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Abstract
In this work we present a novel approach to check
the consistency of agent designs (prior to any
implementation) with respect to the requirements
specifications via automated planning. This check-
ing is essentially a search problem which makes
planning technology an appropriate solution. We
focus our work on BDI agent systems and the
Prometheus design methodology in order to di-
rectly compare our approach to previous work. Our
experiments in more than 16K random instances
prove that the approach is more effective than pre-
vious ones proposed: it achieves higher coverage,
lower run-time, and importantly, can handle loops
in the agent detailed design and unbounded subgoal
reasoning.

1 Introduction
As with any software development, verification and debug-
ging are essential components of developing intelligent soft-
ware systems. Here, we focus on agent systems devel-
oped following the BDI architecture [Rao et al., 1995],
a popular model that has influenced several agent design
methodologies (e.g., Prometheus [Padgham and Winikoff,
2004], Tropos [Bresciani et al., 2004], O-MaSE [DeLoach
and Garcia-Ojeda, 2010]) and agent programming languages
(e.g., JACK [Winikoff, 2005], Jason [Bordini et al., 2007],
JadeX [Bordini et al., 2006]). There has been work on test-
ing the correctness of BDI agent systems that have been im-
plemented either via formal verification (e.g., [Dastani et al.,
2010; Dennis et al., 2012; Shapiro et al., 2002]) or via run-
time testing (e.g., [Zhang et al., 2009; Padgham et al., 2013])
of agent programs. However, it is well accepted that identify-
ing and correcting issues early in software development pro-
vides significant cost savings [Boehm, 1988, Page 1466]. To
this end, more recent work [Abushark et al., 2014; Abushark
et al., 2015; Yadav and Thangarajah, 2016] presents mecha-
nisms for testing the correctness of designs prior to any im-
plementation.

In [Abushark et al., 2014], the authors provide an approach
for checking the conformance of interaction protocols, by ex-
tracting all possible traces of the agent behavior model (com-
prising goals, plans and message exchanges) related to a par-
ticular protocol and report the ones that do not conform by

checking against an executable structure of the protocol. In
[Abushark et al., 2015], they follow a similar approach for
checking the consistency of requirements. Their approach
however had no formal semantics and is not complete. In
addition, in the design as the number of parallel steps in-
creases, the time and space required to extract these traces
grows at least exponentially. Yadav and Thangarajah [Ya-
dav and Thangarajah, 2016] addressed these shortcomings
and presented an approach to verifying the correctness of the
agent detailed designs with respect to the requirements via
model checking. Their technique is formal, sound and com-
plete; it uses model checking rather than trace extraction, and
presents the designer with a model as well as traces. They
also empirically show that their approach is more scalable
than the approach of Abushark et. al. However, there are
some limitations in their work: despite the improved scala-
bility compared to Abushark et. al. their approach still scales
poorly as the design grows in size; they are unable to handle
loops in the design; and they do not provide any means for de-
bugging designs that are inconsistent with the requirements.

In this paper we present an approach to formally check
the consistency of the requirements specification and the
agent details at the design stage based on automated plan-
ning. Checking the consistency of an agent design is in
fact a search problem, which makes planning technology a
natural fit as we detail ahead. In order to perform a di-
rect comparison with [Yadav and Thangarajah, 2016], we
ground our approach also in the Prometheus agent design
methodology, which is a popular and mature methodology
that shares common principles to others [DeLoach et al.,
2009]. There are key advantages of our planning-based ap-
proach over that proposed in [Yadav and Thangarajah, 2016].
First, we are able to deal with loops and flexible goal hier-
archies in the agent designs (which [Abushark et al., 2014;
Abushark et al., 2015] also do not handle) as we describe in
Section 4. Second, our approach is significantly more efficient
as the designs scale up in size. We show this via experiments
in more than 16K random instances (see Section 6). Finally,
in our approach we also able to present a trace that is consis-
tent with the requirements, but also go further by presenting
techniques such as swap step and skip step that help in debug-
ging inconsistencies between agent design and requirements
(see Section 5).
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Figure 1: Example Purchase Order Scenario in Prometheus

Figure 2: Example Goal Overview in Prometheus

2 Problem Description
There are several AOSE methodologies for developing BDI
agent systems [Luck and Padgham, 2008]. Among them, the
Prometheus methodology is a mature and popular methodol-
ogy that also shares commonality with other AOSE method-
ologies [DeLoach et al., 2009]. Prometheus [Padgham
and Winikoff, 2004], together with the design tool (PDT)
[Padgham et al., 2008], supports the complete development
of agent systems from specification and design through to im-
plementation.

Two key phases of Prometheus (and other methodologies)
are the requirements specification, and the agent details spec-
ification, where the internals of each agent is elaborated.
The requirements are specified via scenarios and goal di-
agrams. Scenarios specify a particular run of the system
akin to use cases in traditional Object-Oriented design. Fig-
ure 1 illustrates an example scenario related to a “Book Pur-
chasing” system which lists the steps involved in a customer
placing a purchase order. In this example, the system re-
ceives a PurchaseRequest (a percept external to the sys-
tem), forms a goal to CheckInventory prior to the goal
to GetPayment. The first attempt to get payment fails,
which causes it to retry the goal and on success it contin-
ues to SendItem. In turn, the goal diagrams specify the
functionality of the system and how they may be decom-
posed into smaller subgoals. The decomposition can be ei-
ther “AND” or “OR” depending on whether all the sub-
goals must be achieved to satisfy the goal (“AND”) or only
one of the options (“OR”). Figure 2, illustrates a goal di-
agram for handling the PurchaseBook goal related to the
PurchaseOrderScenario in Figure 1.

The Agent Details phase specifies the internals of
each agent in terms of plans, messages, and goals that
they handle and produce amongst other things. Fig-
ure 3 illustrates the detailed design for the BookSeller
agent that handles the PurchaseRequest from the cus-
tomer. Here the PurchaseRequest percept activates a plan
(ProcessPurchaseOrderP lan) that in turn triggers the
GetPayment and SendItem subgoals.

It is these agent details that capture the behaviour of the
agents in the system. The problem we address in this paper is

Figure 3: Example BookSeller Agent Details in Prometheus

whether the requirements specifications (scenarios and goal
diagrams) and the agent detail diagrams are consistent with
each other. In our example, we can see that although the re-
quirements (Figures 1 and 2) specify that a purchase order
requires a CheckInventory step to be performed, the details
of the BookSeller agent does not include it. Our framework
identifies such inconsistencies and also provides the designer
with insights into possible source of errors - here, the scenario
CheckInventory step is missing in the agent details.

3 The Agent Design Consistency Problem
Let us make the above problem precise. To do so, we rely on
the core notions in [Yadav and Thangarajah, 2016], but pro-
vide a more succinct problem definition. We begin by defin-
ing the main components, based on a given sets of goals G,
percepts P , and actions A.

First, a goal overview diagram (e.g., Figure 2) is captured
via a labelled goal tree T = 〈G, g0,R, µ〉, where G is the set
of goals, g0 ∈ G is the top level goal, relation R ⊆ G × G
defines the parent-child relationship between goals, and la-
beling function µ : G → {AND,OR} states the achievement
criteria for sub-goals. We use sg(T, g) = {g′ | R(g, g′)} to
denote the set of all (direct) sub-goals of goal g in tree T .

A scenario S (e.g., Figure 1) is a finite non-empty se-
quence of goals, percepts and actions, that is, S ∈ (G ∪ P ∪
A)+. Often the first step of the scenario is a percept repre-
senting the external trigger of the behavior being represented.
Given a scenario S, we use |S| to denote the length of S and
S[i], with 1 ≤ i ≤ |S|, to denote the i-th element step in S.

Then, a requirements specification is a pair (S, T ) where
S is a scenario and T a goal tree, as above. Note that the goal
tree in a specification implicitly represents the various ways
that goals can be fulfilled, by means of their sub-goals. This
implies that a scenario can be realized in multiple ways.

A detailed design, on the other hand, is a set D =
{p1, . . . , pn}, where each pi is a plan. A plan, in turn, is
a tuple p = 〈name, trigger, O〉 where name is the unique
plan identifier, the trigger ∈ G ∪ P stands for the plan’s
trigger that may activate it, and O ⊆ G ∪ A is the set
of outputs of the plan upon which its plan body will be
built on.1 Note that, at design level, information related
to the internals of a plan body is not available. For con-
venience, we shall refer to the components of plan p as

1It is possible to handle percepts in plans via auxiliary goals.
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p.name, p.trigger, and p.O, resp. Observe the actions re-
quired to fulfill a particular goal can be directly inferred
from the agent’s detailed design. Importantly, and in con-
trast to previous approaches [Yadav and Thangarajah, 2016;
Abushark et al., 2014], we do not preclude loops.

3.1 Problem Definition
The problem we are interested in is to check if a detailed de-
sign D is consistent with a requirements specification (S, T ).
Requirement realization. We first define what it means for
a trace to exactly capture a requirement specification, given
that goals can be realized in various ways in the context of
the goal tree in the specification. Consider a goal tree T =
〈G, g0,R, µ〉, a goal g ∈ G, and a sequence of goals τ ∈ G∗.
We say that g is met by τ (relative to T ) if either (i) τ = g;
(ii) µ(g) = AND, and there exists a set of goal (sub)sequences
X ⊆ G∗ and a bijection f between X and sg(T, g) such that
every subgoal g′ ∈ sg(T, g) is met by subsequence f(g′)
relative to T ; or (iii) µ(g) = OR, and there exists a g′ ∈
sg(T, g) that is met by τ relative to T .

Consider a requirement specification (S, T ), with S =
o1 · · · on, and a trace τ ∈ (G ∪ A ∪ P )∗ of goals, percepts,
and actions. We say that τ realizes the requirement specifi-
cation (S, T ) if there exist n subtraces τi ∈ (G ∪ A ∪ P )∗,
with 1 ≤ i ≤ n, such that (i) τ = τ1 · · · τn; and (ii) for
all j ∈ {1, . . . , n}, if oj ∈ G, then oj ∈ G is met by τj ;
otherwise (i.e., oj ∈ P ∪A), τj = oj .

Informally, a trace realizes a specification if it is a con-
catenation of sequences achieving each scenario step. For
example, the requirement specification as shown through Fig-
ure 1 and Figure 2 can be met by the trace PurchaseRequest ·
CheckInventory · GetPayment · GetPayment · SendItem.
Design runs. Next we define what it means to “run” (i.e.,
execute) an agent detailed design. Intuitively, a run is an in-
terleaving of various plan runs’ such that each posted goal is
handled by at most one plan.

A run of a plan p = 〈name, trigger, O〉 is a sequence of
the form σ = trigger · name · o1 · · · on, where o1 · · · on is
a sequence permutation of O. This captures the fact that an
agent activates a plan by handling its trigger, executing the
plan body that results in the plan outputs. Let Σp be the set of
all possible runs of a plan p. Since an agent may have more
than one active plan at a time, a run for a whole agent design
will consist of interleaved plan runs, under certain triggering
constraints: a plan should be triggered for resolving a pending
goal or addressing a percept.

Next, a run of an agent detailed design D is any se-
quence σ obtained by interleaving a finite number of runs
from the set of plan runs

⋃
p∈D Σp such that there is a bi-

jection f from the set of goal triggering indexes ∆t = {i |
σ[i] ∈ G is a trigger step} into the set of goal plan outputs
∆g = {i | σ[i] ∈ G is a plan output step} where f(i) < i
for every 1 ≤ i ≤ |σ|. Intuitively, the bijection between ∆t

and ∆g captures the fact that every plan not started to address
a percept is indeed started to resolve a (pending) goal posted
by another plan, and that every posted goal (in a plan output)
is addressed by some plan. The last requirement on the bijec-
tion requires the handling of every posted goal to happen after
the posting in a run. For example, a run for the detailed design

in Figure 3 is PurchaseRequest·ProcessPurchaseOrderPlan·
GetPayment · SendItem ·GetPayment ·GetPaymentInfoPlan ·
PaymentRequest · · · There, the first GetPayment token is
from the output of the plan ProcessPurchaseOrderPlan and
the second GetPayment token is due to the triggering of the
plan GetPaymentInfoPlan.
Design consistency. Next, we define when a run of a de-
tail design is consistent with a requirement specification.
Roughly speaking, this happens when the run includes, in the
right order, all the steps of some realization of the specifica-
tion. Formally, we say that a run σ of a detailed design D
is consistent with a trace τ ∈ (G ∪ P ∪ A)∗ if τ is a sub-
sequence2 of σ. Then, σ is consistent with a requirement
specification (S, T ) if σ is consistent with some trace that
realizes (S, T ). Note that a design trace will, generally, be
longer than a trace for a scenario, as the former fleshes out
how a particular requirement is achieved.

Finally, the problem we are interested is: given a detailed
designD and a requirement (S, T ), is there a run σ ofD that
is consistent with (S, T ).

4 Technical Approach
In this section we provide a way to solve the consistency
checking problem by resorting to automated planning. In
classical planning, the model is provided in a domain-
independent language and in a succinct manner. The most
popular, and de-facto standard, representation model today
is PDDL [McDermott et al., 1998] (Planning Domain Defi-
nition Language), a language that allows one to formulate a
so-called planning problem P = 〈I,G,D〉, where I is the
initial state, G is the planning goal state, and D is a planning
domain. We treat an agent details as a directed goal-plan
graph where the graph’s edges link goal and plan nodes. A
goal node links to all the plans that can handle that goal and
a plan node in turn links to all its sub-goals.

In this work we treat percepts and actions as agent goals.
Technically, percepts and goals, both of them are triggers for
plans. To encode actions as goals, we replace each action a
with a goal ga and add a plan pga = 〈pa, ga, {}〉.

First we shall show how to encode a planning domain for
acyclic plan libraries. Then, we resort to numerical planning
to show how to deal with plan libraries that have loops. The
core idea behind our encoding involves defining predicates
that capture the structure of detailed design and the require-
ments. We rely on planning axioms to encode goal trees. The
actions in the domain encode the semantics of the detailed
design. To mark a completion of a scenario, we use a dummy
step called finish that will serve as the achievement goal for
the planning problem.

4.1 Planning Domain: Acyclic Plan Libraries
Our planning domain consists of three types of ob-
jects to encode agent goals, plans, and scenario steps:
(:types goal plan step). The predicates in our do-
main will encode two key aspects: the input of the con-
formance problem (i.e., the plan library, the goal hi-
erarchy, and the scenario) and predicates to keep track

2A subsequence is a sequence that can be obtained from another
sequence by deleting some elements (without changing the order).
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of the exploration of this input. We use two pred-
icates can-handle and sub-goal to encode a plan.
The predicate (can-handle ?p - plan ?g - goal) as-
sociates a plan with its trigger. The second predicate
(sub-goal ?g - goal ?p - plan) associates a plan with
its sub-goals. To encode goal hierarchies, we require
predicates to identify the goal type and to encode the
goal decomposition. The predicates (goal-and ?g) and
(goal-or ?g) encode AND and OR goal, respectively. A
parent goal is associated with its children using the predi-
cate (child-goal ?child ?parent - goal). Similarly,
to model a scenario we link a scenario step with its goal and
the order in which the steps need to be achieved. The predi-
cate (step-goal ?s - step ?g - goal) ties a step with a
goal and the predicate (next ?s ?s - step) encodes the
ordering of steps.

In our agent testing domain the planner will have to
decide between progressing the scenario steps achieved
and unfolding the detailed design. In order to keep
track of these two objectives we define the following
predicates. To keep track of active goals and plans
we use the predicates (active-goal ?g - goal) and
(active-plan ?p - plan). It is not uncommon for a goal
to be required by more than one step in a scenario. Hence, in
order for a scenario step to be achieved, the goal associated
with the scenario step may need to be met again. For this pur-
pose we use a predicate (accounted ?g - goal) that tracks
the sub-goals that are met for the current scenario step.

We use a derived predicate named met-goal to model the
reasoning behind achieving a goal through meeting its sub-
goals. PDDL allows a natural translation of semantics behind
achieving a goal. A goal can be said to be met if either of
the following three conditions hold: (i) the goal itself is met
by instantiating a plan that can handle it; or (ii) one of its
children are met if the goal is of type OR; or (iii) all of this
child goals are met if the goal is of type AND.
(:derived (met-goal ?g - goal)(or (exists (?p -
plan) (and (active-plan ?p) (can-handle ?p ?g)))
(and (goal-or ?g) (exists (?x - goal)(and
(met-goal ?x) (child-goal ?x ?g))))(and
(goal-and ?g)(not (exists (?x - goal)(and
(not (met-goal ?x)) (child-goal ?x ?g)))))))

In order to synchronize the progression of a step with
the achievement of its goal we use the unary predicate
(canProgress). This predicate is true only when the goal
associated with the current scenario step is met and not yet
accounted for. We will use this predicate in the conditions of
the actions that we define next.
(:derived (canProgress)(exists (?s - step ?
g - goal)(and (current ?s) (met-goal ?g) (
step-goal ?s ?g) (not (accounted ?g)))))

We only require three actions in our agent testing domain.
Two actions are required to unfold the detailed design by
handling active goals and generating new goals by activating
plans; and one action for progressing the scenario steps.

The action handleGoal takes two parameters, a goal g and
a plan p, such that goal g is pending and is the trigger of
plan p. In addition, we only allow goals to be handled if the
current scenario step is unachieved (this is to force the planner
to progress the scenario if the current step is achieved). The

effect of the action causes the plan p to be active and goal g
to be inactive.
(:action handleGoal
:parameters (?g - goal ?p - plan)
:precondition (and (active-goal ?g)
(can-handle ?p ?g)(not (canProgress)))
:effect(and(not (active-goal ?g)) (active-plan ?p)))

An active plan will result in generation of its sub-goals. The
action generateGoal is responsible for generating sub-goals
of a plan in a step by step manner. Similar to the handleGoal
action, we only generate further sub-goals if the current sce-
nario step is unachieved. The effect of this action is to mark
the new generated sub-goals as (i) active, (ii) generated from
this plan, and (iii) not yet accounted for (since the current step
has not yet progressed).
(:action generateGoal
:parameters (?p - plan ?g - goal)
:precondition (and (not
( goal-generated ?g ?p)) (active-plan ?p)
(sub-goal ?g ?p) (not (canProgress)) )
:effect (and (goal-generated ?g ?p)
(active-goal ?g)(not (accounted ?g))))

The last action is responsible for progressing the steps of
the scenario that have been achieved. If the goal associated
with the current step is met then the next step in sequence is
marked as the current step and the goals met so far are set as
accounted for the step achieved.
(:action progressStep
:parameters (?s - step ?g - goal)
:precondition (and(current ?s)
(met-goal ?g)(step-goal ?s ?g)(not (accounted ?g)))
:effect (and (not (current ?s))(forall (?x - step)
(when (next ?s ?x)(current ?x)))(forall (?x - goal)
(when (met-goal ?x)(accounted ?x)))))

We denote the planning domain consisting of the types,
predicates, and actions we specified above as Da. Next we
show how to construct a planning problem for this domain.

4.2 Planning Problem
Let C = 〈S, T,D〉 be a consistency checking problem where
S is the scenario, T = 〈G, g0,R, µ〉 is a goal tree, and D =
{p1, . . . , pl} is the detailed design where each pi is a plan for
1 ≤ i ≤ l. Also let G = GO ∪ GA where GO and GA are
the goals of type OR and AND, respectively. We construct
the planning problem PC for a consistency checking problem
C = 〈S, T,D〉 as follows:
Objects: The objects in the planning problem will consist of
all the goals, plan names, and the steps of the scenario. We
include a special scenario step labelled finish that encodes
the achievement of all scenario steps. For the scenario S =
o1 · · · on, we label the steps as S1, . . . , Sn.
(:objects
g0 . . . gm - goal
p0.name . . . pl.name - plan
S1 . . . Sn finish - step)

Initial condition: The initial condition consists of the first
goal of the scenario as being active, encoding of the plan li-
brary, the hierarchies, and ordering of the scenario steps. The
listing below shows a template to generate the initial condi-
tions for our planning problem.
(:init
(active-goal o1)
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∀p ∈ D(can-handle p.name p.trigger)
∀p ∈ D∀g ∈ p.O(sub-goal g p.name)
∀oi(step-goal Si oi)
∀g1, g2 ∈ Gi(child-goal g2 g1) s.t. Ri(g1, g2)
∀g ∈ GO(goal-or g)
∀g ∈ GA(goal-and g)
(current o1)
∀oi, oi+1, where i < n(next Si Si+ 1)
(next Sn finish))

Goal: The goal for the planning problem is to achieve the last
scenario step, that is, (:goal(current finish)).
Proposition 1. A detailed design D is consistent with a re-
quirement specification, consisting of a scenario S and goal
tree T , if and only if there are no loops in D and there ex-
ists a solution plan for the planning problem P〈S,T,D〉 in the
planning domain Da.

4.3 Goal-Plan Cyclic Graphs
To account for loops in plan libraries we use planning metrics
to keep a count of the pending goals. We introduce a function
called pending-goal to keep a count of goals that have been
produced from a plan but not yet handled.
(:functions(pending-goal ?g - goal)- number)

We update the handleGoal action to manage the
pending-goal metric instead of considering the
active-goal predicate. In the updated version, we
check if the number of pending instances of a goal are at least
1 (instead of having the precondition that the goal is active).
In the effect we decrease the pending goal instances.
(:action handleGoal

:parameters (?g - goal ?p - plan)
:precondition (and(>= (pending-goal ?g) 1)
(can-handle ?p ?g)(not(active-plan ?p)))

:effect (and(decrease (pending-goal ?g) 1)
(active-plan ?p)))

We replace the generateGoal action by the executePlan
action. In the executePlan action, we generate all sub-goals
(by increasing their pending-goal count) of an active plan in
a single step. In addition, since a goal can have multiple in-
stances (due to loops in detailed design), we need to set the
plan that handled a goal instance as inactive. Since we are
keeping track of the number of goal that are pending, this also
makes it simpler to increase the counts of all the sub-goals of
an active plan in a single step.
(:action executePlan :parameters (?p - plan)

:precondition (active-plan ?p)
:effect (and (not (accounted ?g))(forall
(?x - goal)(when (sub-goal ?x ?p)(increase
(pending-goal ?x) 1 )))(not (active-plan ?p))))

In terms of the predicates, we do not require active-goal
and the goal-generated. We refer to the domains con-
structed here to account of loops by Dc. In terms of the prob-
lem encoding the initial condition will have the pending count
of the goal associated with the first step of the scenario as 1,
and for all other goals as 0. The rest of the planning prob-
lem definition will remain the same. We refer to the prob-
lem definition as defined here by Pc

C where C is a consistency
checking problem.
Proposition 2. A detailed design D is consistent with a re-
quirement specification, consisting of a scenario S and goal

tree T , if and only if there exists a solution plan for the plan-
ning problem Pc

〈S,T,D〉 in the planning domain Dc.

5 Inconsistency Identification
From an agent designer’s perspective, any feedback that
points to a source of error causing the inconsistency will be
useful in finding the potential faults in the design.

Iterative technique: In case the detailed design is incon-
sistent with the requirements, one can locate the first un-
achievable scenario step by running multiple planning prob-
lems in an iterative manner. For example, if a detailed design
is inconsistent with a scenario S = o1 · · · on, then a designer
can check for solution in n−1 planning problems with scenar-
ios {o1, o1 · o2, . . . , o1 · · · on−1}. The first planning problem
that does not have a solution will indicate the first unachiev-
able scenario step.

Mismatch identification actions: A more useful feedback
for an agent designer would be if the framework can suggest
modifications that will fix the errors. To incorporate such a
feedback we extend the planning domain by introducing two
actions skipStep and swapStep. We use action costs to en-
sure that these actions are only chosen when a plan cannot
be found without them. The planning domain Da is extended
to include (:functions(total-cost)) and the skipStep
and swapStep actions.

The skipStep action takes the current step and marks it
achieved. It takes a scenario step and its associated unmet
goal as as input and sets the next scenario step as current. The
action also has a cost of 100 (any large positive number will
work). In effect this action renders the search as if a scenario
step was achieved and the search can then progress towards
achieving the next step of the scenario.
(:action skipStep
:parameters (?s - step ?g - goal)
:precondition (and (current ?s) (not (met-goal ?g))
(step-goal ?s ?g) (not (canProgress)))
:effect (and (not (current ?s))

(forall (?x - step) (when (next ?s ?x)
(current ?x)))

(forall (?x - goal) (when (met-goal ?x)
(accounted ?x)))

(increase (total-cost) 100)))

The swapStep action swaps the sequential scenario steps.
Given a scenario o1 · · · · oi · oi+1 · · · on, the action swapStep
oi oi+1 will change the scenario to be o1 · · ··oi+1·oi · · · on. In
effect this action will try to re-sequence the goals in a scenario
such that they can be achieved by the given detailed design.
(:action swapStep

:parameters (?from - step ?to - step)
:precondition (and (current ?from)
(next ?from ?to) (not (canProgress)) )
:effect (and (not (next ?from ?to))

(next ?to ?from)
(forall (?x - step) (when
(next ?x ?from) (next ?x ?to)))

(forall (?x - step) (when
(next ?to ?x) (next ?from ?x)))

(increase (total-cost) 100)))

In each planning problem we also specify
the metric to minimize total cost of the plan:
(:metric minimize (total-cost))). The actions
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p/g g/p = 2 g/p = 3 g/p = 4

h #p #g fd mcm nmv h #p #g fd mcm nmv h #p #g fd mcm nmv

2

4 3.24 2.54 100 100 100 4 3.62 2.88 100 100 100 4 4.18 3.24 100 100 100
8 16.68 12.24 100 100 96 8 26.76 20.14 100 94 62 8 39.34 29.22 100 56 35
12 56.68 42.08 87 78 25 12 119.14 89.12 82 34 17 12 258.82 193.68 79 (-) (-)
16 187.44 140.10 66 22 (-) 16 587.52 441.02 57 (-) (-) 16 2092.52 1571.22 54 (-) (-)

3

4 5.14 3.18 100 100 100 4 5.86 3.66 100 100 100 4 7.02 4.26 100 100 100
8 32.92 19.72 100 100 68 8 57.84 34.84 100 79 29 8 93.12 55.78 100 42 18
12 167.16 99.84 88 40 (-) 12 387.78 233.72 83 (-) (-) 12 1178.86 711.1 78 (-) (-)
16 792.96 477.32 65 (-) (-) 16 3373.28 2029.04 57 (-) (-) 16 7855.64 4718.42 52 (-) (-)

4

4 7.16 3.58 100 100 100 4 9.38 4.62 100 100 100 4 11.04 5.44 100 100 100
8 62.12 30.52 100 88 49 8 98.52 48.20 100 48 16 8 200.00 98.3 100 17 (-)
12 361.28 180.02 88 8 (-) 12 1060.26 527.76 82 (-) (-) 12 2771.48 1384.18 78 (-) (-)
16 3302.68 1649.20 65 (-) (-) 16 13925.62 6970.72 56 (-) (-) 16 38942.70 19466.78 52 (-) (-)

Table 1: Percentage of cases terminated within 10 minutes. (-) indicates that less than 5% of the cases terminated.

that were in the domain Da have an action cost of 1. We
denote this extended domain with the repair actions as Dr.

Proposition 3. A detailed design D is not consistent with
a requirement specification, consisting of a scenario S and
goal tree T , if and only if there exists a minimal cost plan
with actions skipStep or swapStep for the planning prob-
lem P〈S,T,D〉 in domain Dr.

6 Empirical Results and Conclusion
In this section, we compare the efficiency of our planning
approach with respect to the previous model checking ap-
proach [Yadav and Thangarajah, 2016]. As a planner we used
fast-downward3 and for model checking we used MCMAS4

an ATL model checker, and NuSMV5 a CTL model checker.
We used the approach presented in [Yadav and Thangarajah,
2016] to encode the problems into MCMAS and NuSMV.

The benchmark was constructed in two steps - (i) build
agent details; and (ii) for each agent detail generate multiple
scenarios. The agent details were randomly generated based
on three parameters: the height of the design (denoted by h),
the maximum number of goals per plan (denoted by g/p),
and the maximum number of plans per goal (denoted by p/g).
The starting point of the agent details was always a goal and
each goal was linked to at least one plan. The agent details
we generated, technically, are trees with alternating levels of
goal and plan nodes, and therefore we consider the height of
the agent details as the height of its underlying tree. We gen-
erated both positive and negative test cases for 36 categories
where the maximum number goals per plan and plans per goal
were varied from 2 to 4 and the height was varied from 4 to
16 (in steps of 4). For each category we randomly generated
50 trees and for each tree, scenarios of different lengths were
constructed. In total the benchmark had 16, 088 instances.

Table 16 shows the results for coverage of the three tools,
fast downward (denoted by fd), MCMAS (denoted by mcm)
and NuSMV (denoted by nmv), on the test cases. We ran
the fast downward planner with ff as the heuristic with lazy
search. The average size of the test cases in each category is

3http://www.fast-downward.org/
4http://vas.doc.ic.ac.uk/software/mcmas/
5http://nusmv.fbk.eu/
6Experiments were conducted on a machine with 4Ghz corei7

CPU with 32GB RAM.

represented by the average number of plans (denoted by #p)
and the average number of goals (denoted by #g). A time
limit of 10 minutes per problem instance was used for all
the solvers. As evident from Table 1, the planning approach
is able to solve significantly larger number of cases as com-
pared to the model checking approach [Yadav and Thangara-
jah, 2016]. Observe that both the branching factors, the value
of goals per plan and plans per goal, affect the number of
problems that can be solved for MCMAS and NuSMV. In com-
parison, the coverage for the planning approach is affected
more by the number of goals per plan than by the number of
plans per goal. This is reasonable to expect, as it is the plan-
ner’s decision when it comes to which plan node to expand
for a goal, but all goals for a plan need to be catered for.

In order to closely analyse the time taken by these tools we
looked at the test cases for the category with h = 8, g/p = 2
and p/g = 2. We chose this category as the problem sizes
were fairly complex and most of the test cases were solved
within the time limit. In terms of the time consumed, the av-
erage time taken across all the test cases in this category for
fast downward, MCMAS and NuSMV was 0.298s, 1.27s and
22.329s, respectively. The p-values for the two comparisons
(fast downward vs MCMAS and fast downward vs NuSMV),
of a two sample t-test for the hypothesis that the difference
in population mean of time taken is equal to 0 was less than
2e−8. We observed that time taken by fast downward is af-
fected less by the detailed design than by the length of the sce-
nario. In comparison, the time taken by MCMAS and NuSMV
showed greater variability with respect to the agent details.
For a planner, the search effort increases with the length of
the scenario, whereas model checkers first build a model and
then verify properties on that model.

To conclude, (i) unlike previous approaches, our approach
is able to deal with loops and flexible goal hierarchies in
the agent designs; (ii) it achieves a higher coverage than the
model checking approach [Yadav and Thangarajah, 2016]
when tested on more than 16K random instances; (iii) the
number of plans per goal affect the planner to a lesser degree
than the goals per plan, whereas both these branching fac-
tors affect the model checking approach; (iv) the planning
approach is more time efficient as compared to the model
checking approach; and (v) the time taken by the planning ap-
proach is dependent more on the length of the scenario than
the size of the detailed design.
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