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Abstract
We propose and study, theoretically and empiri-
cally, a new random model for the abstract argu-
mentation framework (AF). Our model overcomes
some intrinsic difficulties of the only random model
of directed graphs in the literature that is relevant to
AFs, and makes it possible to study the typical-case
complexity of AF instances in terms of threshold
behaviours and phase transitions. We proved that
the probability for a random AF instance to have
a stable/preferred extension goes through a sudden
change (from 1 to 0) at the threshold of the param-
eters of the new model D(n, p, q), satisfying the
equation 4q

(1+q)2 = p. We showed, empirically, that
in this new model, there is a clear easy-hard-easy
pattern of hardness (for a typical backtracking-style
exact solvers) associated with the phase transition.
Our empirical studies indicated that instances from
the new model at phase transitions are much harder
than those from an Erdös-Renyi-style model with
equal edge density. In addition to being an ana-
lytically tractable models for understanding the in-
terplay between problems structures and effective-
ness of (branching) heuristics used in practical ar-
gumentation solvers, the model can also be used
to generate, in a systematic way, non-trivial AF in-
stances with controlled features to evaluate the per-
formance of other AF solvers.

1 Introduction
An abstract argumentation framework (AF) consists of a set
of arguments and a pairwise relationship, known as the attack
relationship, defined over the arguments [Dung, 1995]. An
abstract argumentation framework can thus be modelled by
a directed graph D(V,A), where the set of vertices V corre-
spond to the set of arguments and the set of directed edges
A together represent the attack relationship. A directed edge
uv ∈ A indicates that the argument u attacks the argument
v (or, v is attacked by u). Throughout this paper, we shall
use the words “vertex” and “argument” (“edge” and “attack
relation”) interchangeably.

Of particular importance in the theory of abstract argu-
mentation is the notion of an extension — a subset of ar-

guments that are “collectively acceptable” [Baroni and Gia-
comin, 2009]. A preferred extension S is a maximal subset
of arguments that is conflict-free (i.e., no attack relation ex-
ists between members in S) and is admissible (meaning that
any argument attacking a member in S is attacked by some
member of S). A stable extension S is a subset of arguments
that is conflict-free and attack every argument not in S.

Many extension-related algorithmic problems in AF have
been shown to be intractable. For example, the decision prob-
lems of the existence of preferred extensions and the exis-
tence of stable extensions are both NP-complete [Dunne and
Wooldridge, 2009]. In recent years, there have been much
interest in identifying tractable classes of AF with special
graph-theoretic structures [Dvorák et al., 2012; Dunne, 2007]
and in designing and implementing backtracking-style algo-
rithms (enhanced by various heuristic branching rules and
data reduction rules) to solve these extension-related prob-
lems [Charwat et al., 2015; Walicki and Dyrkolbotn, 2012;
Bryant and Krause, 2008].

Another approach to understanding intractable algorith-
mic problems is to study their “typical-case” complexity. In
the literature of artificial intelligence and theoretical com-
puter science, one of the fruitful approaches to typical-case
complexity is to study the probabilistic behaviour of ran-
dom instances drawn from a reasonable probabilistic model
[Achlioptas and Peres, 2003; Gomes and Walsh, 2006]. By
analysing the threshold phenomena of the solution probabil-
ity and the associated easy-hard-easy pattern, much insight
has been gained on the effectiveness of heuristics that are
widely used to tackle problems such as Boolean satisfiabil-
ity, the constraint satisfaction problem, and graph coloring
[Culberson and Gent, 2001; Gomes and Walsh, 2006].

In this regard, there has not been much work on the
probabilistic and algorithmic behaviour of random instances
of AFs. The only result in the random graph literature
that is relevant to abstract argumentation is a theorem by
Vega [1990] showing that an Erdös-Renyi-style random di-
rected graph has a kernel with high probability (whp1), as
being cited in [Dimopoulos and Torres, 1996; Dunne and
Bench-Capon, 2002; Dunne and Wooldridge, 2009]. Dunne
and Wooldridge [2009, Section 6.1] discussed the need to

1By whp, we mean “with probability of the event approaching
one as the number of vertices tends to infinity.”
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study the average-case properties of an argumentation frame-
work and called for an investigation into the implication of
Vega’s result which, when translated to the argumentation
context, states that a random AF, where each of the possi-
ble attack relationship appears independently with a constant
probability, almost always has a stable extension. More re-
cently, Dunne and Atkinson [2014] demonstrated (empiri-
cally) a threshold behavior of a random model for the value-
based argumentation framework and Wen et al. [2016] stud-
ied a random model for a special class of answer-set programs
where self-loops plays an important role 2.

In this work, we have successfully identified a crucial
characteristics of randomly-generated AFs and proposed a
new random model of AFs with a theoretically-proven phase
transition of the solution probability and empirically-verified
easy-hard-easy pattern about the complexity of finding an ex-
tension associated with the phase transition.

We proved theoretically the exact threshold of our model
parameters for the phase transition, which also provides a
plausible interpretation of Vega’s result — what makes Vega’s
model almost always has a stable extension is that on average,
the model produces the “right” fraction of symmetric rela-
tionships regardless of the probability of an attack relation.

Empirically, we designed and implemented an effective
backtracking-style exact algorithm together with several non-
trivial branching rules and heuristics, which are of interest on
their own. Using our implementation, we observed a clear
phase transition of the solution probability of our model and
an easy-hard-easy pattern of hardness of random instances
from our model associated with the phase transition. Our ex-
periments also showed that random instances from our model
at the phase transitions are typically much harder than those
from the random directed graph studied by Vega [1990].

The rest of the paper is organized as follows. In Section 2,
we introduce our random model and discuss the main theorem
and its consequence on the exact threshold of the phase tran-
sition. In Section 3, we analyse the probabilistic behaviour
of the random model and prove the main theorem. In Section
4, we report the observations and insights from our empirical
studies, including a discussion of the algorithm and heuris-
tics we designed and implemented and the motivation of do-
ing so. We conclude in Section 5 with a discussion on the
significance of the work and future research directions.

2 The Model and the Threshold Phenomena
Vega [1990] studied the existence of kernels in a random
model D̃(n, p̃) of directed graphs on n vertices where each of
the n(n− 1) possible directed edges is present independently
with probability p̃, and showed that for any constant p̃ > 0,
the probability for D̃(n, p̃) to have a kernel approaches 1 as
n tends to infinity. The result easily translates to the exis-
tence of a stable extension in AFs when D̃(n, p̃) is regarded
as a randomly-generated AF [Dimopoulos and Torres, 1996;
Dunne and Bench-Capon, 2002; Dunne and Wooldridge,
2009], indicating that for any constant p̃ > 0, D̃(n, p̃) has
a stable extension with probability asymptotic to one.

2Thanks to two referees for pointing out these two references.

We propose the following random model D(n, p, q) for
AFs with two parameters that explicitly control the likeli-
hood of creating a mutual attack relation between a pair of
arguments. As we shall show in this paper, unlike the model
studied by Vega, the probability for D(n, p, q) to have a sta-
ble/preferred extension (or simply, an admissible set) goes
through a sudden change (from 1 to 0) as the model parame-
ter q (conditional probability of a symmetric attack relation)
crosses a threshold q∗ = q∗(p).
Definition 2.1. D(n, p, q) is defined to be a random abstract
argumentation system on n arguments where the

(
n
2

)
pairs

of arguments independently decide the existence and the type
of the attack relation. Between each pair, an attack relation
exists with probability p. Conditional on the existence of an
attack relation, the attack relation is a symmetric one (mutual
attack) with probability q; with probability 1−q, the attack is
a one-way attack and each of the two possible directions are
equally likely.

We have the following theorem, characterizing the exact
threshold of the phase transition of the probability for the
above model to have a non-empty preferred extension.
Theorem 1. For any constants 0 < p < 1 and 0 < q < 1,

lim
n→∞

P (D(n, p, q) has a non-empty preferred extension)

=

{
1, if q > q∗

0, if q < q∗
(1)

where q∗ = q∗(p) is the unique value of q between 0 and 1
such that 4q

(1+q)2 = p.

As the proofs in the next section indicate, the above result also
holds for the existence of stable extensions or simply, non-
empty admissible sets. It turns out, somewhat surprisingly,
that the average number of edges participating in a symmet-
ric attack is closely related to the phase transition of solution
probability. Let Esym (or Ẽsym) be the average number of
edges in D(n, p, q) (respectively, D̃(n, p̃)) that participate in
a symmetric attack relation. By the definition of the two mod-
els, we have

Esym

Ẽsym
=

2
(
n
2

)
pq

2
(
n
2

)
(p̃)2

=
pq

(p̃)2
.

To see the impact of the number of symmetric attacks on the
solution probability of the two models, we consider the situa-
tion where the two models have the same average number of
edges (implying that p̃ = p(1+q)

2 ). We have

Esym

Ẽsym
=

4q

p(1 + q)2

{
> 1, if q > q∗

= 1, if q = q∗

< 1, if q < q∗
(2)

This suggests a plausible answer to Dunne and Wooldridge’s
question regarding why stable extensions always exist in
Vega’s model (Dunne and Wooldridge [2009] ) — Vega’s
model almost always has a stable extension because on av-
erage, the model produces the “right” fraction of symmetric
relationships regardless of the probability of an attack rela-
tionship.
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3 Probabilistic Analysis
In this section, we analyse the probability for the existence of
a stable extension, a preferred extension, and an admissible
set in D(n, p, q). The results together prove Theorem 1.

3.1 Notation
For notation related to (directed) graphs, we follow Bang-
Jensen and Gutin [2008]. The cardinality of a set S is de-
noted by |S|. Given a directed graph D(V,A), the out-
neighborhood of a vertex v ∈ V in a vertex subset S, denoted
by N+

S (v), is the set of arguments in S that are attacked by v.
Similarly, the in-neighborhood of v in S, N−S (v), is the sub-
set of arguments in S that attack v. A subset S of arguments
in V is admissible if it is
• conflict-free (i.e. N−S (v) ∪N+

S (v) = ∅, ∀v ∈ S), and
• every argument v ∈ S is acceptable with respect to S

(i.e., N−V (v) ⊆ N+
V (S)).

A maximal admissible set is known as a preferred extension.
A subset S of arguments is a stable extension if it is conflict-
free and every argument v outside of S is attacked by some
argument in S, i.e. v ∈ N+

V (S), ∀v ∈ V \S. While the empty
set is an extension be definition, all the results in this paper
are about the existence of non-empty extensions.

3.2 Stable Extensions Above the Threshold
We show that above the threshold, D(n, p, q) has a stable ex-
tension whp.
Theorem 2. For any 0 ≤ p, q < 1, if q > q∗, then

lim
n→∞

P (D(n, p, q) has a stable extension) = 1. (3)

Proof. Let Nstable(r) be the number of size-r stable exten-
sions in D(n, p, q). We have

E [Nstable(r)] =

(
n

r

)
(1− p)(

r
2)
(
1−

(
1− 1 + q

2
p

)r)n−r
(4)

where the term 1 − (1 − 1+q
2 p)r is the probability for a par-

ticular argument to be attacked by at least one argument from
a given subset of r arguments. The idea is to show that whp,
Nstable(r) tends to infinity for a particular value of r.

It can be verified that if q > q∗, then (1 − 1+q
2 p)2 < 1 −

p. Therefore, there exists a constant c < 2 (with |2 − c|
sufficiently small) such that (1 − 1+q

2 p)c < 1 − p. First,
consider the expected number of stable extensions of size r =
c logb n where b = 1

1−p . Based on Equation (4) and the well-
known approximation

(
n
r

)
∼ 1√

2πr

(
en
r

)r
, we see that

E [Nstable(r)]

∼ 1√
2πr

(en
r

)r ( 1

b
r−1
2

)r (
1−

(
1− 1 + q

2
p

)r)n−r
∼ 1√

2πr

(√
ber−1n1−

c
2

)c logb n

e−n
1+c logb(1− 1+q

2
p)
,

which tends to infinity since c < 2 and c logb
(
1− 1+q

2 p
)
<

−1. Then, we use Chebyshev’s inequality to show that

Nstable(r) is close to its expectation asymptotically with prob-
ability 1. To this end, let IS be the indicator function of the
event that S ⊂ V is a stable extension. The number of sta-
ble extensions Nstable(r) can be written as Nstable(r) =

∑
S

IS ,

where the summation is over all size-r subsets of arguments.
By Chebyshev’s inequality, we have

P (Nstable(r) = 0) ≤
E
[
N2

stable(r)
]

(E [Nstable(r)])2
− 1.

Grouping pairs of size-r vertex sets by the number of ver-
tices they have in common, we get the following expression
of E

[
N2

stable(r)
]
.

E
[
N2

stable(r)
]
=
∑
S,T

E [ISIT ]

=
r∑
l=0

(
n

r

)(
r

l

)(
n− r
r − l

)
(1− p)2(

r
2)−(

l
2)P (l)

=
r∑
l=0

R(l),

where P (l) is the probability that two independent sets with l
common members are both admissible. We can show that for
any r ≤ c logb n and q > q∗,

lim
n

R(0)

(E [Nstable(r)])2
≤ 1

and

lim
n

r∑
l=1

R(l)

(E [Nstable(r)])2
= 0.

3.3 Preferred Extensions Below the Threshold
In this subsection, we prove that below the threshold, the
probability for D(n, p, q) to have an admissible set goes to
zero as n goes to infinity. The strategy is to show that the
expected number of admissible sets goes to zero as n tends to
infinity and and then, to apply Markov’s inequality (see, e.g.,
[Alon and Spencer, 2000]) to show that the probability goes
to zero as well.

Let Nadm(r) be the number of size-r admissible sets. We
have E [Nadm(r)] =

(
n
r

)
Padm(r), where Padm(r) is the proba-

bility that a particular subset of r arguments is admissible.

Lemma 3.1.

Padm(r) = (1−p)(
r
2)
(
1−

(
1− 1 + q

2
p

)r
+ (1− p)r

)n−r
Proof. Note that a particular subset A of r arguments is an
admissible set if and only if it is conflict-free and ∀v 6∈ A,

• either v is attacked by A (i.e., v ∈ N+(A)) or

• v does not attack any member of A (N+(v) ∩A = ∅).
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Therefore, the probability for A to be an admissible set is

(1− p)(
r
2)(Ptrouble-free(r))

n−r

where Ptrouble-free(r) is the probability for an argument v 6∈
A to be safe in the following sense: v does not attack any
member in A, or at least one member in A attacks v. By the
definition of the model D(n, p, q), we have

Ptrouble-free(r) = (1− p)r+
r∑

k=1

(
r

k

)
pk(1− p)r−k

(
1−

(
1

2
(1− q)

)k)
,

where on the right hand side of the above equation, the first
term is the probability that no attacking relation exists be-
tween v and any member of A, and the second term is the
probability that when there are exactly k attack relations be-
tween v and A, at least one of the argument in A attacks
v. Rearranging the right-hand side and using the fact that
r∑

k=0

(
r
k

)
pk(1− p)r−k = 1, we see that

Ptrouble-free(r) = 1−
r∑

k=1

(
r

k

)(
1

2
p(1− q)

)k
(1− p)r−k

= 1−
(
1− 1 + q

2
p

)r
+ (1− p)r

Theorem 3. If q < q∗, then

lim
n→∞

P (D(n, p, q) has an admissible set) = 0.

Proof. Let E be the event that there exists an admissible set.
By Markov’s inequality, we have

P (E) ≤
2 logb n∑
r=1

E [Nadm(r)] +
n∑

r=1+2 logb n

E [Nadm(r)] ,

where we write b = 1
1−p . Using Lemma 3.1, it can be

shown that the second summation on the right-hand-side of
the above equation goes to zero for any p and q, while the
first summation goes to zero under the condition of the the-
orem that q < q∗; in this case, we have p > 4q

(1+q)2 , and

therefore 1 + 2 logb
(
1− 1+q

2 p
)
> 0.

Proof of Theorem 1. Since a stable extension is a preferred
extension and a preferred extension is an admissible set, The-
orem 1 follows from Theorem 2 and Theorem 3.

4 Empirical Studies and the Algorithm
To empirically study the probabilistic behaviour of the model
and the associated/anticipated easy-hard-easy patterns of the
random instances, we designed and implemented a branch-
and-reduce algorithm — backtracking search enhanced by
a set of branch/data-reduction rules and branching heuris-
tics. In addition to their applications in practice, algorithms
in the branch-reduce paradigm are also intensively analysed

in the theoretical computer science literature [Fomin and
Kratsch, 2010]. Widely used in practical and industrial-
strength solvers, the performance of this type of algorithms
depends heavily on the choice of branch rules, reduction
rules, and the branching heuristics.

In the algorithm described in Algorithm 1, we use the fol-
lowing definitions:
• E (Partial Extension) — the extension to be constructed;
• F (Friendly Set) — arguments that do not attack and are

not attacked by any argument in E; these arguments can
potentially be added to E; and
• H (Hostile Set) — arguments that attack arguments in
E, but are not attacked by E. These arguments have to
be taken care of to extend E to an extension.

Algorithm 1: ArgExtension(E, F, H)
if H = ∅, then return E; % E is admissible

(*) P ← select-pivot-set(F,H);
while P 6= ∅ do

(**) v ← select-pivot(P );
Enew ← E ∪ {v};
Fnew ← F \ (NF (v) ∪ {v});
Hnew ← (H ∪ (N−F (v) \N+

F (v))) \N+
H (v);

A← ArgExtension(Enew, Fnew, Hnew);
if A 6= ∅, return A;
P ← P \ {v};

end
Return ∅;

As long as the hostile set is not empty, the algorithm finds
a subset P ⊆ F of friendly arguments such that one of the ar-
guments in P has to be in the extension and branches on the
arguments in P . It is well-accepted in the filed of heuristic
search that the time complexity of such algorithms can be up-
per bounded by considering its search tree. In this case, each
tree node is an argument the algorithm attempts to include in
E, and the children of a search-tree node correspond to the
nodes in P . The running time of the algorithm is O(tnT )
where T is the size of the search tree and tn is the time for
processing a tree node; in our implementation, tn = O(n).

Invoking the algorithm with different inputs solves dif-
ferent extension problems: Stable Extension (E = ∅, F =
V,H = V ) and Admissible Set Containing a Particular Ar-
gument v ( E = {v}, F = V \ N(v), H = N−(v)). Line
(*) and line (**) in Algorithm 1 are where different branching
rules and heuristics are incorporated:
• BRmcha (most-constrained-hostile-argument branching

rule) Select P = N−F (h) such that |N−F (h)| is mini-
mized over all hostile arguments h ∈ H .
• BH0 (fixed-order-branching), BH1 (random-order

branching), BH2 (maximum-out-degree branching), and
• BH3 (most-effective-argument-first heuristics). Order

the arguments v in P by |N+
H (v)| − |N−F (v) \N+

F (v)|.
We note that modern complete SAT solvers, which are

highly competitive in solving CNF-encoded argumentation
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problems [Thimm et al., 2016], are also branch-and-reduce
style algorithms. However, we emphasize that the purpose
of our empirical studies is to address and explore questions
related to the probabilistic and algorithmic behaviour of the
model and their impact on the effectiveness of heuristics that
theoretical analysis is not sufficient to answer, rather than
simply demonstrating the superior of one solver over the oth-
ers. Observations and insights obtained in such studies shall
benefit the development of all solvers. Because of this, we
designed and implemented our own solver due to the follow-
ing considerations: (1) we want a complete control in our
experiments over the use of branching rules and heuristics;
and (2) many of these branching rules/heuristics are designed
using unique features of the extension-related problems and
thus might not be available in a typical SAT-solver-based (or
other backtracking-based) AF solvers.

While the algorithm can be customized to solve differ-
ent argumentation problems, in our empirical studies we fo-
cused on the most basic problem of deciding the existence
of admissible sets. Experiments were conducted on instances
generated from D(n, p, q) with different combinations of the
model parameters: n = 128, 256, 512, 1024, 2048, p =
0.181, 0.331, 0.64, 0.75, and q. The four values for p, with
the corresponding theoretical value of the threshold q∗ be-
ing 1

20 ,
1
10 ,

1
4 ,

1
3 , are chosen to represent both dense and rela-

tively sparse random graphs. The implementation is in Java
and experiments were run on desktop computers with an In-
tel dual-core processor. For each combination of the model
parameters, we used our solver to to solve 100 instances from
D(n, p, q). In the rest of this section, we report our experi-
ments and discuss our observations.

4.1 The Easy-Hard-Easy Pattern

In our experiments with all the parameter values p, we
observed clearly a sudden change of the fraction of yes-
instances (those that have an admissible set) out of 100
randomly-generated AFs from D(n, p, q) at the value of q
close to the theoretical threshold.

More importantly, the anticipated easy-hard-easy pattern
of hardness is obvious for all the parameter values. The result
for n = 1024 and p = 0.75 is presented in Figure 1, where the
fraction of yes-instances are plotted as a function of q. Also
plotted are the median and average of the size of the search
tree, showing that there is indeed an easy-hard-easy pattern
similar to those observed when using this class of algorithms
to solve other algorithmic problems such as SAT, constraint
satisfaction problems, and graph colouring.

We also observed that while yes-instances become increas-
ingly harder as q approaches the threshold of the phase tran-
sition, no-instances are consistently much harder, with those
that show up at the onset of the phase transition being the
hardest. This explains the large disparity between the median
and the average at q = 0.22 and 0.24; in these two cases,
there are more no-instances than yes-instances (and thus, the
median value is determined by the search tree size of some
no-instances), but there are still significant fraction of yes-
instances which result in a lower average search tree size.

Figure 1: Phase transitions and hardness pattern of D(n, p, q): n =
1024, p = 0.75.

4.2 Comparisons of D(n, p, q) and D̃(n, p̃)

We designed and performed two sets of experiments to com-
pare the hardness of randomly-generated instances from our
model D(n, p, q) and Vega’s model D̃(n, p̃),

To compare objectively the typical-case hardness of the
two models, several factors have to be taken into consider-
ation, including the number of attack relations, the number of
symmetric attack relations, and the size of a possible admis-
sible sets. To guarantee that instances from the two models
have the same average number of attack relations, we require
that p̃ = p(1 + q)/2. In fact, our analyses in Section 3 and
those in Vega [1990], can be used to show that the maximum
possible sizes of an admissible set are equal in the two mod-
els at the phase transition. Therefore, in our experiments, we
compare the hardness of random instances from the two mod-
els where p and q are in the area of the phase transition with
the corresponding p̃ = p(1 + q)/2.

In the first set of experiments, we compare the size of the
search tree of our solver applied to randomly-generated in-
stances from the two models with p = 0.75, q = 0.26, and
n = 128, 256, · · · , 2048. The selection of these parame-
ters to compare is based on a preliminary experiment with
q = 0.26 being the observed value where the phase transi-
tion starts for p = 0.75, and that it is only practically feasible
to perform the complete set of experiments for n up to 2048
when p is as large as 0.75.

The results are presented in Figure 2, where we plot the
median and the average of the search-tree size as a func-
tion of n to solve random AF instances from D(n, p, q) and
D̃(n, p̃), with p = 0.75, q = 0.26, and p̃ = 0.4725. As the
figure shows, the size of the search tree for instances from
D(n, p, q) increases at a much higher rate as n increases than
those from D̃(n, p̃). For n = 2048, while our implemen-
tation solved 100 instances from Vega’s model in a reason-
able amount of time (36 hours), instances fromD(n, p, q) are
much harder — the solver takes more than one week to com-
plete 100 instances at an average speed of about 90 minutes
per Yes-instance and more than 4 hours per No-instance.
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Figure 2: Comparison between our model D(n, p, q) and the Vega
model D̃(p̃): p = 0.75, q = 0.26, p̃ = p(1+q)

2
.

Figure 3: Comparison of our model D(n, p, q) and Vega model
D̃(p̃) with n = 256, different p̃ (the horizontal axis), and the cor-
responding values of p and q around the observed phase transitions.
The vertical axis is for the search tree size. Legends apply to all the
four plots.

In the second set of experiments, we compare the hardness
of the two models with different p̃ of Vega’s model. When p̃
is small (and thus, p must be small due to the equal-density
requirement), instances from both models with n = 512 are
out of reach of our solver on a standard desktop computer. We
therefore fixed n = 256 and managed to complete the exper-
iments in several days for representative values of p̃ that we
are interested in. As is shown in the four plots in Figure 3, the
average hardness of instances from the Vega model steadily
increases as p̃ decreases. On the other hand, the results shown
in the plots indicate that for any 0 < p̃ < 1, there are corre-
sponding sets of values of p and q such that D(n, p, q) and
D̃(n, p̃) have the same average number of attack relations,
but instances from D(n, p, q) are much harder to solve.

4.3 The Importance of Branching Heuristics
Our experiments indicate that the most-constrained-hostile-
argument-first branch rule BR is critical. More interestingly,
we observed that while the branching heuristic BH3 improves
the performance significantly when the branching rule BR is
not used, it is only notably helpful (when BR is used by the
solver) before the phase transition and up to the point where
hardness of a typical Yes-instance starts to increase dramat-
ically. Due to space limitation, we omit the details of this
set of experiments here, but plan to conduct in the future a
larger scale and comprehensive empirical study using the pro-
posed model on our solver and other start-of-the-art publicly-
available argumentation solvers.

5 Conclusions and Future Work
In an effort to answering the call by Dunne and
Wooldridge [2009] to study the average-case behaviour of ab-
stract argumentation and understand the implication of Vega’s
result that the Erdös-Renyi-style random model asymptoti-
cally almost always has a stable extension, we proposed the
random model D(n, p, q) which, to the best of my knowl-
edge, is the first non-trivial random model for the abstract ar-
gumentation framework with a proven threshold phenomenon
and an empirically-observed easy-hard-easy pattern at the
phase transition.

As an immediate future work, it is interesting to conduct a
systematic study, using the proposed random model on other
state-of-the-art solvers for AFs to gain further insight on the
pros and cons of different branching rules and heuristics used
in these systems. We emphasize that the main focus of such
studies will not be to “demonstrate” which solvers are better
than the others; instead, the objective would be to understand
the interplay between structural properties and the effective-
ness of the branching heuristics and rules, so that insights ob-
tained in such studies can benefit the community at large.

Unlike solution concepts well-studied in the phase-
transition literature such as those for SAT and colouring, the
existence of extensions in AFs is not monotone in terms of the
set of attacks: the property is not preserved by adding more
attack relationships. Our random model exploits the fact that
the property of having an extension is monotone in the set of
symmetric attacks, whereas the random model for answer-set
programs by Wen et al. [2016] depends heavily on the use
of self-contradiction rules and the model for value-based AFs
by Dunne and Atkinson [2014] makes use of a special acyclic
structures introduced by some transitive order on the set of
the values associate with the arguments. A nature question
is if there are other interesting features that can be used to
introduce different types of random AF models.

In the long term, another future direction of more theo-
retical flavor is to analyse the typical complexity of random
instances of our model, and to explore the possibility of es-
tablishing (exponential) lower bounds on the time complex-
ity of backtracking-style AF solvers, See, e.g., [Nordström,
2015], for an informal but up-to-date account of relevant re-
sults in proof complexity and the insights of these results may
provide for developing practical solvers for various inference
systems.
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