Taking the negative of this equa-
tion and adding V; to both sides gives us V; — pik’

3(Vi = Eg 7 [Ci(ki(9))]) = 3SW;.
. Condition (3): pik; — C;(k}) > éSWi: This follows
from the proof of Condition (1) foraw = 2. [

4 Commitment Mechanisms

We move on to the much harder class of mechanisms, where
the seller has to initially commit to producing a fixed amount
of each good under uncertainty, and therefore, incurs a loss on
every item that is not sold. Given an instance of our problem
and an algorithm Alg, using the same notation as in the proof
of Claim 3.1, the expected social welfare provided by the al-
gorithm is By p[SW (Alg(7))] = Eser[Y 1 v;(A; (7)) —
> iz Ci(k;(¥))]. Then, the instance is said to be a-bounded
with respect to Alg for a > 1 if EUNF[Z;V:I v;(4;(7))] >
aBs [} ier Ci(ki(D))].

Our main result in this section is a commitment mecha-
nism that obtains a 43—:% approximation to the optimum wel-
fare: for large enough values of «, we obtain a constant fac-
tor approximation and as & — oo, the performance of the
commitment mechanism approaches that of the OTF mecha-
nism from Theorem 3.3. a-boundedness captures the recov-
erable welfare in terms of the initial investment. In previ-
ous work [Feige er al., 2013], a-boundedness was defined in
terms of the optimum solution for a given instance; on the
other hand, our definition depends both on the instance and
the benchmark algorithm.

Theorem 4.1. I. Given an allocation algorithm Alg, for
every instance with fractionally subadditive buyers that
is a-bounded with respect to Alg for o € [2, 00|, there
exists a commitment mechanism that extracts a welfare
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2. For any given instance with fractionally subadditive
buyers, we can compute posted prices in poly-time such
that the resulting commitment mechanism always guar-
antees a social welfare within a factor 4% of the op-
timum allocation, as long as the instance is a-bounded
with respect to the algorithm from Claim 3.2.

a—2
a—1"

Discussion: Essentially the parameter «v allows us to distin-
guish between good and bad instances of our problem. The
performance of our commitment mechanism improves as «
increases. In many markets, it is reasonable to expect that the
cost of producing the goods is not too large in comparison
to the social value [Feige et al., 2013]. Alternatively, if the
production cost function is sufficiently convex, then the solu-
tion returned by our algorithm from Claim 3.2 is always a-
bounded for a large enough value of « to ensure good welfare.
For example, if ¢;(¢) = ¢2 for all i € Z and Alg allocates at
least 3-copies of every good, then the resulting allocation is
a-bounded for o = 2.5 and our commitment mechanism pro-
vides a welfare guarantee of + E5[SW (Alg(7))].

(Proof Sketch) The proof relies on the same framework as
the OTF mechanism from Section 3, so we only sketch the
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key differences. In the proof of Claim 3.1, we defined profit
and surplus functions for every ¢ € Z and selected a price p;
so that the profit due to the sold items is exactly the surplus
due to the unsold items, and the profit due to the unsold items
is non-negative. However, this is no longer true for commit-
ment mechanisms as the profit due to the unsold items may be
negative due to the incurred production costs, thereby lead-
ing to poor welfare. To compensate for the negative profits
when items are unsold, the main idea is to reduce prices so
that the higher surplus offsets the increased production costs
when the items are unsold. Using the same notation as in the
proof of Claim 3.1, we define a reduced surplus function for
each good 4, hi(p) = Vi — pEgr[ki(V)] — E5[C;(ki(V))] =
fi(p) = E5[C;(ki(V))]. For every good i € Z, we select its
price p} to be the point where h;(p) = m;(p), i.e., where
reduced surplus and profit meet, and quantity to produce as
k¥ = Eg~r[ki(0)]. Using the same sequence of ideas as in
the proof of Claim 3.1, the theorem follows. [

5 Conclusions and Future Directions

In this work, we considered the problem of maximizing so-
cial welfare in the presence of distributional information re-
garding buyer valuations. Our main contribution is a non-
discriminatory posted pricing mechanism that achieves one-
fourth of the optimum welfare even when the seller faces
convex production costs on the goods. Convex costs are a
natural generalization of fixed supply and capture the dis-
economies of scale that occur when expensive resources are
utilized to achieve higher levels of production, for example,
when manufacturing plants have a standard capacity up to
which they incur constant marginal costs but the marginal
cost increases beyond this threshold due to overtime, new
equipment, etc. [Hochbaum and Wagner, 2015]. Other ap-
plications of convex costs include the energy cost incurred by
a data center as a function of utilization [Buchbinder et al.,
2011]. A natural question that arises is whether our results
can be extended to settings with concave production costs
or economies of scale. As a first step in this direction, we
can show good approximations for social welfare when the
derivative of the concave function is not too volatile.

All of our results assume that we can access the buyer val-
uation functions by means of oracle queries, which is a stan-
dard assumption in the literature. However, it is natural to
envisage prior-free scenarios where the seller has absolutely
no information about buyer valuations. Can we design posted
pricing mechanisms in such an extreme case? In the full ver-
sion of this paper (available on arXiv), we answer this ques-
tion in the affirmative by presenting an OTF mechanism for
markets with XoS buyers and convex costs that achieves a
O(log mlog N)-approximation to the optimum social wel-
fare. Previously, good approximations were only known for
dynamic pricing mechanisms [Blum er al., 2011].
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