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Abstract
Real-time search algorithms are relevant to time-
sensitive decision-making domains such as video
games and robotics. In such settings, the agent is
required to decide on each action under a constant
time bound, regardless of the search space size. De-
spite recent progress, poor-quality solutions can be
produced mainly due to state re-visitation. Differ-
ent techniques have been developed to reduce such
a re-visitation, with state pruning showing promise.
In this paper, we propose a novel pruning approach
applicable to the wide class of real-time search al-
gorithms. Given a local search space of arbitrary
size, our technique aggressively prunes away all
states in its interior, possibly adding new edges to
maintain the connectivity of the search space fron-
tier. An experimental evaluation shows that our
pruning often improves the performance of a base
real-time search algorithm by over an order of mag-
nitude. This allows our implemented system to out-
perform state-of-the-art real-time search algorithms
used in the evaluation.

1 Introduction
Real-Time Heuristic Search (RTHS) [Korf, 1990] comprises
a family of algorithms for solving deterministic search prob-
lems in time-constrained scenarios, where agents must act
before a complete solution can be computed. It has applica-
tions in robotics and video games. To solve a search problem,
RTHS algorithms (e.g., LSS-LRTA* [Koenig and Sun, 2009])
interleave planning and plan execution. On each iteration,
most such algorithms build a bounded local-search space, se-
lect an action for execution and use learning mechanisms to
update their heuristic function h. The learning updates make
h more informed, eventually guaranteeing that the goal state
will be reached.

In practical applications, such as video-game pathfinding,
heuristic functions have local depressions and simple RTHS
algorithms revisit some of the states many times [Shimbo and
Ishida, 2003], resulting a phenomenon known as “scrubbing”.
This hampers the use of such algorithms in real-world appli-
cations [Bulitko et al., 2011]. While scrubbing is unavoid-
able in simple RTHS algorithms [Sturtevant and Bulitko,

2016], more complex techniques can mitigate or even elimi-
nate scrubbing. These include actively avoiding heuristic de-
pressions [Hernández and Baier, 2012], escaping depressions
faster by accelerating the heuristic growth rate [Rivera et al.,
2015; Bulitko and Sampley, 2016], and pruning states from
the search space [Sharon et al., 2013].

We present a new approach to mitigating scrubbing and
improving the resulting RTHS solution quality based on prun-
ing. Our technique, PALMA (Pruning with Arbitrary Looka-
heads and Macro Actions), is based on a simple idea: if in a
local search the search frontier (the Open list) is a connected
set of states, all states expanded in this search (the Closed
list) can safely be pruned from the search space. If the fron-
tier (Open list) is disconnected we still prune all states in
Closed from the search space, but add new edges to ensure
that states on the frontier remain reachable from each other.

A limited implementation of this idea was evaluated
by Sharon et al. [2013] who detected and pruned at most a
single expendable state per move. PALMA is more general
and can prune much larger sets of states expanded during the
search. In fact, by pruning all expanded states per move while
adding new edges to preserve goal reachability, PALMA guar-
antees reaching the goal even without heuristic learning. Fi-
nally, PALMA can operate on top of any local-search-space-
building RTHS algorithm. Similarly to macro-edges used in
previous route planning and pathfinding approaches, such as
contraction hierarchies [Geisberger et al., 2008] for example,
our new edges are shortcuts that allow avoiding intermediate
nodes during a search.

We implement PALMA on top of LSS-LRTA* [Koenig and
Sun, 2009] and call the resulting algorithm PALMA(LSS-
LRTA*). An empirical evaluation is performed on standard
pathfinding benchmarks [Sturtevant, 2012]. We observe sig-
nificant performance gains for a range of lookahead values.
For lower lookahead values, the improvements on top of LSS-
LRTA* can exceed one order of magnitude. Even with deeper
lookahead, the improvements remain significant. Overall,
PALMA(LSS-LRTA*) outperforms high-performance RTHS
algorithms used in our evaluation.

We formulate the real-time heuristic search problem in
Section 2 and review related work in Section 3. We then
discuss the idea of connectivity-preserving pruning in Sec-
tion 4 and propose our novel method of implementing it in
Section 5. This is followed by a theoretical analysis in Sec-
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tion 6 and an empirical evaluation in Section 7. A short dis-
cussion and future work directions conclude the paper.

2 Problem Formulation
We use a standard formulation of the real-time heuristic
search which we adopt from Bulitko [2016]. A search prob-
lem is a tuple (S,E, c, s0, sg, h), where S is a finite set of
states (also called nodes), and E ⊂ S × S is a finite set of
edges between them. S and E jointly define the search graph
G which we assume to be undirected (i.e., (s, s′) ∈ E iff
(s′, s) ∈ E). A cost function c assigns a positive finite cost to
each edge inE. Two states sa and sb are immediate neighbors
iff there is an edge between them: (sa, sb) ∈ E; we denote
the set of immediate neighbors of a state s byN(s). A path π
in graph G = (S,E) is a sequence of states (s0, s1, . . . , sn)
such that for all i ∈ {0, . . . , n − 1}, (si, si+1) ∈ E. If there
exists a path starting with s and ending with t we say that t
is reachable from s in G, denoted by s ;G t. Given a graph
(S,E) and a subset of nodes S′ in S, the graph induced by
S′ is G′ = (S′, E′), where E′ = {(u, v) ∈ E | u, v ∈ S′}.
We assume that the search graph (S,E) is connected (i.e., any
two vertices have a path between them) which makes it safely
explorable. We also assume that the search graph is stationary
(e.g., the edge weights do not change during search).

At all times t ∈ {0, 1, . . . } the agent occupies a single
state st ∈ S, called the current state. The state s0 is the
start state and is given as a part of the problem. The agent
can change its current state, that is, move to any immediately
neighboring state in N(s). The traversal incurs a travel cost
of c(st, st+1). The agent solves the search problem at the
earliest time it arrives at the goal state. The solution is a path
P = (s0, . . . , sg). The cumulative cost of all edges in a solu-
tion is called the solution cost. The cost of the shortest possi-
ble path between states sa, sb ∈ S is denoted by h∗(sa, sb).
We abbreviate h∗(s, sg) as h∗(s). The suboptimality of the
agent on a problem is the ratio of the solution cost the agent
incurred to the cost of the shortest possible solution. Lower
suboptimality values are preferred.

The agent has access to a heuristic h : S → [0,∞). The
initial heuristic is a part of the problem specification and is
meant to give the agent an estimate of the remaining cost to
go. The search agent can modify the heuristic at will. We say
that a search agent is real time iff the computation time be-
tween the agent’s moves is upper-bounded by a constant inde-
pendent of the number of states in the search space. A search
algorithm is correct if its computed solutions (paths to goal)
are valid, and complete if it outputs a solution to any search
problem as defined above. With our pruning approach we
aim to reduce the solution suboptimality and the total plan-
ning time while keeping the algorithm correct and complete.

For presentational clarity we introduce our pruning strat-
egy on top of a commonly used LRTA*-style real-time search
framework (Algorithm 1).

A search agent in this framework begins in the start state
s0. It then executes a fixed loop until it reaches the goal sg
(line 3). At each iteration∗ of the loop, the agent expands†

∗Search performed within an iteration is called a search episode.
†A state is expanded if its immediate neighbors are generated.

Algorithm 1: Real-time Heuristic Search Framework
input : search problem (S,E, c, s0, sg, h)
output: solution path (s0, s1, . . . , sg)

1 t← 0
2 ht ← h
3 while st 6= sg do
4 form local search space Closed ∪Open
5 set π to the shortest path connecting st and the most

promising state in Open
6 update heuristic values in Closed
7 move the agent through every state in path π
8 t← t+ 1

some states around its current state st (line 4). The expanded
states comprise the Closed list. All states generated but not
expanded constitute the Open list. Then the agent updates
heuristic values of states in Closed (line 6). Finally, it moves
from st to st+1, which is the most promising state in Open
(line 7). The cycle then repeats until the goal state is reached.
The goal state is never expanded. Thus, it can belong only to
the Open list and is never removed from it.

3 Related Work
Pruning approaches mitigate the scrubbing problem of real-
time heuristic search by permanently removing some states
from the search graph. The graph is then reduced in size,
decreasing the number of state revisits. The key questions
are: how to efficiently identify the states to prune, how to
preserve algorithm completeness and what impact on solution
suboptimality the pruning will have.

Pochter et al. [2011] used graph automorphism to detect
symmetries and reduce the search graph in planning. In real-
time heuristic search, Sturtevant et al. [2010] identified two
special types of states: dead-ends and redundant states. Infor-
mally, if a state is a dead-end then it cannot belong to an op-
timal path. Two or more states are redundant when only one
of them is needed to preserve solution optimality. To iden-
tify such states, their algorithm, RIBS, learned the optimal
g costs from the start state to a given state. Sturtevant and
Bulitko [2011] adopted the pruning technique of RIBS and
combined its g learning with the more traditional h learning.
This has led to a stronger pruning performance.

Pruning techniques in RIBS and f-LRTA* rely on learn-
ing g and thus are not applicable to LRTA*-style algorithms,
which learn h-values only. Sharon et al. [2013] introduced
the notion of a locally expendable state as a state whose im-
mediate neighbors are connected through themselves. Their
algorithm then pruned away the agent’s current state if it is
found to be expendable. Note that their pruning technique
was applied only to the local search space of a single state
(i.e., lookahead of 1) and, in grid pathfinding, could create
a checkerboard-like pattern of pruned states. Such a pattern

By definition, the lookahead value is the the number of states ex-
panded in one episode. With the lookahead of 1 only the current
state is expanded.
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would then preclude pruning other states as they become non-
expendable. Thus they pruned only the states whose heuristic
was updated by the agent which, in the usual grid pathfinding,
happens only around obstacles [Sturtevant, 2016].

Our pruning strategy is a generalization of their idea to ar-
bitrarily large local search spaces and their frontiers. Further-
more, when the frontier of the local search space is discon-
nected, we still prune away the local search space and restore
connectivity by adding new edges.

Contraction hierarchies (CHs) [Geisberger et al., 2008]
introduce shortcut edges that can prune away intermediate
nodes from a search. CHs have been used for optimal route
planning on road maps and, more recently, for pathfinding
on gridmaps [Sturtevant et al., 2015]. They are built in a
preprocessing step. In fact, using macro-edges in gridmap
pathfinding, as a way to avoid searching in a given area,
is a popular idea in the literature (e.g., [Botea et al., 2004;
Uras et al., 2013]). In contrast, our technique applies to real-
time search, and it performs search-space contractions online.

4 Bridged Pruning
The main idea of our approach is to prune the search space
of nodes that do not need to be considered as part of the
search space in subsequent episodes. Pruning is performed
after each search episode, right after the movement has con-
cluded (i.e., immediately after line 7 in Algorithm 1).

Definition 1 (Pruning). Given a graph G = (S,E) and a set
of states T ⊂ S, the result of pruning T from G is the graph
induced from G by S \ T , denoted by G−T .

Definition 2 (Frontier). Given a graph G = (S,E) and a set
of states T ⊂ S, the frontier of T , denoted by ∂GT (or simply
by ∂T if G is clear from the context), is the set {s | (t, s) ∈
E, t ∈ T, s 6∈ T}.

In undirected connected graphs, any set of nodes is con-
nected. This property, however, may not hold true as a result
of pruning states of T . Indeed, the frontier ∂T may become
disconnected (this can be observed in Figure 2, described
later, where ∂T are the gray dotted cells with three numbers
each). A property that guarantees that the goal is reachable af-
ter pruning is that the frontier of the pruned area, ∂T , remains
connected. Hence, we define the notion of bridged pruning,
which accounts for the fact that, after generating G−T , extra
edges can be added to G−T to connect (bridge) states in ∂T .

Definition 3 (Bridged Pruning). Given a graph G = (S,E)
and a set of states T ⊂ S, the graph G	T is the result of a
bridged pruning of T from G iff G	T is obtained from G−T
by adding zero or more new edges between states in ∂GT
such that ∂GT induces a connected subgraph of G	T .

Lemma 1 (Preserving Reachability). Let G	T be a bridged
pruning of T from a graphG. Furthermore let s and t be such
that s ;G t. If s and t have not been pruned (i.e., are not in
T ) then s;G	T

t.

Proof. Let π be a path inG from s to t (depicted as the shorter
trajectory in Figure 1). If π does not contain a state from
T then π is a path between s and t in G	T and therefore
s ;G	T

t. Otherwise, π is of the form π = (n1, . . . , nm),

s = n1

nm = t

@T

T

S

nj

ni

ni�1

nj+1

�
⇡

Figure 1: To the proof of Lemma 1.

Figure 2: PALMA illustrated on a 4-connected grid.

where n1 = s and nm = t. Since n1, nm 6∈ T there is a
non-empty subpath (ni, ni+1, . . . , nj) of states in T such that
ni−1 and nj+1 are both in ∂T . As ∂T is connected in G	T ,
there must be another path between ni−1 and nj+1 in G	T
(depicted as the dashed detour in the figure). Let σ denote
its states from the second to the second-to-last. Since σ lies
entirely in G	T , it has no states in T . Therefore the path
π′ = (n1, . . . , ni−1, σ, nj+1, . . . , nm) contains at least one
fewer state from T than π did. This process can be repeated
until the constructed path has no states from T at all.

The important implication of Lemma 1 is that bridged
pruning keeps the goal reachable from the agent’s current
state as long as neither the agent’s current state nor the goal
are pruned. We use this in the next section to show that our
bridged-pruning system preserves the search completeness.

5 The PALMA Pruning Method
Above we have discussed bridged pruning, which ensures
reachability of the goal state. We have not discussed yet how
a bridged pruning can be carried out in practice. In this sec-
tion we present PALMA, our implementation of bridged prun-
ing. While PALMA can be used in any undirected graph, we
will use grid pathfinding to illustrate it.

The four-connected grid in Figure 2 will serve as a run-
ning example to describe PALMA. Black cells are obstacles,
whereas all other cells form the traversable area. Cell D8 is
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Algorithm 2: PALMA

input : a set of states Closed, a search weighted graph
G = (S,E, c)

output: G	Closed

1 S′ ← S \ Closed
2 E′ ← E ∩ (S′ × S′)
3 Enew, cnew ← PALMACONNECT(∂Closed,G)
4 E′ ← E′ ∪ Enew

5 c′ ← c ∪ cnew

6 return G′ = (S′, E′, c′)

the goal. D4 is the agent location at the beginning of the iter-
ation. The figure shows a local search space formed in line 4
of Algorithm 1. In this example we used an A*-shaped local
search. Dotted cells comprise theOpen list. They are labeled
with h, g and f = g+h (clockwise from the bottom left). Di-
agonally striped cells form the Closed list. After the search,
the agent follows a path to a lowest f -value state in theOpen.
In our example, all states in the Open have f = 10 so any of
them can be the state to go to, depending on the tie-breaking
schema employed.

After line 7 of Algorithm 1, we invoke our bridged prun-
ing procedure PALMA. Algorithm 2 gives an overview of
PALMA. Its input is the current search graph and the Closed
list which contains a set of states expanded in the current
search episode. In the first two lines, G−Closed is computed.
Then additional edgesEnew are computed by calling PALMA-
CONNECT in line 3. That function returns weighted edges
that reconnect the frontier ∂Closed if ∂Closed becomes dis-
connected and returns an empty set otherwise. The function
PALMA then returnsG	Closed, the result of the bridged prun-
ing of Closed from G (line 6). The current search graph is
replaced with the graph returned by PALMA.

We will now walk through PALMACONNECT, presented
as Algorithm 3. PALMACONNECT adds new edges to make
sure that the frontier is connected. Specifically, in line 5 we
check whether the graph GB , the graph induced by ∂Closed
(line 3), is connected. If so there is no need to add any new
edges because there already exists a path between any two
states of ∂Closed that visits only states in ∂Closed. If GB

is not connected, however, we compute an edge between two
states that lie in two different disconnected components of
GB in line 9. The cost assigned to an action connecting two
states u and v is the cost of a shortest path between u and v
in the search graph before pruning away the states in Closed
at the current episode (lines 10 and 11).

Algorithm 3 specifies neither how to select states in the
connected components in line 8 nor how to compute the cost
of new edges in line 10. In this paper we used the follow-
ing implementation. For each of the r connected components
Gi; i ∈ {1, . . . , r} we select the state si = argmin{g(s)|s ∈
Gi}. To compute the costs of the new edges (si, sj); i, j ∈
{1, . . . , r}, we run r − 1 Dijkstra searches starting them in
s1, s2, . . . , sr−1 respectively. A Dijkstra search is restricted
to GL, is started in si and is stopped as soon as optimal costs
from si to all states sj , j > i are computed. This process en-
sures that a path will be discovered for every pair of selected

Algorithm 3: PALMACONNECT

input : a set of states, Closed, a weighted graph G
output: a set of new weighted edges between states in Closed

1 Enew ← ∅
2 cnew ← ∅
3 GB ← subgraph of G induced by ∂Closed
4 GL ← subgraph of G induced by Closed ∪ ∂Closed
5 if GB is not connected then
6 {G1, . . . , Gr} ← connected components of GB

7 for each pair (i, j) such that 1 ≤ i < j ≤ r do
8 select a state si in Gi and a state sj in Gj

9 Enew ← Enew ∪ {(si, sj), (sj , si)}
10 c′ ← cost of a shortest path between si and sj in GL

11 cnew ← cnew ∪ {((si, sj), c′), ((sj , si), c′)}

12 return Enew, cnew

states while bounding the search effort.‡
To illustrate the process of adding new edges, we revisit

the example in Figure 2. Recall that the dotted cells with
three numbers each compose the Open list. The Open
list has three connected components: {D1}, {B3} and
{A4, A5, A6}. Two of the three connected components have
one state each ({D1} and {B3}). For the three-state com-
ponent {A4, A5, A6} the state selected for connection is A4.
We then compute shortest paths betweenD1 andB3; B3 and
A4; and D1 and A4. For each such path we add a single new
weighted edge (e.g., (D1, B3) will have a cost of 4). New
edges are shown as bi-directional arrows in the figure. All
diagonally striped states (the Closed list) are then pruned out
from the search graph G.

Note that the modifications to the search graph made by
bridged pruning exist solely in the agent’s representation of
the world. The actual graph traversed by the agent remains
unchanged throughout the search. So when PALMA prunes a
state, it simply marks it as such in the agent’s representation
of the world. When PALMA adds a new edge, it actually re-
members a sequence of states in the original graph the agent
would have to travel in the world to traverse the new edge. In
our running example, traversing the new edge between states
B3 and D1 would make the agent visit the states C3, D3,
and D2, marked as “pruned” from the search graph.

6 Theoretical Analysis
We will now discuss the completeness of RTHS algorithms
equipped with PALMA. Let PALMA(A) be an application of
PALMA to a real-time heuristic algorithm A which itself con-
forms to the framework presented in Algorithm 1.
Lemma 2. PALMA(A) runs at most n− 1 search episodes.

Proof. After each search episode, at least one state is pruned
from the search graph by PALMA. Unless the goal is reached
earlier, after n − 2 episodes the remaining search graph will
contain at most 2 states. Thus, the goal state will be generated

‡We evaluated two other ways of selecting a representative state
si from each connected component Gi: (i) minimizing f(si) instead
of g(si) and (ii) minimizing c′(si, sj) across all i, j. Both proved
inferior in the experiments we ran.
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Figure 3: Solution cost versus average runtime per search episode. Note the logarithmic scale on the vertical axis.

within the next search episode which will lead to the agent’s
reaching the goal on the next episode.

In real-time heuristic search, heuristic updates are often
used to ensure completeness. Without such updates, algo-
rithms such as LRTA* can degenerate to simple hill-climbing
and get forever stuck in a local heuristic depression. Remark-
ably, the bridged pruning implemented in PALMA guarantees
completeness on its own, without any heuristic learning.

Lemma 3. When using PALMA(A), the goal is always reach-
able from the agent’s current state.

Proof. The agent’s current state is never pruned as the agent
moves to Open before pruning the Closed list. The goal is
never pruned as it can never be in Closed. It follows from
Lemma 1 that the goal is reachable from every state in the
bridge-pruned search space, including the agent’s state.

Theorem 1. For any RTHS algorithm A that fits the frame-
work in Algorithm 1, PALMA(A) is correct (i.e., terminates
only at the goal state) and complete (i.e., reaches the goal
state) regardless of any learning (or lack thereof) of the
heuristic function.

Proof. After each search episode, the goal remains reachable
from the agent’s position, according to Lemma 3 and there-
fore PALMA(A) terminates only when A terminates. A ter-
minates only upon reaching the goal (line 3 in Algorithm 1).
Thus PALMA(A) is correct. PALMA(A) is complete as it ter-
minates after at most n−1 search episodes by Lemma 2.

For simplicity, our analysis focused on solvable problems.
With minor modifications to Algorithm 3, on a finite graph
PALMA(A) can detect that no solution exists (i.e., the goal
is not reachable from the agent’s initial state). We omit the
proof due to space limitations. Being able to detect that a
solution does not exist is a benefit PALMA brings to LRTA*-
style algorithms that cannot do so by themselves.

7 Empirical Evaluation
PALMA is applicable to any real-time search algorithm that
conforms to Algorithm 1. For our evaluation, we chose to ap-
ply it on top of LSS-LRTA* [Koenig and Sun, 2009], which
is a high-performance commonly used real-time search algo-
rithm generalizing the classic LRTA* algorithm [Korf, 1990].
To assess the resulting algorithm performance relative to the
state of the art we compare it to wLSS-LRTA* [Hernández

and Baier, 2012] and EDA* [Sharon et al., 2014]. The former
is a representative of the depression-avoiding family of algo-
rithms while the latter is an IDA*-inspired algorithm that does
not fit into the framework of Algorithm 1 but was shown to
have good performance with respect to depression-avoiding
algorithms [Sharon et al., 2014]. For both algorithms we use
the best parameters as reported in the original publications
(w = 8 for wLSS-LRTA* and C = 8 for EDA*).

We implemented all algorithms in C over a common code
base. For LSS-LRTA* and its variants, we use a binary heap
for Open in which ties are broken in favor of larger g-values.

We took maps from the commonly used MovingAI
pathfinding repository [Sturtevant, 2012]. We used all five
1024×1024 StarCraft maps, 30 maze maps of size 512×512
(corridor widths of 4, 8, 16), all 512×512 maps World of War-
craft III (WC3) and all room maps of size 512×512. Finally,
as a fifth benchmark, we consider the same maze maps, but
with 1% of their obstacles removed. For each map we gener-
ated 100 random solvable problems. Each map is modeled as
an undirected eight-connected grid, with costs set to 1 for car-
dinal moves and

√
2 for diagonal moves. The octile distance

is used as a heuristic. Experiments are run on a 2.60GHz Intel
Core i7 machine under Linux, as a single-threaded process.

By varying the lookahead value (i.e., number of expanded
states per episode) LSS (1, 10, 100 and 200) we can trade so-
lution quality with the time per search episode as shown in
Figure 3. When the time spent per each search is relatively
uniform between episodes, as is the case with all of these
algorithms, these plots provide a fair comparison between
algorithms. They show PALMA(LSS-LRTA*) is the best-
performing algorithm in four out of five benchmarks. In the
remaining domain (mazes), for all but the smallest lookahead
value, EDA* computes shorter solutions in a shorter time.

Table 1 shows the average solution cost, the average per-
problem runtime, and the average number of search episodes.
Best performance per lookahead value is shown in bold.
Given a combination c of a lookahead value and a map type
(i.e., a block in the table), we say that that algorithm domi-
nates the others for combination c if it has both the lowest so-
lution cost and the lowest runtime. PALMA(LSS-LRTA*) is
the dominant algorithm in 15 out of 20 combinations (blocks
in the table). EDA* dominates in three out of 20 combina-
tions, all corresponding to mazes. In two out of the 20 com-
binations no algorithm is dominant yet PALMA(LSS-LRTA*)
has the shortest solution in one of these two combinations.

Comparing PALMA(LSS-LRTA*) to its base algorithm
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Table 1: Empirical results showing the influence of lookahead value (LSS) on average solution cost (Cost), average per-problem running time
in milliseconds (Time) and average per-problem number of search episodes (Epis).

Room Maps WC3 Maps SC Maps Mazes Mazes - 1% obst.

LSS Cost Time Epis. Cost Time Epis. Cost Time Epis. Cost Time Epis. Cost Time Epis.
LSS-LRTA* 1 68,478 31.25 63,574 26,624 12.50 24,723 246,763 116.98 229,262 4,774,362 2,103.83 4,470,766 139,137 63.17 128,661

EDA*(8) 1 39,330 4.55 35,905 13,212 1.52 11,725 96,103 11.47 85,986 273,001 33.22 257,987 107,600 15.38 99,268
wLSS-LRTA(8) 1 5,843 3.03 5,386 1,995 1.10 1,808 23,262 12.09 20,598 1,049,026 466.29 891,429 32,154 16.36 28,494

PALMA 1 4,113 2.66 3,142 1,299 0.92 973 14,048 8.34 9,292 168,440 70.73 86,666 19,488 11.08 13,104

LSS-LRTA* 10 12,432 18.90 5,439 5,459 8.32 2,352 46,477 72.02 20,468 846,310 1,211.58 365,178 26,496 38.72 11,169
EDA*(8) 10 5,728 2.86 3,591 1,960 0.97 1,173 13,302 7.44 8,599 33,925 22.46 25,799 16,330 10.66 9,927

wLSS-LRTA(8) 10 2,565 2.99 571 974 1.12 207 6,632 7.74 1,447 204,548 187.95 42,401 9,883 10.93 2,200
PALMA 10 1,936 2.02 424 678 0.68 135 4,882 4.85 1,034 66,810 40.93 9,339 9,775 8.56 1,848

LSS-LRTA* 100 2,251 7.66 279 1,064 3.52 125 7,624 26.90 989 122,731 375.08 14,903 4,662 14.17 520
EDA*(8) 100 2,424 2.63 360 822 0.89 118 5,224 6.85 860 14,351 19.84 2,580 9,041 9.59 993

wLSS-LRTA(8) 100 1,174 3.35 75 466 1.21 26 2,939 8.75 191 76,335 174.37 4,769 4,687 11.66 290
PALMA 100 987 2.34 58 405 0.71 20 2,853 5.82 173 23,273 30.52 870 3,223 6.37 153

LSS-LRTA* 200 1,427 6.52 114 667 2.78 49 4,816 23.10 415 68,297 277.87 5,356 2,865 10.64 201
EDA*(8) 200 2,351 3.25 188 812 1.09 63 4,881 7.73 448 14,110 24.43 1,316 8,860 9.19 497

wLSS-LRTA(8) 200 989 4.04 44 411 1.47 16 2,214 9.05 99 60,897 188.86 2,564 3,959 12.35 164
PALMA 200 816 2.96 32 365 0.79 12 2,522 6.43 98 17,210 29.58 408 2,375 6.92 75

Table 2: Lookahead depth (LSS), the average number of connected
components in the Open list (r) as well as the average and maxi-
mum numbers of state successors. Each number is an average over
100 instances.

LSS r Avg # Succ Max # Succ

1 1.41 4.9 8.3
Room 10 1.67 5.9 8.3
maps 100 3.21 6.9 9.7

200 4.45 7.1 11.4

1 1.19 5.8 8.1
WC3 10 1.16 6.6 8.1
maps 100 1.04 7.3 8.1

200 1.07 7.4 8.1

1 1.36 5.1 8.9
SC 10 1.40 6.1 8.5

maps 100 1.57 7.1 8.5
200 1.76 7.3 8.7

1 1.57 4.3 9.6
Maze 10 1.71 5.5 10.2
maps 100 2.23 6.7 9.4

200 2.62 6.8 9.9

1 1.51 4.5 8.7
Maze-1% 10 1.66 5.6 9.2

maps 100 2.51 6.7 9.7
200 3.22 6.9 10.5

LSS-LRTA*, Table 1 shows that PALMA(LSS-LRTA*) domi-
nates LSS-LRTA* in all 20 combinations. PALMA’s improve-
ments can reach a factor of 20 in terms of both solution cost
and runtime. Overall PALMA(LSS-LRTA*) shows significant
performance improvements over state-of-the-art algorithms
used in our evaluation. PALMA(LSS-LRTA*) consistently re-
quires the smallest number of search episodes.

PALMA dynamically removes and adds edges to the search
graph, varying the number of successors that a node can have
and therefore its expansion time. Furthermore, the time effort
required to add new edges depends on the size of the Open
list (to check if the list is connected) and the number r of
connected components of the Open list (as we run r − 1 Di-

jkstra searches to add edges between connected components).
Table 2 shows summary statistics relevant to these computa-
tions. First it shows the average number of connected com-
ponents (r) which turns out to be small, ranging from 1.04 to
4.45. In 13 out of the 20 combinations, the average r is below
2 implying that often the Open list is already connected and
no Dijkstra searches are needed at all.

As PALMA adds new edges, we inspected the branching
factor of the pruned graph (i.e., the number of successors for a
state). Table 2 reports the average and the maximum number
of state successors. Without new edges, an eight-connected
grid map has at most 8 successors for any state. PALMA does
not increase it substantially, with the maximum values rang-
ing from 8.1 to 11.4. In 11 out of the 20 combinations, the
maximum number of successors does not exceed 9.

8 Conclusion
Real-time heuristic search algorithms often produce low-
quality solutions due to state re-visitation. Pruning states
from the graph has shown promise in previous work but was
limited to the basic case of removing the current state.

We presented a principled approach to pruning arbitrar-
ily large sets of states while preserving the underlying algo-
rithm’s correctness and completeness. Our pruning can be
implemented on top of most real-time search algorithms. Its
aggressive pruning guarantees completeness on its own, with-
out relying on heuristic learning. An empirical evaluation
against state-of-the-art algorithms shows significant benefits.

Future work will investigate how pruning from a problem
instance can be re-used in solving another problem instance.
We also plan to perform an evaluation on scenarios with par-
tial terrain knowledge.
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