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Abstract

The score aggregation problem is to find an aggre-
gate scoring over all candidates given individual s-
cores provided by different agents. This is a funda-
mental problem with a broad range of applications
in social choice and many other areas. The sim-
ple and commonly used method is to sum up all
scores of each candidate, which is called the sum-
up method. In this paper, we give good algebraic
and geometric explanations for score aggregation,
and develop a spectral method for it. If we view
the original scores as ‘noise data’, our method can
find an ‘optimal’ aggregate scoring by minimizing
the ‘noise information’. We also suggest a signal-
to-noise indicator to evaluate the validity of the ag-
gregation or the consistency of the agents.

1 Introduction

In a score aggregation system, several agents give scores to
a set of candidates independently based on its own personal
criteria, and we are going to combine the individual scores
to get a final score for each candidate. It is a fundamen-
tal process that is integral in everything and intrinsic in our
daily life. For example, in schools, each student has scores
on different courses and we want to use a single score, such
as GPA, to evaluate the overall performance of the studen-
t. It has direct application in scoring-based rank aggrega-
tion problems. Score aggregation not only plays an impor-
tant role in social choice theory [Moulin et al., 2016], but
also receives a wide range of applications in multi-agent sys-
tem [Ephrati and Rosenschein, 19911, spam detection [Dwork
et al., 2001], bioinformatics, graph drawing [Jackson et al.,
2008], database [Fagin et al., 2003] and so on.

In a score aggregation system, agents’ criteria may be d-
ifferent and the score profile of each candidates may also d-
iffer under different criteria. Score aggregation methods try
to make a tradeoff among these different attitudes. In score
aggregation problems, usually we investigate methods and
mechanisms to get reasonable scores from agents and then
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take the simple sum (or average) value as the aggregate s-
core. There are several methods developing rules for scoring
candidates based on preference rankings [Brams and Fish-
burn, 2002] [Caragiannis et al., 2017]. In a positional scoring
rule, a scoring vector s = (1, S2,+*+ , Sy, ) of m candidates
is given, and a candidate receives a score of s, from an agent
if it is ranked at position k in the agent’s preference rank-
ing. The well-known Borda method [Borda, 1781] [Arrow
et al., 2010] uses the positional scoring rule by letting the
scoring vector be s = (m — 1,m — 2,---,0). There are al-
so many other models, such as plurality rule [Feddersen and
Wright, 1990], k-approval rule [Brams and Fishburn, 20071,
veto [Spitzer and Fisher, 1988] and so on. The main differ-
ence among them boils down to the way the agent gives the
score. For some cases where the scores are given, people
may study methods to modify the scores to make them of the
same commensurability by using normalization or weighted
methods. The weighted sum-up method is to set a weight to
each agent and use the weighted sum scores as the final re-
sult. The weights of the agents should reflect the attitudes or
differences of the agents. All above investigations are focus-
ing on how to give or adjust the scores to the same measure.
After these, the second step is to simply sum up (or average)
the adjusted scores.

Actually, the second step is the real operation of ‘aggrega-
tion’. However, except the simple sum-up (average) method,
we are not aware of any other score aggregation methods in
social choices. In this paper, we consider the real ‘aggre-
gation’ operation and introduce a nontrivial mechanism for
score aggregations. In our models, we always assume that
the scores (data) from agents are of the same measure, or we
have done something (such as normalizations) to make them
of the same measure, or there is no way to know whether or
not the scores from different agents mean the same thing. Un-
der this assumption, we may also be able to regard the mod-
el as a ‘noise model’: there is a ground truth scoring of the
candidates, and each agent’s score is a noisy estimate of the
ground truth. In real life, there are many factors contribute
to the noise, such as the bias from each agent, different cri-
teria of each agent, the fluctuation of the candidate’s perfor-
mance, and so on. The Central Limit Theorem says that the
sum of many independent random variables will tend towards
the Gaussian distribution. If all the effects causing noises are
independent, we can believe that the sum of them approxi-
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mately obeys the Gaussian distribution by the Central Limit
Theorem. In the noise models, it is nature to employ a score
aggregation method that finds a result most likely to coincide
with the ground truth. The simple sum-up or average method
may not always return an optimal result. This also motivates
the study of this paper.

In social choices, the noise models have been studied in
rank aggregations, especially for rules under pairwise com-
parisons [Procaccia et al., 2012][Shah et al., 2015][Xia et al.,
2010][Caragiannis er al., 2014][Conitzer et al., 2009][Mao et
al., 2013]. For example, in a noise model for the rank aggre-
gation problem, there is a correct ranking of the candidates
and every voter has a noisy perception of this correct rank-
ing. Roughly speaking, each voter ranks each pair of alter-
natives in the correct order with probability p > 1/2, and in
the wrong order with probability 1 — p. In this model, the
Kemeny rule can be interpreted as a maximum likelihood es-
timator of the correct ranking. Many other rules have been
also studied in the literature.

In this paper, we focus on score aggregations and try to find
an aggregate result most likely to coincide with the ground
truth. To do this, we define the ‘noise information’ as the
total squared distances between the original score and the
corresponding aggregate score for each candidate, and use a
spectral method to find a solution that minimizes the noise in-
formation. Note that when the noises obey the Gaussian dis-
tribution, minimizing the noise information is equal to maxi-
mizing the likelihood function. Our spectral method first con-
ducts an eigenvalue decomposition to the judgment matrix of
the score data and then uses the eigenvector corresponding to
the largest eigenvalue as the synthesized preferences of the a-
gents. The linear expression of the score matrix on this eigen-
vector will be used as the final scores of the candidates. Fur-
thermore, it is easy to evaluate the validity of the aggregate
scoring or the consistency of the agents. In order to describe
it in a clear way, we will give both algebraic and geometric
explanations for score aggregation and begin with the simple
sum-up method.

2 The Problem

We consider settings with a set of n agents A and a set of m
candidates C'. Each agent gives a score within the range of
the scoring standard to each candidate according to the per-
formance of the candidate and the preference of the agent. A
score is a real nonnegative number. Our goal is to get a rea-
sonable consensus scoring over all the candidates as close to
the score profile given by the agents as possible.

The score profile can be presented by a matrix, named the
score matrix, which is formally defined below.

Definition 1. (Score Matrix) A score matrix of n agents on
m candidates is an m X n matrix

i1 Ti2 o Tin

T21  T22 o T2n
men = 3

Tml Tm2 Tmn

where x;; is the score of candidate i obtained from agent j.
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The score matrix is also written as follows:
(&1

C2

Smxn - - [a17a27"' 7an}7

Cm

where the row vector ¢; = (z;1, 2, - -+ , T is the scores of
candidate ¢ obtained from all the agents and the column vec-
tor ajT = (x1j,%2j, - ,Tm; ) is the score of all candidates
given by agent j.

The score aggregation problem is to find an m x 1 vector v
to represent the score matrix X, «,,, where the ¢th element in
v is the final score of the ¢th candidate. What kinds of vectors
v are good? There is no formal definition. Different problem
models give different optimal objects and yield different opti-
mal algorithms. We aim at constructing a reasonable problem
model with a clear objective and design an algorithm that can
find an optimal solution under our model.

Firstly, we view the score aggregation problem from a
geometric perspective. We consider the vector space A
with the basis vectors being a1, as, - ,a,, representing
the n agents. Each candidate is presented by a point ¢; =
(@i1, Ti2, - - -, xip) in the vector space such that the scalar z;;
on axis a; is the score of candidate 7 given by agent j. Figure
1 shows a two-dimensional vector space with 2 agents a; and
a- and 5 candidates ¢;. The score matrix of the candidates is

XT:F 3 3 6 6}

32 4 4 2
a
c;=(3,4)
a=(13) ° e (64)
=32 =62
a

Figure 1: A geometric model

The score aggregation problem is to map the m points (can-
didates) in the n-dimensional vector space .A into m points in
a one-dimensional vector space e, called the object vector s-
pace. There are two things we need to do: the first is to decide
which one-dimensional vector e to be mapped onto (we will
only be interested in the direction of the vector and consider
the unit vector e so that ee” = 1 by ignoring the magnitude
of it); and the second is to decide the rules of how to map a
point in A into a point in e. Next, we show how the two steps
work on the sum-up and average methods.

3 The Sum-up and Average Methods

The sum-up and average methods are simple and widely used
in practice. The sum-up method is to use the sum of all scores
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of a candidate as the final score profile of the candidate, and
it returns the vector

n n n

T

Asym = ( § L1,y § L2450, § xmi) .
i=1 i=1 =1

The average method, a special case of the weighted sum-up
method, is to use average score of a candidate as its final score
profile, and it returns the vector

n n n

1 1 1 .

QAovg = (7 § T4y — § X4yt y — § mmi) .
1=1 i=1 =1

The results of the two methods can be transferred to each oth-
er by dividing or multiplying by a factor n. So these two
methods are essentially the same.

Without loss of generality, we look at the average method.
The output of this method is obtained by multiplying a vector

e=(1/n,1/n,---,1/n)7T to the score matrix X, ., i.e.,
iy T
T 12 T1p 1/n n
To1 T2 Top 1/n Ly ®2
X = "
Tml Tm2 Tmn l/n D1 Tmi

n
The geometric explanation of the above formula is to project
the m points ¢; = (241,Zi2,  + , &) fori = 1, 'm
in the vector space .4 onto the object vector space e’ =
(1/n,1/n,---,1/n)T. For the purpose of presentation, we
always consider the vector e to be mapped onto as a unit vec-
tor so that ee” = 1. Then we assume that we project the m
points onto the unit vector € = (1/v/n,1/y/n, - ,1//n)
and will multiple a scalar ||e|| = 1/4/n in the final result.
We use ¢; to denote the projection point of the original point
¢; onto the unit vector e€’. Figure 2 illustrates the projection
in a two-dimensional space with n = 2. We will show that
the score of each candidate 7 obtained by the average method
is the coordinate of ¢é; in the vector space e’ multiplying the

scalar ||e|| = 1/y/n.

e =(1/42,1/42)
aj

c;=(3,4) .
o= (13) . s L (6,4)

o ¢ =032 es=(6.2)

a;

Figure 2: The projection

We prove a general result. Let e be an object vector and
a = X,,xn - € be the aggregate score. Let e = |le]| - €/,
where €’ is a unit vector. Let é; be the projection of ¢; on the
vector e, and p; be the projection length of c;.
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Theorem 1. Let a(i) denote the ith element in a, i.e., the
aggregate score of candidate 1. It holds that

a(i) = |le]| - pi.

Proof. We consider candidate ¢ and the point ¢; =
(241, Tia, -+, Zip) in the vector space A. Let 0 be the angle
between c¢; (taking it as a vector) and the vector e. It holds
that -

cosf = &.
lleill - Ilell

The projection length of the point ¢; onto the vector e is

pi = [|éil| =lleill - cos 6
_Ci . eT
lel|
1
=——-af(i).
llell
The theorem holds. O
For the sum-up method, we multiply a a vector €’/ =
(1,1,---,1) by the score matrix X,,x,. The object vector
ise’” = (1,1,---,1) = y/n - €, where €’ is the same unit

vector as that in the average method. So the score of each
candidate 7 obtained by the sum-up method is the projection
length of the point ¢; multiplying the scalar ||e”|| = \/n.

The sum-up and average methods are essentially the same
if we ignore the stretching factor. They select the unit vector
e = (1/y/n,1/y/n,---,1/y/n) (after ignoring the stretch-
ing factor) as the object vector to be mapped onto; and then
map each original point ¢; to a point &; on the object vector
such that the total noise information E is minimized, which
is defined as the total least squared distance between the orig-
inal data points and the mapped points, i.e.,

m
E=Y"|lé—all
=1

Since é; is the projection of ¢; on €/, we know that ¢; is
the point on e’ such that ||¢; — ¢;|| is minimum. Howev-
er, we prefer to use the squared distance as the object to be
optimized since the squared distance has more good prop-
erties and is commonly used in the literature. Furthermore,
when the noises obey Gaussian distribution, to minimize the
squared distance is equal to maximize the likelihood function.

4 The Spectral Method

The sum-up and average methods fix the object vector e’ =
(1/y/n,1/y/n,---,1/y/n) and then map the points onto it to
minimize the total least squared distance. The second step
is reasonable, since the total least squared distance is a s-
tandard measure widely used. However, why always choose
e = (1/y/n,1/y/n,--- ,1/4/n) as the object vector to be
projected? This method seems to always treat all agents as
equally important without clear reasons. In Figure 3, if we s-
elect the object vector as e* = (2/+/5,1/1/5) instead of ' =
(1/4/2,1/+/2) to be projected, we can get projection points



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

with a smaller noise information E. We can see that the total
squared distance by selecting e* = (2/1/5,1/+/5) as the ob-
ject vector is less than that of selecting €’ = (1/v/2,1/+/2).
See Figure 3 for an illustration.

a e =(1/v21/Y2)

e=2/V51/45)

a;

Figure 3: Two projection directions €’ and e*

Here arises a question how to find the optimal object vec-
tor e* to minimize the total least square distance? We will
answer this question by giving a simple algorithm that cal-
culates the aggregate scores by minimizing the total squared
distance. In our algorithm, we do not solve lots of functions
to find the optimal object vector and to compute the solution.
Instead, we use a spectral method, which is simple to imple-
ment and easy to analyze. It is surprising that the spectral
method matches all these well.

Our algorithm computes the judgement matrix (defined
below) and then uses the eigenvector corresponding to the
largest eigenvalue of the judgement matrix as our object vec-
tor.

Definition 2. (Judgement Matrix) Given a score matrix
Ximxn, ajudgement matrix of X, xn is an n X n matrix

ann = (men)T X men = (ZZ])

The main steps of our algorithm are listed below.

Algorithm SPECTRAL

Input: A score matrix X

Output: A vector corresponding to the aggregate scores of
candidates

1. Compute the judgement matrix Z = X T x X;

2. Conduct eigenvalue decomposition to Z, let A4, be the
largest eigenvalue and e be the eigenvector correspond-
ing to it;

3. Retunv = X x e.

By Theorem 1, we know that the aggregate score of candi-
date ¢ by our algorithm is the projection length of the point c;
multiplied by the scalar ||e||. Next, we prove the following
theorem to show the optimality of our algorithm.

Theorem 2. The eigenvector e corresponding to the largest
eigenvalue of the judgement matrix Z is a vector to be pro-
Jected onto such that the total squared distance E reaches the
minimum value.
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Proof. Assume e is the optimal object vector that minimizes
the total squared distance . Let ¢; = p;e denote the mapped
points on e, where p; is its coordinate. The total squared
distance between the original points and the projection points
is

m
E=Y & —cl
i=1

m

2
=> llpie - cil| 1)
=1
= (0} - 2picie” + cic]).
1=1

Consider the minimization with respect to p;, setting the par-
tial derivative of ¥ with respect to p; to zero, we obtain

pi = cie’. (2)
The above equivalent implies that the scalar p; is the projec-

tion onto the direction e. If we substitute for p; in (1) by using
(2), we obtain

m

m
E= *ZGCZTCZ'GTJFZHQHQ- 3)
i=1 1=1

Note that /", ||e;||? is a constant and

m

T
E cici=2
i=1

is exactly the judgement matrix. To minimize E is then to
maximize
J=ezel.

We will add a constraint ee” = 1 to maximize .J, which
requires the vector e being an unit vector and then constrains
the solution.

We use a Lagrange multiplier A to enforce the constraint,
and then make an unconstrained maximization of

J=eZel + \eel —1).

Setting the derivation with respect to e to zero, we see that
this quantity will have a stationary point when

ZeT = e,

which says that e” must be an eigenvector of Z. To mini-
mize E or maximize J, the eigenvector that corresponds to
the maximum eigenvalue should be chosen. O

5 Consistency Analysis

The spectral method can always output an aggregate scoring
to candidates. However, how much credit we can put on to
this scoring or how consistent this scoring is with the agents?
We want to use a measure to evaluate the unconsistency of
the input data, which can also be recognized as the noise.
The total squared distance F defined above is a nice indicator.
However, there exists no absolute scale for the total squared
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noises, but rather all these are quantified relati to the original
scores. These is a famous indicator, called the signal-to-noise
ratio (SNR), frequently used in industry and real life, which
is defined as the follows

SNR — extracted information .
error
A high SNR (> 1) indicates a good extraction of the data,
while a low SNR indicates a poor measurement. In our mod-
el, the extracted information is the total squared projection
distance and the error is the total squared distance between
the original data points and the projection data points. Thus,
in our problem,
i P}
SNR = T
where p; is the projection distance of point ¢;. We suggest
to use SNR as the consistency indicator. For some data, our
SNR is not large, which means that the scores given by the
agents are not consistent. For this case, if the score aggre-
gation is used to rank the candidates, then we know that the
input data is not enough to get any reliable order of the can-
didates due to the very different attitudes of the agents. How
to set the threshold of SNR is worthy of deep studying, which
should differ for different types of data and applications.
Another advantage of adopting SNR is that there is a sim-
ple way to compute the value of SNR in our method. It is
enough to calculate the eigenvalues of the judgement matrix.

Theorem 3. Let A1, Ao, - - - , \,, denote the eigenvalues of the
Jjudgement matrix Z, where \; > \j for i > j. The consis-
tency indicator of the scoring obtained by the spectral method

IA) /\
SNR = —t—.
Zi:2 Ai

Proof. Let e denote the eigenvector corresponding to the
largest eigenvalue of the judgement matrix Z. Note that
cieT = ecl = p; is the projection distance of point ¢; on
the direction e. We have that

m m
T _ T, T _ 2
ele = E ec; cie’ = E Dj -
i=1 i=1

On the other hand, since e is the eigenvector corresponding
to the largest eigenvalue of 7, it holds that

eZel = \paw = M.

Thus, we have
> =
i=1
Next, we only need to prove that
E=> \.
i=2

Note that for a judgement matrix Z, it holds that

Z >\z = t?“(Z) = izii,
] i=1
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where Z?:l Zii = 2?:1 E;n:1 ‘T?z = Z;n:l Z?:l :L?z =
m
Zi:l HQHQ

Since ¢; is the projection of ¢; onto e, it holds that

llei = &ll? = llell® = 1lél]? = [lel)? = p}.
Then,
m m m
E=> llei—&lP=> el = >
i=1 i=1 i=1
n m
= Z D i
i=1 i=1
n n
= AN-M =) A
i=1 i=2
The theorem holds. O

6 Relations with The Weighted Sum-up
Method

The weighted sum-up method is to set a weight w; to agent j
and use the weighted score Z;;l wjx;; as the final score for
candidate . Therefore, the weighted sum-up method outputs

. n
r11  Ti2 o Tip w1y Zi:ﬂﬂﬂu
n
T21  T22 ot X2p w2 Zizlwﬂzi
X . = .
n
Tml Tm2 - Tmn Wn, Zi:l Wi Ty
It is to project the points onto the object vector

(wy,ws, -+ ,w,). For the weighted sum-up method, the cru-
cial part is to set the weights w; to agents. Traditionally, we
set the weights according to experiences or some other given
information. The purpose is to make the agents of the same
commensurability.

Our spectral method, however, assumes that all the agents
are almost of the same commensurability, uses the eigenvec-
tor e corresponding to the largest eigenvalue of the judge-
ment matrix Z as the object vector, and sets the weights of
agents as the eigenvector e. Our method can be regarded as
a self-adapted step to set the weights of agents to minimize
the noise information. Our method can combine with the tra-
ditional weighted sum-up method well: we first set a weight
to agents artificially to make the agents of almost the same
commensurability and then apply our spectral method on the
adjusted scores to get the second weight. The second weight
can also be used to adjust the first weight.

7 Computational Examples and Applications

Here we give computational results on some real word
data as examples. The first example is about scoring
movies. Our data is from GroupLens Research (http-
s://grouplens.org/datasets/movielens/), which collects the
rating data for movies from the web site MovieLens
(http://movielens.org) [Harper and Konstan, 2016]. The
database we used is mli-latest-small, which describes 5-star
rating for movies by users from movieLens. Ratings are made
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on a 5-star scale, with half-star increments (0.5 stars - 5.0 s-
tars). Users are represented by an ID without other informa-
tion. Here we give a simple example with a small number of
movies and users. We randomly choose six famous movies
and six users who had seen more than 500 movies (including
all the six movies). The movies are Forrest Gump (1994), S-
tar Wars: Episode IV - A New Hope (1977), Toy Story (1995),
Dead Men Don’t Wear Plaid (1982), The Fugitive, (1993),
Seven (1995), and the userID are 15, 23, 30, 73, 212, 213.
We obtain the following score matrix

2 3 4 5 3 3

5 45 4 5 35 25
o |l 455 5 4 2
13355 4 5 25
535 5 4 3 4

5 45 4 45 4 5

We run our algorithm on this score matrix, the final s-
cores of these six movies are wvp {3.40,4.12,3.71,
3.88,4.07, 4.44}1, while the final scores of the average
method is vg {3.33,4.08,3.58, 3.83,4.08,4.50}. The
signal-to-noise ratio SN R of our result is 21.7, which is
greater than 18.8 for the average method. This is a compu-
tational example on a small number of samples to show the
computational steps of our algorithm and compare the results.
Next, we give an example on a big date set.

The next example is about ranking universities according to
the publications. Our data is from the web site of CWTS Lei-
den Ranking (http://www.leidenranking.com/). The CWTS
Leiden Ranking 2016 offers key insights into the scientif-
ic performance over 800 major universities worldwide. A
sophisticated set of bibliometric indicators provide statistic-
s on the scientific impact of universities and on universities
involvement in scientific collaboration. We focus on the in-
dicator called ‘top 10% P’, which is the number of a uni-
versity’s publications belong to the top 10% most frequently
cited in the year. CWTS Leiden Ranking 2016 collected the
data from the following five main fields of science: Biomed-
ical and health sciences (Bio), Life and earth sciences (Life),
Mathematics and computer science (M&C), Physical sci-
ences and engineering (P&E), and Social sciences and hu-
manities (Soc). The default way is to use the sum of the top
10% cited publications in all the five fields as the indicator of
the university, i.e., the sum-up method. We use our method to
obtain a result. The first 15 universities under our method are
listed in Table 1.

In this table, the column ‘ours’ is the results of our method,
comparing the column ‘total’ of the results of the sum-up
method. In these two columns, the number in the bracket
is the final score obtained by the corresponding method and
the number out of the bracket is the position ranked by us-
ing these scores. The next five columns denote the numbers
of top 10% cited publications of these universities on the five
main fields.

From the table we can see that some universities with a s-
maller number of total top 10% cited publications are ranked

'In fact, the scores were divided by v/n = V6 to make them of
the same stretching factor as the average method.
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Table 1: The top 15 universities of our method.

Univ Ours Total Bio Life M&C  P&E Soc
Harvard Univ 1(4949) 1 (7060) 4947 467 136 834 676
Univ Toronto 2(1926) 3(2956) 1853 201 150 462 289
Johns Hop Univ 3(1917) 7 (2539) 1976 108 51 261 144
Stanford Univ 4(1744) 2(3223) 1429 300 215 936 342
UC-SF 5(1641) 17(1990) 1775 75 10 46 85

Univ Michigan 6(1602) 4 (2756) 1417 188 169 627 355
Univ Penn 7(1493) 11(2253) 1456 106 80 309 301
UC-Los Angeles  8(1391) 8 (2424) 1231 225 157 516 296
Univ Coll Lon. 9(1381) 13(2162) 1328 118 91 296 329
UW-Seattle 10(1374)  10(2321) 1267 399 89 340 226
Columbia Univ 11(1290) 14(2129) 1217 181 124 286 321
Univ Oxford 12(1286) 9 (2414) 1084 306 130 527 367
UC-SD 13(1270) 15(2126) 1164 253 153 390 166
Yale Univ 14(1199)  16(2001) 1117 239 60 274 312
MIT 15(1184) 6 (2606) 748 254 246 1164 194

higher in our method, for examples, Johns Hopkins Univ. and
UC-San Francisco. These universities have a large number of
top 10% cited publications in some fields say Bio. and a small
top cited publication number in other fields. Our method rank
these universities higher because the major fields of these uni-
versities are strong, although they may not be strong in every
field. We think this is reasonable and even can be regarded
as an advantage of our method. We should encourage uni-
versities (agents) to develop some strong fields, instead of all
fields with a middle level.

We also note that MIT is not ranked very high in our
method, although it has the largest numbers of top 10% cited
publications in two fields M&C and P&E. The reason is that
the total numbers of top 10% cited publications in these two
fields are not large. If we normalize all fields to reduce the
differences among them, the situation will be better. Now we
apply our method directly without any normalization, which
indicates that we assume all fields are of the same commen-
surability. Under this assumption, small total numbers of top
10% cited publications in the two fields M&C and P&E will
indicate small influences of these two fields. It is reasonable.

8 Conclusion

This paper suggests a new method for score aggregation,
which uses spectral analysis. Our method assumes that al-
1 the agents are of the same commensurability and finds an
‘optimal’ aggregate scoring minimizing the ‘noise’ part. The
new method may open up a new dimension along which scor-
ing rules could be defined and evaluated. It also gives rise to
many interesting problems in social choice for further study.

For the method itself, there are also some important issues
worthy of further study. For example, this paper only consid-
ers projecting scores on vectors which begin with the origin.
Could we get better results if we consider other vectors as
well? It is possible. However, we may get strange results for
some extreme cases. Here is an example of two candidates
with scores (1,3) and (3, 1) from two agents, the global op-
timal vector of which will pass through these two points. For
this case, it is hard to explain the meaning of the projection.
It will also be interesting to study more properties and types
of vectors to be projected on.
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