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Abstract

Measuring how central nodes are in terms of con-
necting a network has recently received increasing
attention in the literature. While a few dedicated
centrality measures have been proposed, Skibski ef
al. [2016] showed that the Attachment Centrality
is the only one that satisfies certain natural axioms
desirable for connectivity. Unfortunately, the At-
tachment Centrality is defined only for unweighted
graphs which makes this measure ill-fitted for var-
ious applications. For instance, covert networks
are typically weighted, where the weights carry ad-
ditional intelligence available about criminals or
terrorists and the links between them. To anal-
yse such settings, in this paper we extend the At-
tachment Centrality to node-weighted and edge-
weighted graphs. By an axiomatic analysis, we
show that the Attachment Centrality is closely re-
lated to the Degree Centrality in weighted graphs.

1

Centrality analysis belongs to fundamental research problems
in network analysis. Its aim is to quantify the importance of
nodes in a network according to some criteria that typically
depend on the application at hand [Brandes and Erlebach,
2005]. For instance, in the transportation network we may
look for nodes which are closest on average to all other nodes
in the network [Tarkowski et al., 2016] or which are posi-
tioned on most shortest paths between nodes [Derrible, 2012].

One particular such criterion that has recently attracted a
lot of attention in the literature is connectivity. Intuitively,
this means that we are interested in nodes that are essential to
keeping the network together. At a first glance, it may seem
that we should simply look for nodes with the highest degree,
i.e., the number of incident edges. However, a need for more
advanced measures of connectivity has been advocated in a
number of different areas, spanning from evaluation of the
importance of genes in gene interaction networks [Moretti
et al., 2010] and assessing the impact of failure in mone-
tary flows networks [Belau, 2014] to social network analy-
sis [Narayanam er al., 2014] and the analysis of covert net-
works [Lindelauf et al., 2013].
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Most centrality measures dedicated to connectivity were
constructed in various contexts of particular applications. Un-
fortunately, such results are difficult to generalize especially
given that they were evaluated solely based on experiments
with some real-life and synthetic networks. Only recently,
Skibski et al. [2016] took a more general, axiomatic approach
and showed that there exists a unique centrality measure that
satisfies some natural axioms that may be considered desir-
able for connectivity.

This new centrality, called Attachment Centrality, is de-
fined for unweighted graphs, i.e., graphs whose nodes and
edges have not been assigned any weights and each two
nodes or two edges are equally important. This assumption,
however, does not hold in many applications [Bagler, 2008;
Nepusz et al., 2012; Palla et al., 2007]. One example is covert
network analysis — a setting that has recently attracted consid-
erable attention in the literature. In these networks, weights
of nodes and edges may carry additional intelligence avail-
able about criminals or terrorists and the links between them.
For instance, weights of edges are used to represent frequency
of interaction [Koschade, 2006] while weights of nodes to
represent individual evaluations of terrorists, based on known
skills and prior activities [Lindelauf et al., 2013].

Unfortunately, neither is the Attachment Centrality in its
current form able to incorporate such data nor is it clear how
this centrality can be adapted to do so. Specifically, the ax-
iomatization of the Attachment Centrality relies on Normal-
ization. This axiom states both the minimum and maximum
bounds on the values of centrality and specifies the values for
the center of a star and for the isolated nodes. However, in
weighted graphs, centrality is unbounded and the value of the
center of a star is far from obvious.

In this paper, we propose the first extension of the At-
tachment Centrality to node- and edge-weighted graphs. We
begin by developing a new axiomatization of the Attach-
ment Centrality for unweighted graphs. It is built upon two
new axioms — One-Edge Normalization and Additivity — and
two already proposed in the literature: Balanced Contribu-
tions [Myerson, 1980]; and Gain-loss [Skibski et al., 2016].
Next, we extend this axiomatization to node-weighted graphs,
and finally to node- and edge-weighted graphs and propose
the corresponding formulas for the Attachment Centrality. As
areference, we build this axiomatization in a close relation to
the Degree Centrality [Freeman, 1979].
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2 Preliminaries
This section provides the necessary background and notation.

Graph theory: A (undirected) graph is a tuple, (V, E, w, p),
where V is the set of nodes, F is the set of edges, and w, p are
weight functions (see below). Given V/, the set of all possible
graphs is denoted by GV. For G = (V, E,w,p) and E' C E
we use shorthand notations G + E’ (and G — E’) to denote
the graph obtained by adding E’ to E (removing E’ from E).

An edge {v,u} € E is said to be incident to nodes v and
u, and u is said to be a neighbour of v. For node v € V, the
set of its neighbours is denoted by N¢(v) and the set of its
(incident) edges is denoted by I'(v). Formally: Ng(v) =
{ueV:{v,u} € E}andT¢(v) = {{v,u} € E:u eV}
If a node, v, has no neighbours, i.e., Ng(v) = T'g(v) = 0,
we say that v is isolated. If a node has exactly one neighbour,
we call it a leaf.

A path, p = (v1,...,vg), is a sequence of nodes in which
there exists an edge between every two consecutive nodes,
ie., {vi,vip1} € E, Vi € {1,...,k — 1}. Nodes v,u € V
are said to be connected if there exists a path between them.
A graph G is connected if every two nodes in it are connected.
For any subset of nodes, S C V/, the subgraph with nodes in
S and all edges that both ends belong to subset S is called
the subgraph induced by S. Formally, G[S] = (S, E[S],w, p)
and E[S] = {{v,u} € E : v,u € S}. For a disconnected
graph, G, we denote by K (G) the partition of V' into disjoint
sets of nodes, called connected components, that each induces
a maximal connected subgraph in GG. Finally, we denote by
K, (G) the connected component containing v in G.

A forest is a graph without cycles, i.e., a graph such that
there exists at most one path between every two nodes. A
connected forest is called a tree. A star is a tree in which there
exists a node, v, called the center of a star, that is connected
by an edge with every othernode: F = {{v,u}: ueV\{v}}.

Graph weights: Function w : V — R7T is a node-weight
function that assigns to every node in V' its weight. Function
p: E — R is an edge-weight function that assigns to every
edge in E its weight. A function that assigns 1 to every argu-
ment is denoted by 1. A graph is unweighted if w = 1 and
p = 1. Otherwise, if w # 1 and p = 1, then graph is called a
node-weighted graph. If w # 1 and p # 1, a graph is called
a node- and edge-weighted graph.

For a function, f : X — R*,z € X, and o € RT we write
f2 to denote the function obtained by changing the value of
zin ftoa: f2(r) = aand f&(y) = f(y) foreveryy € X \
{z}. Moreover, we use f_, to denote the function obtained
by removing argument  from the domain of f.

Cooperative games: A (cooperative) game is a pair (V, f),
where V is the set of players and f : 2V — R is the charac-
teristic function. The characteristic function assigns to each
subset of players, called a coalition, a real number, called the
value of a coalition, where f(()) = 0. Typically, we will refer
to the game simply by its characteristic function f. A value
of a game, o : (2 — R) — RV, is a function that assigns a
payoff to each player v € V. This payoff can be interpreted
as the player’s importance in the game. One of the most im-
portant such values was proposed by Shapley [1953b]. The
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Shapley value of player v in game f, denoted by SV, (f), is
defined as:

SVulf) = o S (F(ST) — F(ST\ {u}),

VI TeQ(V)

where (V) is the set of all permutations of V, i.e., bijections
7:V—={l,..,|V]},and ST = {u € V : w(u) < w(v)}is
the set of players at the position of v or earlier in 7. Impor-
tantly, the Shapley value satisfies Additivity (o (f) +¢(f') =
o(f + 1)) and Efficiency (3, ¢y 0o (f) = F(V).

Myerson [1977] extended the Shapley value to the model
in which the cooperation of players is restricted by a com-
munication graph. The Myerson value for player v in game
f, denoted by MV,,(f, G), is defined as the Shapley value of
the restricted game f/G: MV, (f,G) = SV,(f/G), where
fIG(S) = Yocek sy f(C) for every S C V. Myerson
proved that the Myerson value is the only value that satisfies
Component Efficiency and Fairness. The former axiom states
that for every connected component C' the sum of values of
nodes in C equals f(C'). The later one requires that addi-
tion of an edge equally affects the two nodes connected by it.
Later on, Myerson [1980] proposed Balanced Contributions
(see Section 3) and proved that it implies Fairness.

Centrality measures: A centrality measure, F : GV — RV,
is a function that assigns to every node a number reflecting its
importance. Thus, it plays the same role as a value of a game.

The one of the most well-known centrality measures is
the Degree Centrality. For an unweighted graph, the Degree
Centrality rates every node taking into consideration only a
number of its neighbours, i.e.: D,(V,E,1,1) = |Ng(v)|.
For a weighted graph, the Degree Centrality extends to:

WDU(V’ E?“ap) = ZueNg(v) p({vau}) w(u) 1

This definition follows [Opsahl et al., 2010; Heitzig et al.,
2010]. We will refer to this centrality measure as the
Weighted Degree Centrality.

Skibski et al. [2016] proposed the Attachment Centrality as
a dedicated measure of connectivity.

Definition 1. The Attachment Centrality for an unweighted
graph G = (V, E,1,1) is defined as follows:
where f&(S) = 2(|S|—|K(G[S])|) for every S C V.
Alternatively, A, (G) = MV (f*, Q) for f*(S) =2(]S| - 1)
for every S C V. Skibski et al. proved that Attachment Cen-
trality is the unique centrality that satisfies Myerson’s Fair-
ness, Normalization, Locality, and Gain-loss. Normalization
states that F,(G) € [0,|V]| — 1] and F,(G) = 0, when v is
isolated in G, and F,(G) = |V| — 1, when G is a star, the
center of which is v. Locality states that the centrality of a
node depends solely on the connected component the node
belongs to (i.e., removing other components does not affect
the centrality of a node). Gain-loss will be described later.
Our goal in this paper is to extend Attachment Central-
ity to node-weighted and edge-weighted graphs. To this
end, we first propose a new axiomatization of Attachment
Centrality for unweighted graphs. Upon this result we will
later on build an axiomatization of Attachment Centrality for
weighted graphs.
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3 Unweighted Graphs

In this section, we propose a new axiomatization of the At-
tachment Centrality that does not rely on Normalization. Our
new axiomatization involves Balanced Contributions by My-
erson [1980], Gain-loss by Skibski et al. [2016] and two new
axioms — Additivity and One-Edge Normalization. We follow
the idea of Skibski ef al. and build an axiomatization in a
close relation to the Degree Centrality. In fact, all above ax-
ioms except Gain-loss are satisfied by the Degree Centrality,
and we prove that adding Star-Max and Monotonicity leads to
an axiomatization of the Degree Centrality.

We begin by introducing two new axioms. Firstly, we
replace Normalization with much simpler axiom, called
One-Edge Normalization. More in detail, One-Edge Normal-
ization states that if there is only one edge in the graph, then
both adjacent nodes have centralities equal to one.

One-Edge Normalization: For every v,u € V,
F,(V,{{v,u}},1,1) = 1.

Our second axiom, Additivity, states that the centrality of
a node that connects disjoint parts of the graph is simply the
sum of its centralities computed for each part separately.

Additivity: For every unweighted graph G=(V, E,1,1),
node v € V and sets S, T CV such that SNT = {v},
R(V,E[S),1,1)+ E(V,E[T],11)=F,(V,E[SJUB[T] 1,1).

The third axiom, Balanced Contributions [Myerson,
19801, states that removing edges of v affects the centrality
of u in the same way as removing edges of u affects the
centrality of v.

Balanced Contributions: For every unweighted graph
G = (V,E,1,1) and every two nodes v,u € V,

Fy(G) = Fy(G = Tg(u)) = Fu(G) = Fu(G = Tg(v)).

Finally, we present Gain-loss, first proposed by Skibski
et al. [2016]. It states that the sum of centralities of a graph
does not change when we add or remove edges, as far as the
set of connected components stays the same. '

Gain-loss: For every unweighted graph G=(V,E,1,1)
andv,u € C € K(G),

2owev FulG) = 2y ev Ful(G + {{v,u}}).

weVvV - w
We will use Gain-loss to axiomatize the Attachment
Centrality. For comparison, let us also axiomatize the Degree
Centrality. Here, we will use Monotonicity and Star-Max.
Monotonicity was proposed by Skibski ef al. and states that
adding an edge does not decrease the centrality of any node.

Monotonicity: For every unweighted graph G
(V,E,1,1) and v,u,w €V,
Fy(G) < Fo(G + {{u,w}}).
The last axiom, Star-Max, inspired by Normalization, states

only that a centrality of a node is maximized when it is the
center of a star, but it does not specify a value.

IThis is a slight modification of the original axiom that considers
only adding edges to a connected graph, while we consider adding
edges inside a connected component of possibly disconnected graph.
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Star-Max: For every unweighted graph G = (V, E,1,1)
andv €V,
F,(G) < F,(V,{{v,u} 1w €V}, 1,1).

In the following theorem, we show that Balanced Contribu-
tions, Additivity, and One-Edge Normalization imply that the
centrality of a node in a tree equals its number of neighbours.
In particular, the centrality of an isolated node is 0.

Theorem 1. Let G = (V,E,1,1) be an unweighted graph
and v € V. If a centrality measure, F, satisfies Balanced
Contributions, Additivity, and One-Edge Normalization and
K,(QG) is a tree, then F,(G) = |[Ng(v)|.

The proof is analogous to the proof of Theorem 4 for
weighted graphs, so we omit details. We are now ready to
state the main theorems of this section that characterize the
Degree and Attachment Centralities in unweighted graphs.

Theorem 2. If a centrality measure, F, satisfies Balanced
Contributions, Additivity, One-Edge Normalization, Star-
Max and Monotonicity, then for every unweighted graph
G = (V,E,1,1) and v € V it is equal to the Degree Cen-
trality: F,(G) = D,(G).

Sketch of Proof. The proof is based on induction on the num-
ber of edges. From Monotonicity and Theorem 1 it can be
shown that F,(G) > D, (G). To prove that F,(G) < D,(G)
we use graph G’ where V'\ {v} forms a clique and prove that
F,(G") = D,(G’) using the inductive assumption. Due to
space constraints we omit details. O

Theorem 3. If a centrality measure, F, satisfies Bal-
anced Contributions, Additivity, One-Edge Normaliza-
tion and Gain-loss, then for every unweighted graph
G = (V,E,1,1) and v € V it is equal to the Attachment
Centrality: F,(G) = A,(G).

Proof. Let G = (V,E,1,1) be an unweighted graph. Fix
v € V. First, we will show that a centrality of node v
does not depend on edges from other connected compo-
nents in graph G. From Additivity we get F,(V, E,1,1) =
Fy(V, E[K, (@), 1,1) + BV, E[V \ K,(G)], 1,1). Node
v in the later graph is isolated and from Theorem 1
its centrality equals 0. Thus, we get F,(V,FE,1,1)
F(V, E[K.(G)], 1,1).

Let us compute the sum of centralities of nodes in compo-
nent K, (G). To this end, let G’ = (V, E’,1,1) be a graph
obtained from G by removing edges in the component of v
so that K,(G") is a tree. From Theorem 1, we know that for
every u € K,(G) we have F,,(G') = |Ng/(u)|. Summing
over all nodes u € K,,(G) and using Gain-loss we get that

Y. R@)= ) Fu(G@)=2(K,(G)|-1). @
u€K,(GQ) ueK,(G)

Finally, from [Skibski et al., 2017, Lemma 5] we get that
there exists a unique centrality that satisfies Fairness and has
specific sum of centralities for every component. Since Bal-
anced Contributions implies Fairness, from Equation (2) we
get that there exists at most one centrality that satisfies ax-
ioms from the statement of Theorem 3. It is easy to check that
the Attachment Centrality satisfies these axioms, so F,(G) =
A, (QG), which concludes the proof of Theorem 3.
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4 Node-Weighted Graphs

In this section, we extend the Attachment Centrality to node-
weighted graphs.

Following the analysis from Section 3, our starting point is
the analysis of axioms in weighted trees.

Example 1. Consider a node-weighted graph with one edge
{v,u}: G = (V,{{v,u}},w, 1). For this graph we have:

WD,(G) =w(u) and WD, (G) =w().

Clearly, One-Edge Normalization is not satisfied for weighted
graphs. Moreover, Balanced Contributions needs to be revis-
ited. Observe that the profit from adding edge {v,u} is higher
for a node with a lower weight. Thus, in case of the Weighted
Degree Centrality, the profit is inversely proportional to the
weight of a node.

This example leads to the generalization of One-Edge
Normalization and Balanced Contributions.

Weighted One-Edge Normalization: For everyv,u €V,

E,(V {{v,ut} w0, 1) = w(u).

Let us introduce Inverse Weighted Balanced Contributions.
This is a new axiom which states that for every two nodes
v,u € V, removing edges of v affects the centrality of
multiplied by its weight in the same way as removing edges
of u affects the centrality of v multiplied by its weight.

Inverse Weighted Balanced Contributions: For every
node-weighted G = (V,E,w,1) and every v,u € V,

Fv(G)_Ez(G_FG(U)):Fu(G) _EA(G_FG(U))
w(u) w(v)

The name of Inverse Weighted Balanced Contributions
comes from the fact that the weight of a node v is inversely
correlated with the change in its centrality.

Finally, Additivity, Star-Max, and Monotonicity naturally
translate to node-weighted graphs by replacing 1 with an ar-
bitrary w function in the graph definition. Due to space con-
straints we omit details. Now, Inverse Weighted Balanced
Contributions, Additivity and Weighted One-Edge Normal-
ization uniquely characterize the centrality for trees.

Theorem 4. Let G = (V, E,w, 1) be a node-weighted graph
and v € V. If a centrality measure, F, satisfies Inverse
Weighted Balanced Contributions, Additivity, and Weighted
One-Edge Normalization and K, (G) is a tree, then F,,(G) =

ZuENc (v) w(u)'

Proof. Assume F' satisfies Inverse Weighted Balanced Con-
tributions, Additivity and Weighted One-Edge Normalization
and fix a node-weighted graph G = (V, F,w,1) and v € V.
We divide the proof in three parts:
(a) if Ng(v) = 0 (v is isolated), then F,(G) =
(b) if Ng(v) = {u} (v is a leaf), then F,,(G) = w(u);
(© if [NG(v)| = k and |K(G — Ta(v))] — |K(G)
then F,(G) = yw(w).

. (3

= k’
uwENgG (v

(a) Since T'g(v) = 0, from Inverse Weighted Balanced
Contributions we get: (F,(G) — F,(G —T'g(u)))/w(u) =0
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for every w € V. It means that the centrality of v does not
depend on edges between other nodes; thus, it is the same
as in graph with no edges: F,(G) = F,(V,0,w,1). From
Additivity, we have that Fy,(V,0,w,1) = F,(V,0,w,1) +
F,(V,0,w,1)=0 for every node v, which implies FU(G) =0.

(b) Since v is a leaf, I'g(v) = {{v,u}}. From Ad-
ditivity F,,(G) — Fu (G — Tg(v)) = Fu(V,T¢(v),w,1).
In graph G — T'¢(u) node v is isolated; thus, from (a):
F,(G — T¢(u)) = 0. Combining these facts with Equa-
tion (3) and Weighted One-Edge Normalization, we get:
FU(G)/M(U,) = Fu(‘/v FG(U)7W7 1)/&1(1}) =1

(c) Assume Ng(v) = {u1,usg,...,ur}. The set of edges
in the component of v can be divided into the following k sets:

Eq,Es,...,Ey, suchthat {v,u;} € E;,and JE; NJE; =
{v} for every i,j5 € {1,...,k},i # j. From Additivity:
G)= Zlgigk F,(V,E;,w, 1)+ F,(G—(E1U...UE})).

In each graph (V, E;, w, 1) node v is a leaf and in graph G —
(E1U...UEy) node v is isolated. Thus, from (a) and (b) we
get that Fy,(G) = X, e v (o) @ (1) O

Building upon this result, we get an axiomatization of the
Weighted Degree Centrality (for node-weighted graphs).

Theorem 5. If a centrality measure, F, satisfies Inverse
Weighted Balanced Contributions, Additivity, Weighted One-
Edge Normalization, Star-Max, Monotonicity, then for every
node-weighted graph G = (V,E,w,1) and v € V it is equal
to the Weighted Degree Centrality: F,,(G) = W D,(Q).

The proof, based on Theorem 4, uses the similar reasoning
as the proof of Theorem 2.

Let us focus on the Attachment Centrality and examine
Gain-loss for weighted graphs in the following example.

Example 2. Let V {v,u,w} and consider two
graphs: Gy (V. {{v,u},{v,w}},w,1) and G
(V, {{v,u},{u,w}},w, 1). For these graphs we have:

2 vev WDu(G1) 2 w(v) +w(u) + w(w),
> ey WDu(Gs) w(v) +2-w(u) + w(w).
Thus, Z'L}GV W‘D’U(Gl) 7& Z’UEV WD’U(GQ) lf LU(U) 7é

w(u). In result, we know that there exists no measure such
that F,,(G) = WD, (G) if G is a tree and satisfies Gain-loss
for node-weighted graphs, i.e., such that adding edges to a
connected component does not affect the sum of centralities.

To cope with this problem we ask the question: how the
weight of a node contributes to the sum of centralities? In
the case of the Weighted Degree Centrality, as we saw in
Example 2, the more central the node is, the bigger impact its
weight has on the sum of centralities. In fact, we observe that
the impact of the weight of a node is exactly proportional
to its centrality. We formalize this notion in the following
axiom, called Node-Weight Impact.

Node-Weight Impact: For every G = (V, E,w, 1), every

v E VandeveryaeR
> Fu(G)=F,(V,E11)-a+> F,(V,E,wy ™" 1).
ueV u€eV

To introduce the Weighted Attachment Centrality we use
the Weighted Shapley Value, originally proposed by [Shapley,
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1953a] and studied by [Kalai and Samet, 1987]. For a game,
f, and vector of weights, w : V' — R, the Weighted Shapley
Value is defined as follows:

=2 <=~

TeQ(V)ueV OJ(
weST

WSVe(f

(F(SD)=F(ST\{v})-

The Weighted Shapley Value rewards elements with higher
weights. However, as shown in Example 1, in our case we
need an inverse notion. That is why, we will use Weighted
Shapley Value, but with the inverse weight function % defined

as follows: (v) = (-

Definition 2. The Weighted Attachment Centrality for a
node-weighted graph G = (V, E,w, 1) is defined as follows:
1
WA,(G) = WSV (f&),
where f&(S) =3, cq Au(S, E[S],1,1) - w(v).

Haeringer [1999] proposed the Weighted Myerson value,
calculated as the Weighted Shapley value for restricted game
f/G. The Attachment Centrality for node-weighted graphs
can be considered as the Welghted Myerson value for inverse
weight vector 1 and game fG

In the following lemma, we prove that the Weighted At-

tachment Centrality is equal to the Attachment Centrality for
unweighted graphs.

Lemma 6. For every unweighted graph G = (V,E;1,1),

WA,G) = A,(G).
Proof. From Definition 2: f4(5) = Y, c5 Au(S,E[S],1,1).
From Definition 1: ) ¢ A,(S,E[S],1,1) = f&(S). Thus,

f&=Ff%. Moreover, WSV.(f) —SVU( f) for every f and we
get that WA, (G) =WSV(f&) =SVo(f&)=Au(G). O

In the main theorem of this section — Theorem 7 — we prove
that by adding Node-Weight Impact to axioms from Theo-
rem 3 we get a characterization of the Weighted Attachment
Centrality. Note that we use Gain-loss for unweighted graphs,
since it is undesirable for node-weighted graphs (see Exam-
ple 2).

Theorem 7. If a centrality measure, F, satisfies Inverse
Weighted Balanced Contributions, Additivity, Weighted One-
Edge Normalization, Gain-loss for unweighted graphs and
Node-Weight Impact, then for every node-weighted graph
G = (V,E,w,1) and v € V it is equal to the Weighted At-
tachment Centrality: F,(G) = WA, (G).

Proof. Since Inverse Weighted Balanced Contributions, Ad-
ditivity and Weighted One-Edge Normalization imply Bal-
anced Contributions, Additivity and One-Edge Normalization
when w = 1, from Theorem 3 we have that F,(G) = A,(G)
for every unweighted graph G. Let F, F’ be two centralities
that satisfy Inverse Weighted Balanced Contributions, Node-
Weight Impact, and Additivity and assume F,(G) = F}(G)
for every unweighted graph G = (V,E,1,1). To prove
uniqueness, it remains to show that F,(G) = F)(G) for ev-
ery node-weighted graph G = (V, E,w, 1).

Fix graph G=(V, E,w, 1) and v € V. From Node-Weight
Impact we get: 3y [ (G) = (w(u) — 1)F,(V, E,1,1) +
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> e Fuo(V,E,wl,1). Using the same argument for graph

(V,E,wl 1) and sequentially for all other nodes we get:

Yowev Fu(G) = > cy Fo(V,E,1,1) - w(v). Thus, we get

that o Fo(G) = > v F’(G). Moreover, from Addi-

tivity we get F,(V,0,w,1) =0 = F/(V,0,w, 1).

From [Skibski et al., 2017, Lemma 13] we know that there
exists a unique centrality that satisfies Balanced Contribu-
tions and the sum of centralities in every graph as well as
values in empty graph (V, ) are specified. Using the same
reasoning for weighted graphs and weighted version of Bal-
anced Contributions we get that F' = F”.

It remains to prove that the Weighted Attachment Central-
ity satisfies all axioms. We consider them one by one:

o Weighted One-Edge Normalization: Consider graph
G = (V,{{v,u}},w,1). From Definition 2 f4(S)
w(v) + w(u) if v,u € S, and f4(S) = 0, other-
wise. Thus, it is a unanimity game and from [Kalai and

1

Samet, 1987] we get that WA, (G) = WSV,# (f4) =

St/ (o + oty) - W) +w(u) = w(w).

Gain-loss for unweighted graphs: Immediate from
Lemma 6 and [Skibski er al., 2016].

e Node-Weight Impact: From Definition 2 and the
definition of Weighted Shapley value we get that
Soey WALG) = JAV) = 3oy AV, E,1,1)
w(v) for every graph G = (V, E,w,1). This implies
Node-Weight Impact.

e Additivity: Fix graph G = (V, E,w, 1), two sets S, T C
V and v € V, such that SNT = {v}. From the
analysis of cut-vertices in [Skibski et al., 2016, Theo-
rem 4] and the fact that the Attachment Centrality of an
isolated node is zero, we get that A, (V, E[S],1,1) +
A, (V,E[T],1,1) = A,(V, E[S]JUE[T], 1, 1) for every
uw € V. This combined with Definition 2 implies that for
every U C Vi f&y pis)wy(U) + v g wny(U) =
f{\l/,E[S]uE[T},w,1)(U)- Since the Weighted Shap-
ley value is additive we get AV, (V, E[S],w,1) +

AV, (V,E[T],w,1) = AV, (V,E[S] U E[T],w,1) for
every u € V (including v = v).
e [nverse Weighted Balanced Contributions: Consider

graph G = (V, E,w, 1). Fixnode v € V and subset S C
V such that v € S. Consider graph G’ = G — I'(v).
Since v is isolated in G’ we have A,(G’[S]) = 0 and
A (G']S]) = Au(G'[S\ {0}]) = Au(G[S\ {v}]) for
every u € V' \ {v}. Combined with Definition 2 we get

F&-raw)(S) = fE(S\ {v}). C)
From the formula of the Weighted Shapley value it is
visible that for arbitrary game g, node v € V" and game
g’ defined as follows: ¢'(S) = ¢(S) — g(S \ {u})
we have WSV,¥(g) = WSV,¥(g"). Applying this ob-
servation and Equation (4) to left-hand side of the In-

verse Weighted Balanced Contributions condition we
get w(u) - (AVL(G) — AV,(G — Tg(v))) = w(u) -
1

L(fA_ A A A
WSV (1& = Féraw) = Fér e T e-ra uraw))-
In this formula, game is symmetric for v and u, thus pay-
offs of nodes v and w are proportional to their weights.

This concludes the proof of Theorem 7. O
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S Node- and Edge-Weighted Graphs

So far, we considered only weights of nodes. In this section,
we show how weights of edges can be incorporated in the
Weighted Attachment Centrality. Again, we begin with an
example that helps us understand how weights of edges affect
importance of nodes.

Example 3. Let G = (V, {e},w, p) be a graph with one edge
e = {v,u} and consider weight p of edge e. First, assume
p(e) € (0,1). In such case, weight can be interpreted as the
probability that a given edge exists. Thus, with probability
ple) edge exists (G = (V,{e},w, 1)), and with probability
(1 — p(e)) edge does not exist (G = (V,0,w, 1)). This inter-
pretation is consistent with the Weighted Degree Centrality:

WDU(V: {6},(}.},/)) = p(e) WD, (V, {6},&), 1)
+ (1= p(e)) - WD, (V,0,w,1) = p(e) - w(u).

Now, assume p(e) = k for some k € N. This graph can
be interpreted as the multigraph with the set of edges F =
{e,e,...,e}, |E| = k. By treating each edge separately the
Weighted Degree Centrality equals: W D, (V,{e},w, p)
p(e) - w(u). While both interpretations are based on different
insights, they both characterize the same property: the profit
from the edge is proportional to its weight.

Our analysis from Example 3 leads to the following axiom:
Edge-Weight Proportionality: Let G = (V, E,w, p) be a
graph. Foreveryv € V, e € E and o, B € R,

a (B (V.Bw,pl) = F(V,E\ {e},w, p—c)) =
6 : (E)(V7 E7w7 Pg) - EJ(‘/a ) \ {e}vwv p—e))-
In the following theorem we show that if centrality satisfies

Edge-Weight Proportionality, then it is uniquely defined by

specifying values on graphs without edge-weights, i.e., for-
mally, where weight of each edge equals 1.

Theorem 8. If a centrality measure, F, satisfies Edge-Weight
Proportionality, then for every graph (V, E, w, p):

Fy(V,E,w,p) =

>

MCE

I eter TI (=p(e))-Fu(V.M,w, 1) |. )

eeM e€e E\M

Sketch of Proof. For graph G = (V, E,w, p), let us denote
by E; C E the subset of edges with weight 1: F; = {e €
E : p(e) = 1}. We will prove Equation (5) by induction
on the size of set £\ Ej, i.e., the number of edges in a
graph with the weight different than 1. If |E \ Fy| = 0,
then p = 1 and Equation (5) trivially holds. Assume Equa-
tion (5) is satisfied for every graph G = (V, E,w, p) such
that |E'\ E| < k for k > 0. Now, consider G = (V, E,w, p)
such that |E \ E1| = k. From Edge-Weight Proportionality
for an arbitrary edge e* € E\ F1, « = 1 and 8 = p(e*) we
get Fy(V, E,w, p) = p(e*) - Fy(V, E,w, pg) + (1 = p(e*)) -
F,(V,E\{e*},w, p_e~). Using inductive assumption we get
Equation (5), which concludes the proof of Theorem 8. [

Now, we are ready to define the Weighted Attachment Cen-
trality for node- and edge-weighted graphs.
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Definition 3. The Weighted Attachment Centrality for graph
G = (V, E,w, p) is defined as follows:
1
WA, (G) = WSVi# (f5),
where f& = EZWQE [Lecar ple) HeeE\]W(1_p(e))f(é7ﬂf,w,l)'
For a graph G = (V, E, 1, p) with unweighted nodes, the
Weighted Attachment Centrality is equal to the Probabilistic
Myerson value, defined by Calvo et al. [1999] with charac-
teristic function f¢.
Based on Theorem 8, we get the following two axiomati-

zations of the Weighted Degree Centrality and the Weighted
Attachment Centrality.

Theorem 9. There is a unique centrality measure that satis-
fies Inverse Weighted Balanced Contributions, Weighted One-
Edge Normalization, Additivity, Star-Max, Monotonicity, and
Edge-Weight Proportionality; this measure is the Weighted
Degree Centrality.

Proof. From Theorem 5 and 8 it is enough to show that the
Weighted Degree Centrality satisfies Edge-Weight Propor-
tionality. This is straightforward from Equation (1). O

Theorem 10. There is a unique centrality measure that satis-
fies Inverse Weighted Balanced Contributions, Weighted One-
Edge Normalization, Additivity, Gain-loss for unweighted
graphs, Node-Weight Impact and Edge-Weight Proportional-
ity; this measure is the Weighted Attachment Centrality.

Proof. Immediate from Theorems 7 and 8. O

6 Related Work

Amer and Giménez [2004] proposed the first measure of con-
nectivity by computing semi-value of a game that assigns 1 if
coalition is connected, and O otherwise. This solution works
only for unweighted graphs. Lindelauf et al. [2013] expanded
this concept to weighted graphs by using an arbitrary function
if coalition is connected. The authors proposed several defi-
nitions of function f, but only for specific terrorist networks.
Michalak et al. [2013] analysed the computational proper-
ties of these measures and proposed using the Myerson value
instead of the Shapley value for connectivity games. Skib-
ski et al. [2014] improved those algorithms and introduced a
class of measures. However, no specific measures were pro-
posed. Above concepts were only tested empirically and no
axiomatic analysis was offered.

7 Conclusions

In this paper, we proposed Weighted Attachment Centrality —
an extension of the Attachment Centrality to node- and edge-
weighted graphs — and provided its axiomatization. In future
work, we are keen to study the computational properties of
the Weighted Attachment Centrality and to extend the Attach-
ment Centrality to directed graphs.
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