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Abstract

In this paper, we study the video advertising in the
context of internet advertising. Video advertising
is a rapidly growing industry, but its computational
aspects have not yet been investigated. A difference
between video advertising and traditional display
advertising is that the former requires more time to
be viewed. In contrast to a traditional display ad-
vertisement, a video advertisement has no influence
over a user unless the user watches it for a certain
amount of time. Previous studies have not consid-
ered the length of video advertisements, and time
spent by users to watch them. Motivated by this
observation, we formulate a new online optimiza-
tion problem for optimizing the allocation of video
advertisements, and we develop a nearly (1−1/e)-
competitive algorithm for finding an envy-free al-
location of video advertisements.

1 Introduction
Internet advertising is one of the main marketing tools to-
day. According to one report [Interactive Advertising Bu-
reau, 2015], the annual revenue in 2014 from internet ad-
vertisements (hereafter “ads”) in the US was $49.5 billion,
which was higher than the total revenue from radio, news-
papers, and magazines. Internet ads have also attracted at-
tention from the research community. Numerous compu-
tation problems arising from internet advertising have been
studied (e.g., [Radovanovic and Heavlin, 2012; Bhalgat et
al., 2012; Bharadwaj et al., 2012; Bhalgat et al., 2014;
Ieong et al., 2014; Bateni et al., 2014; Balseiro et al., 2014;
Hojjat et al., 2014]), and the results from these studies con-
stitute a rich area in computer science.

Among the many kinds of internet display ads, this paper
focuses on video-ads. Nowadays video advertising is often
used in video streaming services, and it is a rapidly growing
industry. One study [Pew Research Center, 2014] estimates
that video advertising will make up 15% of the total inter-
net advertising market by 2017. To our knowledge, however,
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computation problems related to video advertising have not
yet been investigated.

A difference between video-ads and traditional display ads
is that the former need to consider the time to be viewed by
a user. Each video-ad has a time length, and video-ads need
to be watched for a certain amount of time to influence users.
This is in contrast to traditional display ads. Moreover, the
time spent watching video-ads depends on the user’s partic-
ular situation and interest. When long video-ads for sporting
goods are allocated to someone who is busy and uninterested
in sports, this user is likely to stop watching the video and
leave the website. On the other hand, a user who is not busy
and likes sports is likely to watch such video-ads for sporting
goods. In addition, this user may watch more than one ad.
Indeed, some video streaming services show several ads in
succession to a user who is going to watch a long video, such
as a movie and a TV show. However, these two factors—the
length of a video-ad and the time spent watching it by users—
have not been considered in previous studies on display ad-
vertising. Hence, algorithms to optimize ad-allocations for
traditional display ads are inefficient for video-ads. Moti-
vated by this observation, this paper offers an initial study
of the optimization of video-ad allocations.

1.1 Our Contributions
The aim of this paper is to design efficient algorithms for de-
ciding video-ad allocation. Our contributions are summarized
as follows:

• We formulate the video-ad allocation problem, which is
an extension of the ad-auction problem introduced by
Mehta et al. [2007].

• We present an online algorithm for the video-ad allo-
cation problem, by showing that the video-ad alloca-
tion problem is included by a general online allocation
framework proposed by Goel et al. [2010]. In addition,
we analyze the dependence of its competitive ratio on
the ratio of bids to budgets of advertisers, which was ig-
nored in the analysis of Goel et al.

• We also consider envy-free pricing and user-dependent
video-lengths in the video-ad allocation problem for
more practical modeling. To obtain a (1 − 1/e)-
competitive algorithm for this setting, we extend the
framework of Goel et al.
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Formulation of the Video-Ad Allocation Problem
We formulated the video-ad allocation problem, which ex-
tends the so-called ad-auction problem proposed by Mehta et
al. [2007] for traditional display advertising. The ad-auction
problem is an online optimization problem of allocating ads
to users arriving at sites one-by-one so that the total revenue
from advertisers is maximized. When a user arrives, all ad-
vertisers submit a price (or “bid”) that they are willing to pay
to show his ad to the user. Only one advertiser wins the auc-
tion to be assigned to the user. Each advertiser has a budget,
and they cannot pay beyond the remaining budget. Mehta
et al. proposed a (1 − 1/e)-competitive online algorithm for
the ad-auction problem under the small bid assumption—
i.e., each bid is relatively smaller than the associated bud-
gets. Their analysis uses a technique called factor-revealing
linear programming (LP). Subsequently, Buchbinder et al.
[2007] proposed another (1 − 1/e)-competitive online algo-
rithm based on the primal-dual method.

For the video-ad allocation problem, we introduce two fac-
tors to the ad-auction problem: video length and viewing
time. Each advertiser has a video-ad with its length, and
each user has a viewing limit (or “capacity”) representing
the extent of that user’s viewing time. We assume that we
know the viewing capacity on arrival of a user. While the
ad-auction problem allocates only one ad to each user’s ad
slot, the video-ad allocation problem can show more than
one video-ad to each user in succession in the user’s ad slot.
For simplicity, we first assume that a user watches allocated
video-ads to the end, as long as the total length of the ads does
not exceed the user’s viewing capacity. This constraint has
the same structure as the knapsack problem, which is a clas-
sical optimization problem. This makes the problem much
more difficult than the ad-auction problem.

Relationship with the Framework of Goel et al.
We present an online algorithm for the video-ad allocation
problem. The main ingredient in this algorithm is a general
framework of the ad-auction problem proposed by Goel et al.
[2010] in a context of the ad-auction problem with the gen-
eralized second-price scheme. In their model, it is allowed
to allocate more than one ad to a single user. Instead, the
input of the problem specifies sets of ads (called feasible al-
location) which can be assigned to a user and an associated
pricing scheme. Supposing that an algorithm for computing a
maximum weight feasible set is available, Goel et al. gave an
online primal-dual algorithm for this general online problem.
Its competitive ratio is 1 − 1/e under the small bid assump-
tion. We note that the framework of Goel et al. includes the
ad-auction problem, and hence the algorithm of Goel et al.
extends the algorithm of Buchbinder et al. [2007].

To apply the algorithm of Goel et al. to the video-ad allo-
cation problem, we have to show that a maximum weight fea-
sible set can be computed. Indeed, in the video-ad allocation
problem, this computation is equivalent to solving the knap-
sack problem. This observation indicates that the video-ad
allocation problem admits a (1− 1/e)-competitive algorithm
under the small bid assumption.

We also analyze the dependence of the competitive ratio of
the algorithm on the ratio of bids to budgets of advertisers.

Let Rmax denote the maximum of ratio of a bid to a bud-
get over all advertisers and their bids to users. The small bid
assumption demands that Rmax is almost 0. To explain pre-
cisely, the competitive ratios of algorithms in [Buchbinder et
al., 2007; Mehta et al., 2007; Goel et al., 2010] depend on
Rmax, and approach 1− 1/e when Rmax approaches 0. Goel
et al. did not describe how the competitive ratio of their al-
gorithm depends on Rmax explicitly. We present an explicit
description of this dependence.

Envy-Free Pricing and User-Dependent Video Lengths
We also consider envy-free pricing in the video-ad allocation
problem. In this setting, we are required to decide pricing for
each advertiser together with a video-ad allocation. A pair of
a pricing and an allocation is called envy-free if the payment
of each advertiser is at most those of advertisers with longer
allocated ads.

In addition, we assume that the length of a video depends
on users. The purpose of this assumption is to model the pref-
erences of users on the video topics. For instance, a user who
prefers sports over cosmetics watches videos about sports
more likely than ones about cosmetics. We incorporate this
phenomenon by assuming that the length of a video is shorter
if a user prefers it. If the length is shorter, then a user watches
the video more likely because of the capacity constraint.

To deal with this extended setting, we generalize the frame-
work of Goel et al. While the framework of Goel et al. as-
sumes that the payment of each advertiser is decided from the
allocated ads, the payments should also be decision variables
in the envy-free pricing. Hence, in our new framework, we
assume that feasible pairs of allocation and pricing are spec-
ified, and design an online primal-dual algorithm under the
assumption that a maximum weight feasible pair can be com-
puted. The competitive ratio of this algorithm is 1 − 1/e if
the small bid assumption holds.

1.2 Organization
The remainder of this paper is organized as follows. Section 2
introduces the video-ad allocation problem, and explains its
relationship with Goel et al. Section 3 presents and analyzes
our algorithm for the setting with envy-free pricing. Section 4
evaluates our algorithms through computational experiments.
Finally, Section 5 concludes the paper.

2 Video-ad Allocation Problem
2.1 Setting
Let N = {1, . . . , n} be a set of n advertisers. Each adver-
tiser i ∈ N has a budget Bi and a video-ad that is ti in
length. Further, let M = {1, . . . ,m} be a set of m users.
Each user j ∈ M has a viewing capacity Tj , representing
the extent of time where the user will allow the publisher to
show video-ads. Users arrive one-by-one; below, we assume
that j denotes the jth arriving user. Upon the arrival of a user
j, each advertiser i submits a bid bij , and an online algorithm
allocates a set Sj of advertisers to user j. The allocation is re-
quired to satisfy the following capacity constraints which de-
mands that the total ad length from advertisers in Sj does not
exceed the viewing capacity of user j—i.e.,

∑
i∈Sj

ti ≤ Tj
for each j ∈M .
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When an advertiser i is allocated to user j, then i pays
bij from the advertiser’s budget. For any user j, the pub-
lisher allocates only ads of those who have enough budgets
to pay the bids. When the allocation to each user j is repre-
sented by the advertiser set Sj ⊆ N , the payment of an adver-
tiser i is

∑
j∈M :i∈Sj

bij . The objective of the algorithm is to
maximize the total revenue after all users in M arrive—i.e.,∑
i∈N

∑
j∈M :i∈Sj

bij . We assume without loss of general-
ity that each bid bij is smaller than the budget Bi, and define
Rmax as maxi∈N,j∈M bij/Bi (≤ 1).

We take the adversarial input model, where an online algo-
rithm decides the allocation to a user j without information
regarding users arriving after j. When an algorithm computes
an allocation by using all information about users, it is called
offline. Let ALG and OPT denote the revenue for an online
algorithm and the best offline algorithm, respectively. For
β ≤ 1, the online algorithm is referred to as β-competitive if
ALG ≥ β ·OPT for any instance. Accordingly, β denotes the
competitive ratio for an online algorithm if β is the maximum
number such that the algorithm is β-competitive.

The ad-auction problem studied by [Buchbinder et al.,
2007; Mehta et al., 2007] corresponds to the special case with
ti = 1, i ∈ N and Tj = 1, j ∈M .

2.2 General Framework of Goel et al.
Goel et al. [2010] introduced an abstract online problem that
includes the ad-auction problem. In this subsection, we in-
troduce this problem, and show that the video-ad allocation
problem is included in it.

First, we give the problem definition. We are given sets of
advertisers and users, where we denote the former by N and
the later by M . Each user j specifies a subfamily Cj of 2N
that comprises feasible allocations of ads to user j. We are
also given a budget Bi of each advertiser i ∈ N and a bid bij
for each advertiser i ∈ N and user j ∈M , but the length ti of
video-ads and the viewing capacity Tj of users are not given
here. The problem seeks to find Sj ∈ Cj for each j ∈M such
that

∑
j∈M :i∈Sj

bij ≤ Bi for each i ∈ N . The objective is to
maximize

∑
j∈M

∑
i∈Sj

bij .
Goel et al. presented an online algorithm for this problem,

assuming that following two conditions hold for each j ∈M :

• Cj is subset-closed—i.e., if X ⊆ Y ∈ Cj , then X ∈ Cj ;
• given any non-negative weights δi of advertisers i ∈ N ,

there exists an algorithm for finding S ∈ Cj that maxi-
mizes

∑
i∈S δi.

The competitive ratio of their algorithm is 1 − 1/e under the
small bid assumption.

The video-ad allocation problem is included in this prob-
lem. This can be seen by setting Cj =

{
S
∣∣ ∑

i∈S ti ≤ Tj
}

.
With this definition, Cj is downward-closed. Moreover, the
problem of finding S ∈ Cj that maximizes

∑
i∈S δi is equiv-

alent to the knapsack problem, and hence it admits a (1− ε)-
approximation polynomial-time algorithm for any ε > 0 and
an exact pseudo-polynomial time algorithm, whose running
time depends on n and Tj . This fact indicates the following
theorem.

Theorem 1. Under the small bid assumption, the video-ad
allocation problem admits a polynomial-time (1 − 1/e − ε)-
competitive algorithm for any constant ε > 0, and a pseudo-
polynomial time (1− 1/e)-competitive algorithm.

Although the competitive ratio given in the above depends
onRmax, Goel et al. did not describe how it depends onRmax

explicitly. In the subsequent section, we analyze the compet-
itive ratio of an algorithm that extends the one of Goel et al.,
describing its dependence on Rmax.

3 Envy-Free Pricing and User-Dependent
Video Lengths

3.1 Setting
In this section, we discuss an envy-free pricing setting. Here,
on arrival of a user, we decide both the allocation of video-ads
and the pricing, i.e., the charge for each allocated advertiser.

Fix a user j ∈ M . We denote the charge for an advertiser
i ∈ N by pi. Then, when user j arrives, an online algorithm
is required to decide a pair of a pricing p and a video-ad allo-
cation S ⊆ N . This pair is feasible in the envy-free setting if
(i)
∑
i∈S ti ≤ Tj , (ii) pi ≤ bij for each i ∈ N , (iii) pi = 0

for any i 6∈ S, and (iv) pi ≥ pi′ for any i, i′ ∈ S with ti ≥ ti′
(the envy-freeness).

In addition, we suppose that the length of an video-ad de-
pends on users to model the phenomenon that a user watches
a video more likely if it is about his/her favorite topic. Hence,
in this section, we let tij denote the length of an ad i when it
is assigned to a user j. We use this user-dependent length in
the capacity constraints (i.e., constraint

∑
i∈S ti ≤ Tj is re-

placed by
∑
i∈S tij ≤ Tj) while the envy-freeness is defined

with regard to the original length.

3.2 New Framework
To deal with envy-free pricing, we generalize the framework
of Goel et al. by introducing the concept of outcomes. For a
nonnegative vector p ∈ RN+ and a set S ⊆ N , we say that
(p, S) is an outcome, meaning that pi is the charge to adver-
tiser i ∈ N and S is the allocation.

In our framework, a set Cj of feasible outcomes is specified
for each j ∈ M . We suppose that Cj satisfies the following
properties:
• Cj is subset-closed—i.e., for any (p, S) ∈ Cj and S′ ⊆
S, it holds (p′, S′) ∈ Cj , where p′ ∈ RN+ is defined by
p′i = pi for i ∈ S′ and p′i = 0 for i ∈ N \ S′;
• we can obtain an α-approximate solution (p, S) of

max(p,S)∈Cj
∑
i∈N δipi (1)

for α ≤ 1 and for any δi ∈ [0, 1], i ∈ N .
In this section, the definition of Rmax is modified to

Rmax = max{pi/Bi | i ∈ N, j ∈M, (p, S) ∈ Cj}.
The envy-free pricing setting can be captured by this new

framework by setting Cj as follows:

Cj =

(p, S)

∣∣∣∣∣∣∣
∑
i∈S tij ≤ Tj ,

pi ≤ bij (i ∈ S),
pi = 0 (i 6∈ S),
pi ≥ pi′ (i, i′ ∈ S, ti ≥ ti′)

 . (2)
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It is not difficult to see that this Cj is subset-closed. The fol-
lowing lemma presents a pseudo-polynomial time algorithm
for finding an outcome that attains the maximum in (1), i.e.,
the second property required for Cj is satisfied with α = 1.
Lemma 1. If Cj is defined by (2), there exists a pseudo-
polynomial time algorithm for finding (p, S) ∈ Cj that
achieves the maximum in (1) for any δi ∈ [0, 1], i ∈ N .

Proof. Recall that N = {1, . . . , n}. We assume without loss
of generality that t1 ≤ · · · ≤ tn. For each i, k ∈ N and
t ∈ {1, . . . , Tj}, define v(i, k, t) as the maximum discounted
revenue

∑
i∈N δipi achieved by (p, S) ∈ Cj such that S ⊆

{1, . . . , i}, all advertisers are charged at most bkj (i.e., pi′ ≤
bkj for all i′ ∈ N ), and the total length of allocated video-ad
is at most t (i.e.,

∑
i′∈S ti′j ≤ t). In other words, v(i, k, t) is

max


∑
i′∈S

δi′pi′

∣∣∣∣∣∣∣
∑
i′∈S ti′j ≤ t,

pi′ ≤ min{bi′j , bkj} (i′ ∈ S),
pi′ ≥ pj′ (i′, j′ ∈ S, ti′ ≥ tj′),
S ⊆ {1, . . . , i}

 . (3)

Note that (1) = maxk∈N v(n, k, T ). Let p(i, k, t) and
S(i, k, t) be the pricing and the allocation achieving v(i, k, t).
For convention, let v(i, k, t) = 0, S(i, k, t) = ∅, and
p(i, k, t)i′ = 0, i′ ∈ N if i = 0 or if t ≤ 0.

Let i ∈ N . If S(i, k, t) does not contain ad i, then we
have S(i, k, t) = S(i − 1, k, t), p(i, k, t)i = 0, p(i, k, t)i′ =
p(i− 1, k, t)i′ for i′ ∈ N \ {i}, and v(i, k, t) = v(i− 1, k, t).
If S(i, k, t) contains ad i and bij ≥ bkj , then we have
S(i, k, t) = S(i − 1, k, t − tij) ∪ {i}, p(i, k, t)i = bkj ,
p(i, k, t)i′ = p(i − 1, k, t − tij)i′ for i′ ∈ N \ {i}, and
v(i, k, t) = v(i − 1, k, t − tij) + δibkj . If S(i, k, t) contains
ad i and bij < bkj , then we have S(i, k, t) = S(i − 1, i, t −
tij) ∪ {i}, p(i, k, t)i = bij , p(i, k, t)i′ = p(i− 1, i, t− tij)i′
for i′ ∈ N \ {i}, and v(i, k, t) = v(i − 1, i, t − tij) + δibij ,
since prices of ads 1, . . . , i − 1 are at most the price of ad i.
Because of this case analysis, we obtain a recursive formula
of v(i, k, t) as follows: if bkj ≤ bij , then

v(i, k, t) = max {v(i− 1, k, t), v(i− 1, k, t− tij) + δibkj} ,
and otherwise,

v(i, k, t) = max {v(i− 1, k, t), v(i− 1, i, t− tij) + δibij} .
A similar formula holds also for S(i, k, t) and p(i, k, t).
Therefore, we can calculate v(i, k, t), S(i, k, t), and p(i, k, t)
for all i, k, and t in O(n2Tj) time.

3.3 Algorithm
In this subsection, we present an algorithm for the framework
defined in the previous section. We notice that Cj is an arbi-
trary set of outcomes that satisfy the above two properties in
the following discussion.

For an outcome c ∈ Cj , we let Sc and pc denote the alloca-
tion and pricing in c, respectively. Our algorithm is based on
the following LP relaxation:

max
∑
j∈M

∑
c∈Cj

∑
i∈N pcixcj

s.t.
∑
j∈M

∑
c∈Cj pcixcj ≤ Bi ∀i ∈ N,∑

c∈Cj xcj ≤ 1 ∀j ∈M,

xcj ≥ 0 ∀j ∈M, c ∈ Cj .

(4)

For each integer feasible solution for (4), there is a corre-
sponding feasible allocation for the video-ad allocation prob-
lem, and they achieve the same objective value in their own
problems. Hence, the optimal objective value of (4) is an up-
per bound on the maximum revenue.

The dual of (4) is written as

min
∑
i∈NBiyi+

∑
j∈M zj

s.t.
∑
i∈N pciyi+zj≥

∑
i∈N pci ∀j∈M, c∈Cj ,

yi≥0 ∀i∈N,
zj≥0 ∀j∈M.

(5)

Owing to the strong duality of LPs, the optimal objective
value of (4) is equal to the optimal objective value of (5).

Our algorithm simultaneously constructs both an integer
solution x feasible for (4) and a solution (y, z) feasible for
(5). To prove that the algorithm is β-competitive, it suffices
to show that these solutions satisfy

∑
j∈M

∑
c∈Cj

∑
i∈N

pcixij ≥ β

∑
i∈N

Biyi +
∑
j∈M

zj

 . (6)

When our algorithm is invoked, yi is initialized to 0 for all
i ∈ N . When a user j arrives, the algorithm computes an
α-approximate solution c∗j for maxc∈Cj

∑
i∈N pci(1 − yi).

Without loss of generality, we assume that

Sc∗j does not contain the advertisers i′ with yi′ ≥ 1. (7)

The outcome c′j assigned for j is defined as the one obtained
from c∗j by canceling the allocation of advertisers whose re-
maining budgets exceeds the assigned prices. Then the algo-
rithm sets zj to the sum of

∑
i∈N pc∗j i(1 − yi)/α. Updating

yi depends on a parameter γ = (1 +Rmax/α)
1/Rmax (> 1).

Note that γ approaches e1/α asRmax approaches 0. For every
advertiser i ∈ N , we update yi by

y
(j)
i ← y

(j−1)
i

(
1 +

1

α
·
pc∗j i

Bi

)
+

1

α(γ − 1)
·
pc∗j i

Bi
, (8)

where y(j)i denotes yi at the end of the process of user j.
All details of our algorithm are described in Algorithm 1.

Recall that user j denotes the one who arrives at the jth round.
The following theorem is the main result in this section.

Theorem 2. The competitive ratio of Algorithm 1 is α(1 −
1/γ)(1−Rmax).

Notice that the competitive ratio approaches α(1−1/e1/α)
asRmax approaches 0. This together with Lemma 1 indicates
that Algorithm 1 is a pseudo-polynomial time (1 − 1/e)-
competitive algorithm for the problem in Section 3.1 under
the small bid assumption. Since each round j takes O(n2Tj)
time and Tj is small (say, 30) in practice, the algorithm runs
fast enough. We prove Theorem 2 by showing the following:

• x = [xc,j ]
>
j∈M,c∈Cj computed by Algorithm 1 is feasible

for (4),

• y =
[
y
(m)
1 · · · y(m)

n

]>
, and z = [z1 · · · zm]

> computed
by Algorithm 1 constitute a feasible solution for (5),
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Algorithm 1: Online algorithm for allocating outcomes

1 y
(0)
i ← 0, B

(0)
i ← Bi for all i ∈ N ;

2 foreach j ∈M do
3 c∗j ← an α-approx. sol. for max

c∈Cj

∑
i∈N

pci(1− y(j−1)i );

4 define c′j by Sc′j = {i ∈ Sc∗j | B
(j−1)
i ≥ pc∗j i};

5 pc′ji = 0 if i ∈ Sc∗j \ Sc′j and pc′ji = pc∗i otherwise;
6 xc′jj ← 1 and xcj ← 0 for all c ∈ Cj \ {c′j};
7 B

(j)
i ← B

(j−1)
i − pc′ji for all i ∈ N ;

8 zj ←
∑
i∈N pc∗j i(1− y

(j−1)
i )/α;

9 set y(j)i by (8) for all i ∈ N ;

• x, y, and z satisfy (6) with β = α(1− 1/γ)(1−Rmax).

It is not difficult to prove the first two facts, and hence we
focus on the proof for the last fact in this article due to the
space constraint. First, we show that when advertiser i does
not have an enough budget to pay the bid at some round, then
the algorithm does not allocate i to subsequent users. The
following lemma is proven by a similar proof to the one used
in [Buchbinder et al., 2007], and hence we omit the proof.

Lemma 2. For each advertiser i ∈ N and user j ∈ M , if∑
j′≤j pc∗j′ i > Bi, then y(j)i > 1.

Since the algorithm avoids advertisers with little remain-
ing budgets from Sc∗j , the algorithm may miss chances to
gain more revenue. However, the following lemma shows
that such budgetary loss is not considerable compared to the
revenue of the algorithm.

Lemma 3. For each advertiser i ∈ N , it holds that∑
j∈M pc∗j i ≤

1
1−Rmax

∑
j∈M pc′ji.

Proof. If
∑
j∈M pc∗j i ≤ Bi, then the statement holds. We

assume the contrary. Let j∗ denote the minimum index such
that

∑
j≤j∗ pc∗j i > Bi. Lemma 2 implies that y(j

∗)
i > 1.

For users j > j∗, we have y(j)i ≥ y
(j∗)
i > 1, and hence

pc∗j i = 0 by (7). Thus, it holds that Bi ≥
∑
j≤j∗ pc∗j i −

pc∗
j∗ i

=
∑
j∈M pc′ji−pc∗j∗ i ≥

(
1− pc∗

j∗ i
/Bi

)∑
j∈M pc′ji ≥

(1−Rmax)
∑
j∈M pc′ji.

Proof of Theorem 2. We denote by OPT and ALG the best
revenue for the offline algorithms and the revenue for Algo-
rithm 1, respectively. Let Dj be the objective values for the
solution to (5) computed by Algorithm 1 at the end of the jth
round—i.e., Dj =

∑
i∈N Biy

(j)
i +

∑
j′≤j zj′ . Since (y, z) is

feasible for (5), OPT ≤ Dm holds.
We bound Dm by ALG. For j = 0, we have D0 =

0. By the construction of y(j)i and zj at the jth round of
the algorithm, Dj −Dj−1 =

∑
i∈N Bi(y

(j)
i − y

(j−1)
i ) +

zj = γ
α(γ−1)

∑
i∈N pc∗j i holds for each j ≥ 1. There-

fore, we have OPT ≤ Dm = γ
α(γ−1)

∑
i∈N

∑
j∈M pc∗j i ≤
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Figure 1: A typical result for n = 25 and uniform budgets

γ
α(γ−1)(1−Rmax)

∑
i∈N

∑
j∈M pc′ji = γ

α(γ−1)(1−Rmax)
ALG,

where the second inequality follows from Lemma 3.

4 Experiments
We evaluate performance of Algorithm 1 through computa-
tional experiments. The algorithm is compared with a greedy
algorithm (called Greedy) and a primal-dual algorithm (called
PD) obtained by modifying the one proposed by Buchbinder
et al. [2007] for the ad-auction problem. These two algo-
rithms compute an allocation to user j as follows:

Greedy: Find a set S of advertisers in argmaxS∈Sj
∑
i∈S

bij , and allocate advertisers in S to user j.

PD: Nj is initialized to N . While Tj ≥ tij for some i ∈ Nj ,
allocate an advertiser i ∈ argmaxi∈Nj

bij(1 − yi) to j,
and update Tj ← Tj − ti and Nj ← Nj \ {i}.

In the envy-free pricing setting, Greedy computes an alloca-
tion and a pricing by dynamic programming, ignoring the past
budget consumptions of advertisers. PD computes an optimal
pricing after deciding an allocation as above.

4.1 Results for Artificial Instances
First, we evaluate the performance of the algorithms over ran-
domly generated instances. Each instance is generated as fol-
lows. We choose the number n of advertisers from 25, 50,
and 100, and the number m of users from 500, 1000, and
2000. We assume two distributions of budgets: (1) uniform
distribution (Bi = 200 for all i ∈ N ), or (2) Pareto distribu-
tion (the minimum possible value is 100 and the mean is 200).
Each bid bij is picked uniformly at random from [0, 3]. Thus,
Rmax ≤ 3/100. We assume that the length of each video-ad
is same for any users, and hence the length of video-ad of ad-
vertiser i is written by ti. Each ti is generated uniformly at
random from [10, 45], and capacity Tj from [10, 60].

Table 1 shows average revenues of each algorithm for each
set of n, m, and the budget distribution. The average is taken
over 100 instances for each parameter set. Here, “standard”
means the standard setting of the video-ad allocation prob-
lem, and “envy-free” means the envy-free pricing setting of
the problem. Figures 1a and 1b plot the revenue of each al-
gorithm over the number of users for two typical random in-
stances with n = 25 and uniform distribution.

As shown in Table 1, our algorithm outperforms the other
two algorithms in most of the cases. The Greedy performs
well when the number m of users is small. In this case, most
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Table 1: Average revenues of the proposed algorithm, PD, and
Greedy (100 trials)

Standard Envy-free
n m Proposed PD Greedy Proposed PD Greedy

uniform
distribution

500 2280.4 1829.3 2205.9 2275.8 1825.5 2117.2
25 1000 3606.2 3485.3 3348.5 3610.6 3482.3 3184.6

2000 4992.0 4994.3 4802.9 4980.0 4989.2 4570.3
500 2644.5 1893.9 2615.2 2639.0 1894.4 2493.0

50 1000 4327.9 3664.6 4102.4 4325.7 3665.2 3881.8
2000 6345.5 6140.9 6022.0 6349.0 6139.8 5664.8
500 3213.7 1948.2 3280.9 3205.9 1951.0 3117.0

100 1000 5458.8 3821.1 5419.4 5451.8 3823.5 5097.2
2000 8861.8 7445.6 8413.4 8854.4 7448.9 7792.7

Pareto
distribution

500 2195.8 1851.5 2123.1 2190.8 1849.5 2041.5
25 1000 3480.2 3423.9 3245.5 3479.2 3420.0 3112.1

2000 4700.2 4769.6 4533.6 4689.8 4773.4 4391.1
500 2790.0 1939.1 2775.4 2783.0 1940.4 2661.6

50 1000 4682.2 3779.1 4491.5 4678.5 3779.5 4300.4
2000 7323.1 7087.5 6787.2 7328.0 7082.6 6433.2
500 3372.9 1959.7 3422.2 3366.6 1962.3 3279.9

100 1000 5822.4 3856.1 5827.2 5817.2 3858.6 5534.3
2000 9708.9 7583.8 9326.5 9704.8 7585.7 8744.6
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Figure 2: Results over a carefully constructed instances

advertisers still have enough budgets at the end. It is also ob-
served from Figures 1a and 1b that the performance of our
algorithm is same as the Greedy algorithm when m is small.
However, the Greedy algorithm falls behind as budgets of ad-
vertisers are exhausted. The performance of the PD algorithm
is worst when m is small, and it is still worse than our algo-
rithm as a whole. When m is large, level-offs occurred. In
this situation, almost all advertisers exhausted the budgets.

To demonstrate the superiority of our algorithm, we also
compare the algorithms on a carefully constructed instance.
In this instance, parameters are set so that n = 1110, m =
300, and Rmax = 0.01. All users have capacity 10. The
user set is divided into U1 and U2 so that |U1| = 100 and
|U2| = 200. Users in U1 arrive first, and then the others ar-
rive. The budget of each advertiser is 100, and the advertisers
are divided into three groups A1, A2, A3. The first group A1

consists of 10 advertisers with ti = 1 and bij = 1 for all
users j. The second group A2 consists of 1000 advertisers
with ti = 1, bij = 1 − ε for j ∈ U1, and bij = 0 for the
others. The third group A3 consists of 100 advertisers with
ti = 10, bij = 1 for j ∈ U1, and bij = 0 for the others.

On this instance, results do not change for the standard and
the envy-free settings. Figure 2 shows the revenues of the
algorithms. In this instance, the Greedy algorithm spends all
budgets of advertisers in A1 for users in U1, and it obtains no
revenue after that. The PD algorithm obtains revenue 1 per
user in U1, while our algorithm gains revenue at least 10(1−
ε) per user. Observe that the final revenues of the algorithms
are significantly different in this instance.

Table 2: Budget consumption rate (%) and total computational time
for an instance constructed from a real data set

Proposed PD Greedy total time (s)
Standard 73.6 72.2 72.6 1224.4
Envy-free 73.5 71.7 70.7 2271.0

4.2 Results for Instances with a Real Dataset
In this subsection, we report results on an instance con-
structed from a real dataset. The dataset consists of brows-
ing records of video-ads in a streaming site operated by Ya-
hoo! JAPAN. Each record contains information on which
users (distinguished by browser cookie) watched which ads.
The dataset also includes the length of each video-ad, an ap-
proximate value of each budget, and viewing time of each
user. There were 82 ads and 21,306,810 queries in our
dataset. The streaming service sometimes allocated two ads
to a query from a user. Such cases occurred on about 10% out
of queries. From this dataset, we construct a problem instance
as follows. We construct a set of n = 82 advertisers and a set
of m = 21,306,810 users. We set the budget Bi for i ∈ N
and the viewing time Tj for j ∈ M according to the dataset.
The average of Tj is 18 seconds. Each bid from advertisers
with no user preference is set to 2. If an advertiser input user
preference, its bid for users satisfying the preference is set
to an integer chosen randomly from [2, 10]. We also set the
video length tij for advertiser i and user j from the user pref-
erence input by the advertisers and the browsing history of
users, which we omit the details due to space limitation.

The results are described in Table 2. Here, each cell de-
notes the ratio (%) of revenue to total budget of all advertisers
or total computational time. We can observe that the revenues
of the proposed algorithm are better than the other algorithms
by more than 1%. Moreover, the total computational times
are short enough as it takes about 0.1ms per user.

Let us summarize experimental results. First, the Greedy
algorithm performs best in the beginning of inputs, where
no advertiser exhausts the budget. Our algorithm performs
as well as the Greedy even in the beginning, and does bet-
ter at the end. The PD algorithm gains more revenues than
the Greedy at the end. However, since the PD is based on
a greedy method for the knapsack problem, its revenue is
sometimes significantly small compared with our algorithm.
Our algorithm outperforms the others in most cases, including
real-data instances. In addition, our algorithm can respond to
each user quickly enough in practical settings. Therefore, our
algorithm is practically useful.

5 Conclusion
In this paper, we formulated a new optimization problem,
which models an important step of video-ad advertising, and
presented an online algorithm with theoretical performance
guarantee for it. There are many interesting directions of fu-
ture studies on this topic. One direction is to predict users’
viewing capacities. Our algorithms suppose that the viewing
capacity of each user is revealed upon the user’s arrival. For
user experiences and effective advertisement, it is an impor-
tant future work to develop a method for this estimation.
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