Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

A Reduction based Method for Coloring Very Large Graphs

Jinkun Lin'2, Shaowei Cai®**, Chuan Luo*? and Kaile Su®°
1School of Electronics Engineering and Computer Science, Peking University, Beijing China
2College of Information Science and Technology, Jinan University, China
3State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
*Institute of Computing Technology, Chinese Academy of Sciences, China
°Institute for Integrated and Intelligent Systems, Griffith University, Australia
Jkunlin@ gmail.com; shaoweicai.cs @ gmail.com; chuanluosaber @ gmail.com; k.su@ griffith.edu.au;

Abstract

The graph coloring problem (GCP) is one of the
most studied NP hard problems and has numerous
applications. Despite the practical importance of
GCP, there are limited works in solving GCP for
very large graphs. This paper explores techniques
for solving GCP on very large real world graphs.
We first propose a reduction rule for GCP, which
is based on a novel concept called degree bounded
independent set. The rule is iteratively executed by
interleaving between lower bound computation and
graph reduction. Based on this rule, we develop a
novel method called FastColor, which also exploits
fast clique and coloring heuristics. We carry out
experiments to compare our method FastColor
with two best algorithms for coloring large graphs
we could find. Experiments on a broad range of
real world large graphs show the superiority of
our method. Additionally, our method maintains
both upper bound and lower bound on the optimal
solution, and thus it proves an optimal solution
when the upper bound meets the lower bound. In
our experiments, it proves the optimal solution for
97 out of 144 instances.

1 Introduction

The graph coloring problem (GCP), also known as vertex
coloring problem, requires to find an assignment of colors
to vertices of a graph such that no two adjacent vertices
share the same color while minimizing the number of
colors. GCP is a fundamental combinatorial optimization
problem and is NP-hard [Garey and Johnson, 1979], even
to approximate within n'~=¢ [Zuckerman, 2007]. It has
been extensively studied not only for its theoretical aspects
and for its difficulty, but also for its applications in many
fields, including scheduling [Leighton, 1979], timetabling
[de Werra, 1985], register allocation [Chow and Hennessy,
1990], and more recently to human subjects [Kearns et al.,
20061, among many others.

Recent advances in information technology, as well as the
rapid growth of the Internet, have resulted in very large scale

*Corresponding author

517

data sets. Many data sets can be modeled as graphs, and
the study of massive real world graphs, also called complex
networks, grew enormously in last decade. Many real world
graphs of interest are very large (e.g., with tens of millions of
vertices), and sparse, and the vertex degrees usually follow a
power-law distribution [Newman, 2003]. Nevertheless, GCP
remains hard to approximate when restricted to power-law
graphs, unless NP = Z PP [Shen et al., 2012].

Despite its practical importance, there is limited research
on solving GCP in massive graphs. Most literature devoted
to solving it focuses on small graphs with up to thousands of
vertices [Brélaz, 1979] [Campélo et al., 2008] [Hansen et al.,
2009] [Malaguti et al., 2011] [Gualandi and Malucelli, 2012]
[Hao and Wu, 2012].

Many existing algorithms for GCP become futile on
massive graphs, due to their high space complexity and time
complexity. For example, most GCP algorithms heavily rely
on an adjacency matrix representation of the graph. Graphs
with millions of vertices can not fit into a computer’s working
memory using this representation. Also, most commonly
used strategies do not have sufficiently low time complexity,
which severely limits their ability to handle massive graphs.

There has not been research on solving GCP in massive
graphs until recent years. Rossi et al. proposed a method
for coloring complex networks, which leverages triangles,
triangle-cores and other properties and their combinations
[Rossi and Ahmed, 2014]. Verma et al. exploited the k-core
concept [Seidman, 1983] and developed an algorithm for
GCP by successively coloring k-cores with decreasing k
values [Verma et al., 2015]. Peng et al. proposed a vertex-cut
based method which partitions a graph into connected
components and color them respectively. [Peng et al., 2016].

In this work, we propose a novel method for solving
GCP on massive sparse graphs. The method is based on
a key concept called degree bounded independent set. An
important observation is that we can reduce the graph by
removing an /-degree bounded independent set (¢ is the lower
bound of the chromatic number) while preserving optimal
solutions. That is, any optimal solution to the remained graph
can be extended to an optimal solution to the original graph
by coloring the removed vertices iteratively. To improve the
efficiency, we propose a heuristic algorithm for finding a
high-quality clique, which serves as a lower bound; also, for
improving the upper bound, we propose a heuristic algorithm

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

to color the whole graph after each round of reduction. We
implement our method and it is named FastColor.

We carry out extensive experiments to evaluate the perfor-
mance of FastColor on massive graphs, including real world
graphs from various application fields. Experimental results
show that, the solutions obtained by our method in quite short
time limit (i.e., one minute) are nearly optimal and provably
optimal for most instances. Particularly, for 97 out of 144
tested graphs, FastColor finds and proves an optimal solution
in one minute. When compared with state of the art algo-
rithms for GCP in massive graphs, FastColor also shows its
superiority by finding better solutions, using much less time.

In the next section, we introduce some background knowl-
edge. Then, we introduce a reduction rule for GCP based
on degree bounded independent set in Section 3. After that,
we describe the top-level algorithm of our method in Section
4, and its important components in Section 5. Experimental
evaluations are presented in Section 6.

2 Preliminaries

Let G=(V,E) be an undirected graph where V={v1, vo, ...,
vy, } is the set of vertices and F is the set of edges. Each edge
is a 2-element subset of V. For a vertex v, its neighborhood is
N@w)={u € V|{u,v} € E}, and its degree is d(v) = |N(v)|.
An edge e is called an incident edge of a vertex v iff v €
e. For a subset V' C V, we let G[V’] denote the subgraph
induced by V’, which is formed from V'’ and all of the edges
connecting pairs of vertices in V’. Also, for a vertex v € V',
we define dgy/(v) = [N(v) N V']

For a graph, a proper coloring is an assignment « of colors
to all vertices of the graph such that no two adjacent vertices
share the same color, and we say such a coloring colors the
graph properly. We use color(a) to denote the set of colors
used in a coloring «, and thus the number of colors used is
|color(c)|. The chromatic number of G, denoted as x(G), is
the smallest number of colors needed to color G properly. For
a vertex v under «, the color assigned to it is colorV alue(v).

Given a graph G, a clique C is a set of pairwise adjacent
vertices, while an independent set [is a set of pairwise non-
adjacent vertices. A clique or independent set is maximal if
it is not included in a larger clique or independent set. The
clique number of a graph G, denoted as w(G), is the number
of vertices in the largest clique. We have x(G) > w(G).

3 A Reduction Rule for Coloring

In this section, we introduce a reduction technique for GCP.
Generally speaking, for a graph G, the idea is to decompose
the graph into two parts, with the help of a lower bound on
the chromatic number x(G). For convenience, let us call one
of them kernel while the other margin. We then reduce the
graph by removing the margin, and seek for a proper coloring
for the kernel.! Our reduction rule grantees that, any optimal
solution for the kernel can be extended into an optimal solu-
tion for the original graph by coloring the removed margin
iteratively. The power of our method also relies on the fact

!The removed vertices and incident edges are stored in some data
structure, so that they can be colored after the kernel is colored.

518

that, the reduction can be executed iteratively (i.e., a kernel
can be taken as a new graph and be reduced again), while
preserving the optimal solutions.

3.1 Reduction based on BIS

The proposed reduction rule for GCP is based on a concept
called degree bounded independent set, which is formally de-
fined as follows.

Definition 1 Givena graph G = (V, E), a k-degree bounded
independent set is an independent set I s.t. Yv € I, d(v) < k.

With the above definition, we propose a reduction rule de-
noted as BIS-Rule, where BIS stands for Bounded Indepen-
dent Set. Additionally, we prove an important property about
the rule.

BIS-Rule: Given a graph G = (V, E) and a lower bound
on x(G), denoted as L, find an {-degree bounded independent
set I, and remove all vertices in I and their incident edges
from G.

Note that the rule depends on a parameter ¢, which is a
lower bound on x(G).

Proposition 1 Given a graph G = (V,
bounded independent set I in it, and x(

1) if x(GIV\I]) < ¥, then x(G) = L.
2) if x(GIV \1]) = ¢, then x(G) = x(G[V \ 1]).

Proof: Let us denote G’ = G[V \ I]. Since I is an indepen-
dent set, Vv € I, N(v) C V(G").

1) The case x(G') < £. For any vertex v € I, suppose
under an optimal coloring to G’, vertices in N (v) are assigned
with colors ¢y, ¢a...., ¢4(,), Where each ¢; € {1,2,..., x(G")}
and the values of c¢; are not necessarily different to each
other. Let Cy(,) denote the set of colors assigned to N(v).
As x(G') + 1 ¢ Cn(v), we can assign color x(G’') + 1 to
vertex v without causing any conflict. Similarly, all other
vertices in the independent set I can be assigned with color
X(G") + 1. In this way, we obtain a proper coloring for graph
G, using x(G’) + 1 colors. Thus, we have

X(G) <x(G)+1<l+1.

On the other hand, x(G) > ¢. Put them together, we have
X(G) = £, and the coloring for G constructed in this way is
optimal.

2) The case x(G') > (. For any vertex v € I, suppose
under an optimal coloring to G, C'y) is the set of colors as-
Signed to N(U) (a) CN('U) c {1a 2,) X(G/)} and |CN(1))‘ <
d(v). (b) As I is ¢-bounded, Yv € I, d(v) < £. (c) The
assumption states x(G’) > £. Put (a), (b), (c) together, we
have

) and an (-degree

E
)ZE)

ICn (| < d(v) << x(G).

So, there exists a color ¢ € {1,2,...,x(G")} st. ¢ ¢
CN (v). We can assign this color ¢’ to vertex v without causing
any conflict. Similarly, all other vertices in I can be assigned
with a colorin {1, 2, ..., x(G") } safely. In this way, we obtain
a proper coloring for G, using x(G’) colors. Thus, we have
X(G) < x(G"). On the other hand, since G’ is a subgraph
of G, x(G) > x(G'). Therefore, x(G) = x(G’), and the
coloring for GG constructed in this way is optimal. |

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Proposition 1 shows that the BIS-Rule is sound, that is,
we can always construct an optimal coloring for the origi-
nal graph G from an optimal coloring for a graph G’ which
is reduced from G by the BIS-Rule. In our proof, we also
show the construction method, which is very simple. When
the found coloring for G’ is not proved to be optimal, this
construction method obtains a heuristic coloring for G.

We would like to note that, our reduction technique is es-
sentially different from the previous ‘Independent Set Extrac-
tion’ method [Wu and Hao, 2012], which preprocesses the
graph by iteratively removing an independent set and assign-
ing a color to it. The ‘Independent Set Extraction’ method
does not grantee to reserve the optimal solution after extract-
ing an independent set. Indeed, for large graphs, many largest
(extracted) independent sets are not part of an optimal color-
ing [Galinier et al., 2013]. In this case, removing these inde-
pendent sets will prevent inevitably the subsequent coloring
algorithm from reaching an optimal coloring.

3.2 On Lower Bound Used in Reduction

As we have shown, the BIS-Rule exploits a lower bound on
the chromatic number . Thus, before each round of reduction,
we need to calculate a lower bound for the remained graph.
It is important to note that, any lower bound for any sub-
graph of G is a lower bound on x(G) for the original input
graph G. This is formally expressed in the following lemma.

Lemma 1 Given a graph G = (V| E), for any subgraph
G' = (V',E") of G, thatis, V' C V or E' C FE (or both),
then x(G) > x(G").

The proof is trivial by contradiction. If there is a proper
coloring, say «, with less than x(G’) colors for G, the pro-
jection on V' of « is also a proper coloring of G'. O

In our method, we find a lower bound of the chromatic
number via finding a clique, as the clique number is a lower
bound of the chromatic number. Although simple, clique-
based lower bound is particularly effective in our reduction-
based method. To see this, suppose the best found clique be-
fore some round of reduction is of size k, then the vertices
removed by BIS-Rule are all of degree less than k. Therefore,
any clique with size larger than £ is reserved in the graph,
while at the same time, the graph is reduced to a smaller size,
which makes finding a larger clique more easily. Hence, as
the algorithm processes, we can expect to find larger cliques,
so that the lower bound on x(G) is likely refined.

4 The Main Algorithm: FastColor

In this section, we introduce the top-level algorithm of our
method named FastColor. Before going to detailed descrip-
tions of the algorithm, we first introduce some notation.

G is the original graph, while G, is the working graph
which is reduced from G and becomes smaller during
the algorithm. G, collects all the vertices that have
been removed from G, and removed edges are also stored
accordingly (although not reflected in pseudo code). Notation
lby, denotes the lower bound on x(Gy), while {b* and ub*
denote the best found lower bound and upper bound on x (G)
respectively, and o* denotes the best coloring found so far.

519

Algorithm 1: FastColor (G)

Input: a graph G = (V, E)

Output: A coloring assignment of G
Gk = G;

b* :=0,ub” :=|V|],a" =0;

lby, := 0, isColored = false;
while elapsed time < cutoff do

by := FindClq(G, lby);

if Iby, > 1b* then (" := [by;

I := find a maximal [bs-degree bounded independent set;
G}, :=remove [from G}, according to BIS-Rule;
Gm i =GnUI;
if I # () then
L by := 0, isColored := false

Y R N S

<

10
11

a := ColorKernel(Gy,isColored);

a™ := a proper coloring for G extended from « by
coloring vertices in G, ;

isColored := true;

if |color(a™)| < ub* then

o = at, ub* := |color(a

13

14

15
)

1| if ub® := [b* then return o*;

18 return o™;

In the beginning, the working graph G}, is initialized as G}
Ib*, ub* and o™ are also initialized. After the initialization,
a loop (lines 4-17) is executed until an optimal solution is
proved (line 17) or a given time limit is reached. FastColor
returns the best found coloring a* for G upon reaching the
termination condition (line 18).

Each iteration of the loop can be seen as three phases:

Lower bound computation (lines 5-6): The lower bound
by, is computed by finding a clique in G. Since by can also
serve as a lower bound on x(G), if lby, is smaller (thus tighter)
than [b*, [b* is updated accordingly.

Graph reduction (lines 7-9): To reduce the graph, we first
find a maximal [b-degree bounded independent set. This is
accomplished by traversing G sequentially and adding the
vertex if its degree is less than /by, and it is not adjacent to any
vertex already in the independent set. Then, G, is reduced
by removing I, according to the BIS-Rule. Along with this
reduction, removed vertices (and the removed incident edges)
are stored into (G,,,. Note that sometimes the BIS-Rule cannot
remove any vertex, and in this case, G, is unchanged.

Graph coloring (lines 12-16): after the reduction, the orig-
inal graph G is colored in two steps. First, the working graph
G|, is colored by a coloring algorithm named Color Kernel.
Then, the obtained coloring « for Gy, is extended to a coloring
a™ for G by coloring G,,. This is accomplished iteratively,
i.e., in each iteration the most recently removed uncolored
independent set is colored, using a construction method as
shown in the proof of Proposition 1. Finally, if the number of
colors in o™ is less than ub*, then ub* is updated accordingly.

Additionally, if ub* meets [b*, then a proved optimal col-
oring is found and returned (line 17).

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5 Important Functions

In this section, we introduce two important functions (indeed
sub-algorithms) in FastColor, one for finding clique before
each round of reduction, while the other for coloring the re-
mained graph after each round of reduction.

5.1 The FindClq Algorithm

We employ a construct-and-cut heuristic method [Cai and
Lin, 2016] to find a high-quality clique from the remained
graph. This algorithm, named FindClq (Algorithm 2), can
be viewed as a series of clique samples from the graph.

We use C' to denote the current clique under construction,
and StartSet is the set containing vertices candidate as a
starting vertex to construct a clique. CandSet = {v|v €
N(u) for Yu € C} consists of candidate vertices eligible to
extend the current clique.

Algorithm 2: FindClq (G, [b)

Input: A graph G = (V, E), lower bound of clique size b
Output: The size of best found clique
1 lbold = lb;
2 StartSet := a set of random vertices from V' ;
3 while StartSet # () do
4 w := pop a random vertex from StartSet;
C = {u};
CandSet := N(u);
while CandSet # () do
v := a vertex with greatest | N (v) N CandSet| value
among t samples from CandSet;
if |C| 4+ 1+ |N(v) N CandSet| < Ib then Break;
C:=CU{v};
CandSet := CandSet \ {v};
CandSet := CandSet N N (v);

| if|C| > Ibthen Ib:= |C|;

if [boiq = [then adjust BMS parameter ¢;
return [b;

® 9 w»n

9
10
11
12

13

14
15

The F'indClq algorithm employs the BMS heuristic [Cai,
2015] in choosing the vertex to be added to the current
clique. BMS heuristic returns the best element w.r.t. some
comparison function among ¢ samples (with replacement)
from a given set. Since different ¢ values correspond to
different levels of greediness, we try several ¢t values in
[1,tmas), where t,,4, is a parameter that needs to be
specified, and is set to 64 in our experiments. We use a
formula ¢ := 2t to get the next ¢ value when FindClq fails
to find a larger clique after trying each vertex from StartSet
as the starting vertex (line 14). Also, when ¢ exceeds ¢,,4, it
is reset to 1.

First, the algorithm chooses some random vertices from V'
to initialize the StartSet (line 2). In our algorithm, the size

of StartSet is set to %. Then, the algorithm executes a loop
until StartSet becomes empty (lines 3-13), each iteration of
which constructs a clique from a random vertex u popped
from StartSet (line 5). Along with adding the starting vertex
u, CandSet is initialized as N (u) (line 6). Then, the clique

is extended by iteratively adding a vertex v with the greatest

520

value of | N (v)NCandSet| among t samples from CandSet,
until CandSet becomes empty (lines 7-12).

Also, we use a cost-effective upper bound to prune the pro-
cedure (lines 9). Obviously, |C| + 1 4+ |N(v) N CandSet|
is an upper bound on size of any clique extended from C by
adding v and more vertices.

At the end of a clique construction procedure, the lower
bound of clique size [b is updated accordingly (line 13). Fi-
nally, when FindClq terminates, it returns (b (line 14), which
is used as a lower bound on the chromatic number.

5.2 The ColorKernel Algorithm

To color the kernel, we employ the concepts of k-core [Seid-
man, 1983] and saturation degree [Brélaz, 1979]

Definition 2 Given a graph G = (V,E) and a subset of
vertices V! C 'V, a subgraph G[V'] is called a k-core if
dG[V’] (U) Z kfor Yv € V.

Definition 3 Given a graph G = (V, E) and a partial color-
ing assignment «, the saturation degree of a vertex is defined
as the number of different colors used by N (v) under c.

If the graph G has not been colored (after each success-
ful reduction, see Algorithm 1), we sort V' according to core
decomposition of G [Batagelj and Zaversnik, 2003] (line 3).
This partitions V' into smaller parts based on k-cores, and
vertex in k-core with larger % has a larger index in V. Then
we color V' in decreasing array-index order (lines 4-7). Each
vertex is colored with a minimum possible color.

Otherwise, we color V' in an order depending on saturation
degree. In each iteration, a vertex v with maximum saturation
degree (breaking tie randomly) is selected (line 10) and is col-
ored with a minimum possible color (line 12). To accelerate
the selection operation, we use a bucket for each saturation
degree to store the vertices of that saturation degree.

Algorithm 3: ColorKernel (G, isColored)

Input: a graph G = (V, E), isColored
Output: a coloring assignment of G

1 a:=0

2 if isColored = false then

3 sort V according to core decomposition of G;

4 for each v € V in decreasing array-index order do

5 c:=min{i > 0| Vu € N(v), colorValue(u) # i} ;
6 if ¢ > |color(«)| then c :=recolor(v) ;

7 a:=aU(v,c);

s else

9 while V # () do

10 v :=a vertex from V' with maximum saturation degree;
11 Vi=V\v

12 c:=min{i > 0| Yu € N(v), colorValue(u) # i} ;
13 if ¢ > |color(c)| then ¢ :=recolor(v) ;

14 a:=aU(v,c);

15 update saturation degree accordingly;

16 return o;

During the coloring of a vertex v, if the minimum possible
color is a new color, we use the recolor procedure [Rossi and

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Ahmed, 2014] to avoid increasing the color number (lines 6,
13). It tries to change the color of v’s neighbors, so that v can
be colored with an existing color. Tomita et al. also use this
technique in their MCS algorithm [Tomita et al., 2010].

6 Experimental Evaluation

We conduct experiments on a broad range of real-world mas-
sive graphs to compare FastColor with two state of the art
GCP algorithms proposed in [Rossi and Ahmed, 2014] and
[Verma et al., 2015]. These algorithms do not have names
in the literatures, and are referred to as Rossi’s algorithm and
Verma’s algorithm for convenience. We also like to compare
FastColor with previous ‘Independent Set Extraction’ method
[Wu and Hao, 2012], but the results on massive graphs are not
available to us.

6.1 Experimental Preliminaries

FastColor is implemented in C++ and compiled with g++ ver-
sion 4.8.4 with -O3 option. The experiments are carried out
on a workstation under Ubuntu 14.04, using 2 cores of Intel
i7-4710MQ CPU @ 2.50 GHz and 16 GB RAM.

We run FastColor 10 times on each graph, with a cutoff
time of 60 seconds per run. For each graph, we report the
minimum number of colors (“Min”) found by FastColor, and
the average number of colors over all runs (“Avg”) if a 100
percent success rate is not reached. Besides, we also report
the average runtime (“Time”) of FastColor over all runs,
where the runtime of an execution is the time it needs to find
and prove the optimal solution if it proves the optimality, and
the time to find the best coloring assignment otherwise. The
number of reduction iterations (“#Iter.”) is also shown.

Since the source code or binary of Rossi’s and Verma’s
algorithm are not available to us, we compared FastColor
with them using the results (“Min” and “Time”) reported in
the corresponding papers. The experimental environment
of Rossi’s algorithm is not reported in [Rossi and Ahmed,
2014], while Verma’s algorithm was run on a workstation
under windows 7, with two Intel E5620 CPU @ 2.40 GHz
and 12 GB RAM. Despite the difference of platforms, we
can still draw a conclusion clearly from the comparison that
FastColor outperforms Rossi’s and Verma’s algorithms.

6.2 Results on Network Data Repository

In this subsection, we compare FastColor with Rossi’s algo-
rithm on the benchmarks from Network Data Repository on-
line [Rossi and Ahmed, 2015].2 Rossi’s algorithm has sev-
eral variants [Rossi and Ahmed, 2014], and we compare Fast-
Color with the best one, i.e., TCORE-VOL with recolor pro-
cedure. As the runtime of TCORE-VOL with recolor is miss-
ing, we instead report the runtime of TCORE-VOL without
recolor procedure (which seems to be shorter than it should
be). The results of this variant on some instances are not re-
ported in the literature, and we take the best solution we can
find in [Rossi and Ahmed, 2014] and mark the runtime as ’-’.

The results are presented in Tables 1 and 2. For all the 91
instances, FastColor obtains better or same-quality solutions

“http://www.graphrepository.com/networks.php

521

Table 1: Results on Network Data Repository Benchmark (I)

Instance V] |E FastColor Rossi’s
Min(Avg) Time #lter. Min Time
bio-celegans 453 2025 9% < 0.011 10
bio-diseasome 516 1188 11* <0.011 11
bio-dmela 7393 25569 7 0.01 1 8
bio-yeast 1458 1948 6* < 0.01 1 6
ca-AstroPh 17903 196972 57* 0.04 1 57
ca-citeseer 227320 814134 87* 0.15 1 87*
ca-CondMat 21363 91286 26%* 0.01 1 26%*
ca-CSphd 1882 1740 3% < 0.01 1 3%
ca-dblp-2010 226413 716460 75% 0.15 1 75%
ca-dblp-2012 317080 1049866 114%* 0.32 1 114
ca-Erdos992 6100 7515 8* < 0.01 1 8+
ca-GrQc 4158 13422 44%* < 0.01 1 44
ca-HepPh 11204 117619 239* 0.11 1 239%
ca-hollywood-2009 1069126 56306653 2209* 31.2 1 2209
ca-MathSciNet 332689 820644 25% 0.24 1 25%
ca-netscience 379 914 9% < 0.01 1 9k
socfb-A-anon 3097165 23667394 26(27.3) 3542 14 33
socfb-B-anon 2937612 20959854 24(24.8)* 24.74 10 28 -
socfb-Berkeleyl3 22900 852419 42(42.5)* 9.08 33 48 0.5
socfb-CMU 6621 249959 45* 0.41 19 47 -
socfb-Duke14 9885 506437 40(40.2) 1447 41 45 -
socfb-Indiana 29732 1305757 48(48.3)* 2536 54 52 0.4
socfb-MIT 6402 251230 37(37.6) 12.07 33 43 -
socfb-OR 63392 816886 31(31.2) 1524 109 34 0.9
socfb-Penn94 41536 1362220 44+ 2.93 37 47 0.5
socfb-Stanford3 11586 568309 51* 2.89 52 55 -
socfb-Texas84 36364 1590651 52(52.8) 20.58 79 56 -
socfb-UCLA 20453 747604 51* 0.98 1 53 -
socfb-UConn 17206 604867 50%* 0.96 1 51 -
socfb-UCSB37 14917 482215 53* 0.84 1 55 -
socfb-UF 35111 1465654 56(56.8) 0.19 1 60 0.7
socfb-Ulllinois 30795 1264421 57* 4.48 1 58 -
socfb-Wisconsin87 23831 835946 38(38.8) 4.01 11 43
inf-power 4941 6594 6* < 0.01 1 6*
inf-roadNet-CA 1957027 2760388 4* 0.53 1 5
inf-roadNet-PA 1087562 1541514 4* 0.4 1 4
ia-email-EU 32430 54397 13 0.91 15 17
ia-email-univ 1133 5451 12% < 0.01 1 12
ia-enron-large 33696 180811 23(23.8) 3.24 37 26
ia-enron-only 143 623 8* < 0.01 1 8+
ia-fb-messages 1266 6451 6(6.1) 1733 6 8
ia-infect-dublin 410 2765 16* < 0.011 16*
ia-infect-hyper 113 2196 16 0.01 2 19
ia-reality 6809 7680 5% < 0.01 1 5
ia-wiki-Talk 92117 360767 25 1791 30 28
rec-amazon 91813 125704 5% 0.02 1 5%

when compared with Rossi’s algorithm. In detail, FastColor
obtains better solutions on 59 instances. For the remaining
32 instances, the two algorithms obtain the same solutions.
Further observations show that both algorithms prove the op-
timal solution for these 32 instances except one, which indi-
cates that these 32 instances might be relatively easy. In addi-
tion, FastColor proves the optimality for 64 instances, while
Rossi’s algorithm does so for only 31 instances.

6.3 Results on SNAP and DIMCAS10

The benchmarks used in [Verma et al., 2015] were originally
from Stanford Large Network Dataset Collection,? and the
10th DIMACS implementation challenge.* In this subsec-
tion, we compare FastColor with Verma’s algorithm on these
benchmarks, which contains totally 53 instances.

The results are presented in Table 3. We focus on
comparing the solution quality. For the 53 instances,
FastColor performs better than Verma’s algorithm on 19
instances, while worse on only 2 instances. For the remaining

3http://snap.stanford.edu/data
*http://www.cc.gatech.edu/dimacs10/

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Table 2: Results on Network Data Repository Benchmark (II)

Table 3: Results on SNAP and DIMCAS10 Benchmarks

Instance v |E| FastColor Rossi’s Instance % |E| FastColor Verma’s
Min(Avg) Time #lter. Min Time Min(Avg) Time #Iter. Min Time
ri-retweet-crawl 1112702 2278852 13+ 0.9 T 13 - Amazon0302 262111 899792 7% 017 1 7= 13
rt-retweet 9% 117 4 <0011 4% - Amazon0312 400727 2349869 11* 038 1 11* 8673
rt-twitter-copen 761 1029 4+ <0011 5 - Amazon0505 410236 2439437 11* 038 1 11* 44.64
soc-BlogCatalog 88784 2093195 76(76.3) 3001 24 84 1.1 Amazon0601 403394 2443408 11* 039 1 11* 68.32
soc-brightkite 56739 212945 37* 008 1 39 - Cit-HepPh 34546 420877 19*% 023 1 21 4289
soc-buzznet 101163 2763066 50 1685 18 59 22 Cit-HepTh 27770 352285 24 003 1 25 299
soc-delicious 536108 1365961 21* 061 1 22 55 cit-Patents 3774768 16518947 11* 2803 10 12 761.86
soc-digg 770799 5907132 55(55.7) 3447 54 63 15 Email-EuAll 265214 364481 18(18.7) 438 19 20 64218
soc-dolphins 62 159 5% <0011 5% - p2p-Gnutella04 10876 39994 5 005 5 6 368
soc-douban 154908 327162 11* 014 6 13 14 p2p-Gnutella24 26518 65369 5 002 4 6 1929
soc-epinions 26588 100120 17 009 46 20 - p2p-Gnutella25 22687 54705 5 <00l 1 6 1427
soc-flickr 513969 3190452 94(94.6) 3501 108 100 4.5 p2p-Gnutella30 36682 88328 5 003 4 6 3333
soc-flixster 2523386 7918801 35 1831 73 46 243 p2p-Gnutella31 62586 147892 5 007 3 6 526
soc-FourSquare 639014 3214986 31 544 3 34 103 Slashdot0811 77360 469180 29 222 33 29% 27
soc-gowalla 196591 950327 29% 043 1 29% - Slashdot0902 82168 504230 30 118 30 29% 4
soc-karate 34 78 5% <0011 5% - soc-Epinionsl 75879 405740 28(28.7) 1048 46 30 608.15
soc-lastfm 1191805 4519330 19(19.6) 1925 55 25 114 web-BerkStan 685230 6649470 201%* 426 1 201* 27.32
soc-livejournal 4033137 27933062 214% 618 1 214* - web-Google 875713 4322051 44 127 1 44% 447
soc-LiveMocha 104103 2193083 25(25.9) 10.18 19 30 1.6 web-NotreDame ~ 325729 1090108 155* 014 1 155% 0.8
soc-orkut 2997166 106349209 71 1834 1 83 - web-Stanford 281903 1992636 61* 133 1 61 13.62
soc-pokec 1632803 22301964 29* 1814 1 31 352 WikiTalk 2394385 4659565 49 1189 21 51 1221.04
soc-slashdot 70068 358647 29 039 36 31 05 Wiki-Vote 7115 100762 22 465 16 24 604.67
soc-twitter-follows 404719 713319 6% 064 6 7 29 as-22july06 22963 48436 7= 001 11 17 014
soc-wiki-Vote 889 2914 7+ <0011 8 - caidaRouterLevel 192244 609066 17* 034 47 17+ 144
soc-youtube 495957 1936748 22(22.9) 657 44 29 36 citationCiteseer ~ 268495 1156647 13* 0.8 1 13% 155
soc-youtube-snap 1134890 2987624 23 424 122 31 - cnr-2000 325557 2738969 84* 206 1 84* 9589
tech-as-caida2007 26475 53381 16* 002 1 18 28 coAuthorsCiteseer 227320 814134 87+ 015 1 87* 03
tech-as-skitter 1694616 11094209 67+ 962 104 70 259 coAuthorsDBLP 299067 977676 115% 022 1 115% 036
tech-internet-as 40164 85123 16* 003 11 18 - cond-mat-2005 40421 175691 30%* 003 1 30* 0.06
tech-p2p-gnutella 62561 147878 5 007 4 7 05 coPapersCiteseer 434102 16036720 845* 172 1 845% 517
tech-RL-caida 190914 607610 17* 044 74 19 19 coPapersDBLP 540486 15245729 337+ 1 1 337% 379
tech-routers-rf 2113 6632 16* <0011 17 - eu-2005 862664 16138468 387* 921 1 387* 68.64
tech-WHOIS 7476 56943 58+ 015 1 60 - in-2004 1382908 13591473 489 374 1 489% 2251
web-arabic-2005 163598 1747269 102+ 0.1 I T02% 1.9 kron_g500- 65536 2456071 153(153.9) 2229 8 155 2842.85
web-BerkStan 12305 19500 20% <0011 29% - simple-logn16
web-edu 3031 6474 30 <0011 30% - rggn2.17s0 131072 728753 15*% 022 1 15% 017
web-google 1299 2773 18% <0.01 1 18% - rggn2.1950 524288 3269766 18* .02 1 18 143
web-indochina-2004 11358 47606 50% < 0.01 1 50% - rgg-n_2.20_s0 1048576 6891620 17* 145 1 17+ 1.81
web-it-2004 509338 7178413 432* 0.33 1 432 56 rggn 22150 2097152 14487995 19* 5.29 1 19% 3.7
web-polblogs 643 2280 10 <0.01 1 10 - rggn222s0 4194304 30359198 20%* 1258 1 20% 7.38
web-sk-2005 121422 334419 82* 002 1 8% 08 rggn 22350 8388608 63501393 21* 3648 1 21* 1499
web-spam 4767 37375 20 001 1 22 - rggn 22450 16777216 132557200 21* 473 1 21* 5021
web-uk-2005 129632 11744049 500% 035 1 500* 3.8 uk-2002 18520486 261787258 944* 4883 1 944* 330.59
web-webbase-2001 16062 25593 33 <0011 33 - 3335P 3712815 11108633 5 2 T 5 117345
web-wikipedia2009 1864433 4507315 31* 131 1 31% 18 audikw1 943695 38354076 42 2112 13 44 4391.04
belgium.osm 1441295 1549970 3* 0.2 1 3* 633
cagel5s 5154859 47022346 12(124) 3645 4 13 361416
. , . . ecologyl 1000000 1998000 2% 028 0 2 265
32 instances, FastColor and Verma’s a'lgonthm thaln the Gonpinpout 100000 501198 6 028 2 8 m17
same solution quality, and prove the optimal solution for all 1door 952203 22785136 33 452 0 35 447409
: CS T : : luxembourg.osm 114599 119666 3* 0.01 1 3% 1299
ex.cept one 1n§tance (333SP), indicating these 32 instances preferential. 100000 499985 &+ 048 0 & 039
might be relatively easy. Attachment
; ot ; : smallworld 100000 499998 7(7.9) 274 1 8 3581
It is not so scientific to compare the runtime under different smal 153y Tosona 8 o s

platform. Nevertheless, the significant gap still demonstrates
the superiority of FastColor in terms of run time. FastColor is
much faster than Verma’s algorithm. With regard to averaged
time, FastColor is 10 times faster for 27 instances and 100
times faster for 18 instances. In particular, Verma’s algorithm
needs more than 10 thousand seconds to obtain a 5 colors
assignment for 333P, while FastColor only need 2 seconds.

7 Summary and Future Work

This paper presented a novel graph coloring algorithm for
coloring massive graphs within short time. We proposed
a reduction rule which is based on a novel concept called
degree bounded independent set. The method iteratively
executes this rule by interleaving between lower bound
computation and graph reduction. Experiments on real-world
large graphs show that FastColor is very fast and finds better
solutions than state of the art algorithms.

522

We would like to explore more reduction rules for GCP,
such as heuristic rules. Another direction is to apply similar
method to other graph problems.

Acknowledgements

This work is partially supported by the National Natural
Science Foundation of China under Grant 61502464, Grant
61472369, and Grant 61370072, partially supported by
the Open Project Program of the State Key Laboratory of
Mathematical Engineering and Advanced Computing under
Grant 2016A06, and partially supported by the Australian
Research Council under Grant DP150101618. Shaowei
Cai is also supported by Youth Innovation Promotion
Association, Chinese Academy of Sciences.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Batagelj and Zaversnik, 2003] Vladimir Batagelj and Mat-
jaz Zaversnik. An o(m) algorithm for cores decomposition
of networks. CoRR, c¢s.DS/0310049, 2003.

[Brélaz, 1979] Daniel Brélaz. New methods to color the
vertices of a graph. Commun. ACM, 22(4):251-256, April
1979.

[Cai and Lin, 2016] Shaowei Cai and Jinkun Lin. Fast
solving maximum weight clique problem in massive
graphs. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, 1JCAI 2016,
New York, NY, USA, 9-15 July 2016, pages 568-574,2016.

[Cai, 2015] Shaowei Cai. Balance between complexity and
quality: Local search for minimum vertex cover in massive
graphs. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, 1JCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 747-
753, 2015.

[Campélo et al., 2008] Manoel B. Campélo, Victor A. Cam-
pos, and Ricardo C. Corréa. On the asymmetric rep-
resentatives formulation for the vertex coloring problem.
Discrete Applied Mathematics, 156(7):1097-1111, 2008.

[Chow and Hennessy, 1990] Fred C. Chow and John L. Hen-
nessy. The priority-based coloring approach to register
allocation. ACM Trans. Program. Lang. Syst., 12(4):501—
536, 1990.

[de Werra, 1985] Dominique de Werra. An introduction to
timetabling. European Journal of Operational Research,
19:151-162, 1985.

[Galinier et al., 2013] Philippe Galinier, Jean-Philippe
Hamiez, Jin-Kao Hao, and Daniel Cosmin Porumbel.
Recent advances in graph vertex coloring. In Handbook
of Optimization - From Classical to Modern Approach,
pages 505-528. Springer, 2013.

[Garey and Johnson, 1979] M.R. Garey and D.S. Johnson.
Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, San Francisco, CA, USA,
1979.

[Gualandi and Malucelli, 2012] Stefano Gualandi and Fed-
erico Malucelli. Exact solution of graph coloring prob-
lems via constraint programming and column generation.
INFORMS Journal on Computing, 24(1):81-100, 2012.

[Hansen et al., 2009] Pierre Hansen, Martine Labbé, and
David Schindl. Set covering and packing formulations
of graph coloring: Algorithms and first polyhedral results.
Discrete Optimization, 6(2):135-147, 2009.

[Hao and Wu, 2012] Jin-Kao Hao and Qinghua Wu. Im-
proving the extraction and expansion method for large
graph coloring. Discrete Applied Mathematics, 160(16-
17):2397-2407, 2012.

[Kearns et al., 2006] Michael Kearns, Siddharth Suri, and
Nick Montfort. An experimental study of the col-
oring problem on human subject networks. Science,
313(5788):824-827, 2006.

523

[Leighton, 1979] ET. Leighton. A graph coloring algorithm
for large scheduling problems. Journal of Research of the
National Bureau of Standards, 84(6):489-503, 1979.

[Malaguti ef al., 2011] Enrico Malaguti, Michele Monaci,
and Paolo Toth. An exact approach for the vertex coloring
problem. Discrete Optimization, 8(2):174-190, 2011.

[Newman, 2003] Mark E. J. Newman. The structure and
function of complex networks. SIAM Review, 45(2):167—
256, 2003.

[Peng ef al., 2016] Yun Peng, Byron Choi, Bingsheng He,
Shuigeng Zhou, Ruzhi Xu, and Xiaohui Yu. Vcolor:
A practical vertex-cut based approach for coloring large
graphs. In 32nd IEEE International Conference on Data
Engineering, ICDE 2016, Helsinki, Finland, May 16-20,
2016, pages 97-108, 2016.

[Rossi and Ahmed, 2014] Ryan A. Rossi and Nesreen K.
Ahmed. Coloring large complex networks. Social Netw.
Analys. Mining, 4(1):228, 2014. Social Netw. Analys.
Mining.

[Rossi and Ahmed, 2015] Ryan A. Rossi and Nesreen K.
Ahmed. The network data repository with interactive
graph analytics and visualization. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

[Seidman, 1983] S. Seidman. Network structure and mini-
mum degree. Social Networks, 5(3):269-287, 1983.

[Shen et al., 2012] Yilin Shen, Dung T. Nguyen, Ying Xuan,
and My T. Thai. New techniques for approximating op-
timal substructure problems in power-law graphs. Theor.
Comput. Sci., 447:107-119, 2012.

[Tomita et al., 2010] Etsuji Tomita, Yoichi Sutani, Takanori
Higashi, Shinya Takahashi, and Mitsuo Wakatsuki. A
simple and faster branch-and-bound algorithm for finding
a maximum clique. In WALCOM: Algorithms and Com-
putation, 4th International Workshop, WALCOM 2010,
Dhaka, Bangladesh, February 10-12, 2010. Proceedings,
pages 191-203, 2010.

[Verma et al., 2015] Anurag Verma, Austin Buchanan, and
Sergiy Butenko. Solving the maximum clique and
vertex coloring problems on very large sparse networks.
INFORMS Journal on Computing, 27(1):164-177, 2015.

[Wu and Hao, 2012] Qinghua Wu and Jin-Kao Hao. Col-
oring large graphs based on independent set extraction.
Computers & OR, 39(2):283-290, 2012.

[Zuckerman, 2007] David Zuckerman. Linear degree ex-
tractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(1):103-128,
2007.

