
The Mixing of Markov Chains on Linear Extensions in Practice

Topi Talvitie
Dept. of Computer Science

University of Helsinki
topi.talvitie@helsinki.fi

Teppo Niinimäki
Dept. of Computer Science

Aalto University
teppo.niinimaki@aalto.fi

Mikko Koivisto
Dept. of Computer Science

University of Helsinki
mikko.koivisto@helsinki.fi

Abstract
We investigate almost uniform sampling from the
set of linear extensions of a given partial order. The
most efficient schemes stem from Markov chains
whose mixing time bounds are polynomial, yet
impractically large. We show that, on instances
one encounters in practice, the actual mixing times
can be much smaller than the worst-case bounds,
and particularly so for a novel Markov chain we
put forward. We circumvent the inherent hardness
of estimating standard mixing times by introduc-
ing a refined notion, which admits estimation for
moderate-size partial orders. Our empirical results
suggest that the Markov chain approach to sample
linear extensions can be made to scale well in prac-
tice, provided that the actual mixing times can be
realized by instance-sensitive bounds or termina-
tion rules. Examples of the latter include existing
perfect simulation algorithms, whose running times
in our experiments follow the actual mixing times
of certain chains, albeit with significant overhead.

1 Introduction
Computing the number of implicitly given objects—or more
generally a weighted sum—is a central task in both the appli-
cation and theory of artificial intelligence. Not only various
counting problems, like probabilistic inference in graphical
models, need be solved within intelligent systems, but hard
counting problems also call for algorithm design paradigms
that go beyond the usual worst-case view of theoretical com-
puter science. Leveraging modern satisfiability solvers in ap-
proximate counting is a recent example of research in this
direction [Gomes et al., 2006; Chakraborty et al., 2015].

When the interest is in good probabilistic guarantees for an
approximate count, the theoretically most efficient algorithms
known to date often rely on sampling objects along a rapidly
mixing Markov chain [Sinclair and Jerrum, 1989]. The prac-
tical value of these algorithms is, however, unclear: typical
algorithms always simulate a Markov chain the same num-
ber of steps given by a worst-case upper bound of the mixing
time; the bound may only depend on basic parameters, like
instance size, and be impractically large, even if polynomial.
It is largely an open question, whether such algorithms can be

made to run fast in practice, that is, on moderate-size “typi-
cal” instances, for which analytic bounds may be pessimistic.

The present work is motivated by the following basic ob-
servation. Suppose a Markov chain mixes fast on typical in-
stances. Then there is hope of discovering better, instance-
sensitive upper bounds or termination rules that are efficient
even if good analytic upper bounds were unknown. In making
such analytic or algorithmic discoveries, which can be tech-
nically very difficult, it could greatly help if one knows in ad-
vance which Markov chains exhibit varying mixing times and
how the variance depends on the instance structure. To this
end, empirical results on mixing times should be valuable.

In this paper, we investigate the question of practical
Markov chain algorithms, focusing on the classical problem
of counting the linear extensions of a given partial order.
The problem is equivalent to counting the topological sorts
of a given digraph and has applications for instance in se-
quence analysis [Mannila and Meek, 2000], preference rea-
soning [Lukasiewicz et al., 2014], partial-order plans [Muise
et al., 2016], and Bayesian network learning [Niinimäki et
al., 2016]. The problem is #P-complete [Brightwell and Win-
kler, 1991] but admits a fully polynomial time randomized
approximation scheme [Dyer et al., 1991]. The worst-case
running times of the fastest known schemes, for n-element
instances and relative error within ε > 0, scale as ε−2n5,
ignoring factors polylogarithmic in n and 1/ε [Bubley and
Dyer, 1999; Banks et al., 2010]. The former scheme re-
lies on the frequently studied Karzanov–Khachiyan chain
[Karzanov and Khachiyan, 1991; Bubley and Dyer, 1999;
Wilson, 2004], whose worst-case mixing time is Θ(n3 log n).
For the scheme to be practical, we would need a chain that
mixes much faster on real-world instances. Is this possible?

We make three main contributions. Our first challenge is
to estimate the mixing time of a fixed Markov chain on a
per-instance basis. This is generally very hard both computa-
tionally [Bhatnagar et al., 2011] and information theoretically
[Hsu et al., 2015], requiring work at least linear in the size of
the state space. As a remedy, we measure the mixing time not
in relation to the uniform distribution on linear extensions, but
to the induced distribution on ordered pairs of elements only;
this is feasible (on moderate-size instances) using a recent
exact algorithm for counting linear extensions [Kangas et al.,
2016]. We show that a small relative mixing time suffices for
fast approximate counting and give a sampling based estima-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

524

tor of relative mixing time. With modifications our method
could also apply outside the context of linear extensions.

Second, we explore empirically, using various classes of
instances, the gap between actual mixing times and the known
upper bounds. Our study includes the Karzanov–Khachiyan
chain and a less studied “insertion chain.” In addition, we
introduce a novel “shuffle chain,” which trades the time re-
quirement of a single transition step for better mixing time.

Finally, we study two algorithms for exact sampling of lin-
ear extensions [Huber, 2006; 2014]. The algorithms are based
on so-called perfect simulation of variants of the Karzanov–
Khachiyan chain and the modified insertion chain. As per-
fect simulation results in exact sampling, we may expect the
time requirements be significantly larger than for approxi-
mate sampling. On the other hand, the perfect simulation
algorithms are, by nature, adaptive; they run faster on eas-
ier instances for which the chain mixes faster. As far as we
know, the performance of these algorithms has not been stud-
ied empirically prior to this work.

2 Preliminaries
Consider a Markov chain (Xt)

∞
t=0 on a finite state space Ω

with stationary distribution π. Denote by pts the distribu-
tion of Xt when the initial state is X0 = s. The mixing
time of the chain is the smallest t such that the total vari-
ation distance between the distributions pts and π, given by
maxA⊂Ω |pts(A)− π(A)|, is less than 1/4 for all s ∈ Ω.

Throughout this paper the state space Ω will be the set of
linear extensions of some partial order P and the distribution
π is the uniform distribution. For convenience, we assume the
ground set of P is [n] := {1, 2, . . . , n}. Another partial order
P ′ on [n] is an extension of P if it contains P and a linear
extension if it additionally is a total order. We write Ω(P) for
the set of linear extensions of P , or Ω for short. We denote
order relations by capital letters in a somewhat nonstandard
manner. For (a, b) ∈ P we write ab ∈ P for short (but not
aPb). Often it will be handy to view a total order L on [n] as
a sequence x = x1x2 . . . xn satisfying xixj ∈ L if i ≤ j.

To express how close a random variable Z is to a target
value v > 0, we say Z is an (ε, δ)-approximation of v if
(1 + ε)−1v ≤ Z ≤ (1 + ε)v with probability at least 1 − δ.
A draw X from a finite set S is a variable that is uniformly
distributed on S, that is, Pr[X = s] = 1/|S| for all s ∈ S.

3 Relative Mixing Time
Brightwell and Winkler [1991] give the following reduction
from approximate counting of linear extensions to sampling.
Construct a sequence of partial orders P0, P1, . . . , Pk where
P0 = P , Pk ∈ Ω(P), and Pi+1 is obtained from Pi by im-
posing an ordering on a pair of elements (ai, bi) that are in-
comparable in Pi. Let Li be a draw from Ωi := Ω(Pi). We
have

|Ω(P)| =
k−1∏
i=0

|Ωi|
|Ωi+1|

=
k−1∏
i=0

Pr[aibi ∈ Li]
−1 . (1)

To estimate |Ω(P)|, it thus suffices to draw almost uniformly
from each Ωi, which can be accomplished by simulating a
Markov chain for a number of steps given by the mixing time.

In fact, as we show next, it suffices to draw from a distri-
bution that is close to the uniform distribution only in relation
to the probabilities of the events aibi ∈ Li. To formalize this
idea, we introduce the notion of relative mixing time:

Definition 1 (Relative Mixing Time). Let M be a Markov
chain (Xt)

∞
t=0 on Ω with stationary distribution π. The mix-

ing time of M in relation to a set of events A ⊂ P(Ω), initial
state X0 = s, and distance ε > 0 is the smallest t′ such that
Dt

s(A) := maxA∈A |pts(A)− π(A)| ≤ ε for all t ≥ t′.
The relative mixing time, for ε = 1/4, is a lower bound

for the standard mixing time, and the two coincide if we put
A = P(Ω) and take the maximum over all initial states. An
advantage of relative mixing time is that it enables more effi-
cient estimation of convergence, since we only need to con-
sider a limited set of events A instead of the full set of states
required for detecting convergence in the total variation dis-
tance; see the next subsection. Rabinovich et al. [2016] intro-
duce a similar notion, the function-specific mixing time.

For approximate counting of linear extensions it suffices to
consider mixing times in relation to event sets of the form

A(P) :=
{
{L ∈ Ω(P) : ab ∈ L} : a, b ∈ [n]

}
,

we call the all-pairs event set of the partial order P .

Theorem 1. Let P be a partial order on [n] and 0 < ε ≤ 1/2.
Suppose that for every extension P ′ of P there is a Markov
chain on Ω(P ′) with uniform stationary distribution and fixed
initial state such that simulating one transition takes at most
time I and the mixing time in relation to A(P ′) and distance
ε′ = ε/(12n log2 n) is at most a known bound T . Then there
exists an algorithm that computes an (ε, 1/4)-approximation
of |Ω(P)| in time O(ε−2ITn2 log2 n).

The idea of the proof is similar to that of Brightwell and
Winkler [1991, Theorem 5]. We improve the time require-
ment by adopting a technique of Jerrum et al. [2004].

Proof (sketch). We construct the algorithm in two phases.
First, we form a sequence of partial orders P0, P1, . . . , Pk

as in the decomposition (1) such that k ≤ n log2 n and ri :=
Pr[aibi ∈ Xi

T] ≥ 1/4 for all i = 0, 1, . . . , k− 1, where (Xi
t)

is the given Markov chain on Ω(Pi). We will show how to
succeed in this with probability at least 7/8. Second, we com-
pute an (ε/2, 1/8)-approximation R̂ of R := r0r1 · · · rk−1

and output 1/R̂. As both phases succeed with probability at
least 7/8, the whole algorithm succeeds with probability at
least 3/4. By the definition of relative mixing time, we have
|ri − Pr[aibi ∈ Li]| ≤ ε′ for each i; hence 1/R is within a
factor (1 + 4ε′)k ≤ (1 + 2ε/5) of |Ω|.

The first phase starts from P0 = P and simulates the merge
sort algorithm on the elements in [n]. For each comparison
between two elements a, b ∈ [n] made by the algorithm we
check whether a and b are comparable in the current partial
order Pi. If not, we estimate Pr[ab ∈ Xi

T] by running the
chain s1 times. We obtain the next partial order Pi+1 from Pi

by adding the restriction aibi (and what follows by transitiv-
ity), where aibi equals ab if the estimate is at least 1/2 and ba
otherwise. Because merge sort makes at most n log2 n com-
parisons and each comparison adds at most one new partial

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

525

order into the sequence, we have that k ≤ n log2 n. Using
Hoeffding’s inequality [1963] and a union bound we get that
all the estimates are within 1/4 absolute error with probabil-
ity at least 1− 2k exp(−s1/8), so we can set s1 = O(log n)
and get that ri ≥ 1/4 for all i with probability at least 7/8.

For the second phase, we estimateR by R̂ = r̂0r̂1 · · · r̂k−1,
where the estimate r̂i for each ri is obtained using s2 samples.
As E[R̂] = R, Chebyshev’s inequality gives us Pr[|R̂−R| <
εR/2] ≥ 1− 4 Var[R̂]/(εR)2. Adopting an idea of Jerrum et
al. [2004, p. 692], we get that, if ri ≥ 1/4 for all i, then

Var[R̂]

R2
=

k−1∏
i=0

(
1 +

Var[r̂i]

r2
i

)
− 1 ≤

(
1 +

4

s2

)k
− 1 .

Thus we can set s2 = O(ε−2n log n) and get that R̂ is an
(ε/2, 1/8)-approximation of R.

The algorithm runs in time O((s1 + s2)ITn log n) =
O(ε−2ITn2 log2 n).

Using the mixing time bound O(n3 log n log(1/ε′)) of the
Karzanov–Khachiyan chain as an upper bound for the relative
mixing time, Theorem 1 yields a randomized approximation
sheme running in time O(ε−2n5 log3 n log(n/ε)).

3.1 An Estimator of Relative Mixing Time
Consider the estimation of the relative mixing time of a given
Markov chain for a fixed set A, initial state s, and distance ε.
We break the estimation task into two subtasks: the estima-
tion of the distance Dt

s(A) = maxA∈A |pts(A) − π(A)| for
a given t; and the estimation of the smallest t after which the
distance stays below ε.

We solve the first task by simulating the Markov chain a
sufficiently large number K of times independently to obtain
an accurate estimate of pts(A) for each A ∈ A. Assuming the
exact values π(A) are available, we then obtain a straighfor-
ward estimate of Dt

s(A). In the application to linear exten-
sions, each event A of interest is {L ∈ Ω(P) : ab ∈ L} for
some a, b ∈ [n], and the value π(A) can be computed exactly
using the algorithms of Kangas et al. [2016].

For the second task, a brute-force search would estimate
the distanceDt

s(A) for each and every t = 1, 2, . . . , U , where
U is some known upper bound for the relative mixing time
(or standard mixing time). This approach can however be
very inefficient, as good upper bound may not be available
and the multitude of the test points t requires strong control
of error in every point. To overcome these challenges, we use
binary search: first double t until Dt

s(A) decreases below a
threshold and then use binary search to refine the result. To
mitigate the effect of sampling error, we do not output a point
estimate but a confidence interval. The lower bound of the
interval corresponds to distance ε+ ε′ and the upper bound to
distance ε − ε′ for some small ε′ > 0. For the binary search
to work correctly, we have to assume that t 7→ Dt

s(A) is
an essentially non-increasing function when its value is close
to the threshold ε. More precisely, we require that it is ε-
bounded after value ε− ε′/2 in the following sense.
Definition 2. Let α < β. A function f : N→ R is β-bounded
after value α if f(t) ≤ α implies that f(t′) ≤ β for all t′ ≥ t.

This property holds for the total variation distance t 7→
Dt

s(P(Ω)) [Mitzenmacher and Upfal, 2005]. Our empirical
results (not shown) suggest that it also holds for the particular
function t 7→Dt

s(A) of our interest for small positive ε and ε′.
If T is an upper bound of the found interval, we evaluate

Dt
s(A) for at most 4dlog2 T e values of t. By using Hoeffd-

ing’s inequality [1963] to bound the probability of sampling
error being at most ε′/2, we get the following result:
Theorem 2. If t 7→ Dt

s(A) is ε-bounded after value ε− ε′/2,
then the method outputs an interval that contains the mixing
time relative to the set of events A and distance ε with prob-
ability at least 1 − 8dlog2 T e|A| exp(−Kε′2/2), where T is
the upper bound of the output interval.

The method requires time O(K(IT + E|A|) + D|A|),
where I is the time requirement of simulating a single step
of the chain, E is the time requirement of testing membership
of a state in an event of A, and D is the time requirement of
computing the exact probability of an event in A.

The method does not require knowledge of any upper
bound for the relative mixing time, and the running time de-
pends only on the measured relative mixing time. However,
the method may need to be rerun with a larger parameter K
if the relative mixing time is larger than anticipated and the
probability of success becomes small. We do not have any
guarantees on the size of the confidence interval, but in Sec-
tion 5 we will see that they tend to be very narrow in practice
at least in the case of sampling linear extensions.

4 Markov Chains
We proceed to describe concrete Markov chains, which en-
able sampling linear extensions either almost uniformly or
exactly uniformly. Empirical results are reported in Section 5.

4.1 Approximate Sampling
We describe the transitions of the well known Karzanov–
Khachiyan chain, a less studied insertion chain, and a novel
shuffle chain. In each of these chains, a transition “does noth-
ing” with probability 1/2, e.g., to ensure aperiodicity; below
we describe what the chain does with the remaining probabil-
ity. Let x = x1x2 . . . xn be the current state of the chain.

The Karzanov–Khachiyan Chain
The chain attributed to Karzanov and Khachiyan [1991]
swaps adjacent elements as follows:

Draw i from {1, 2, . . . , n − 1} and swap the positions of
the elements xi and xi+1 if xixi+1 6∈ P .

A single transition of the chain can be implemented to run in
constant time. Bubley and Dyer [1999] originally proved the
bound O(n3 log n) for the mixing time of a weighted variant
that draws i proportionally to i(n− i). Wilson [2004] showed
that the same bound holds for the unmodified chain.

The Insertion Chain
Bubley and Dyer [1999] mention the insertion chain that re-
moves a random element from the ordering and reinserts it to
a random position as follows:

Draw positions i and j from {1, 2, . . . , n}. Let
y1y2 . . . yn−1 = x1 . . . xi−1xi+1 . . . xn. Move to state
y1 . . . yj−1xiyj . . . yn−1 if it is a linear extension of P .

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

526

A straightforward implementation of the transition takes
time Θ(n) in the worst case, but for dense partial orders it is
often fast in practice. Bubley and Dyer give a lower bound
Ω(n2) and an upper bound O(n4 log n log |Ω|) for the worst-
case mixing time of the insertion chain.

We also consider a version of the chain that draws j so
that the resulting state is always a linear extension of P . This
tends to expedite mixing on dense P .

The Shuffle Chain
Let G be the comparability graph of P , that is, the undirected
graph with the vertices [n] and an edge between vertices that
are comparable in P . If G is disconnected, we can draw
from Ω by independently sampling a linear extension of P
restricted to each component of G and interleaving these to-
tal orders randomly. The shuffle chain uses this idea:

Choose an interval {i, i+ 1, . . . , i+ l − 1} ⊂ [n] by first
drawing the length l from a predefined distribution q and
then the starting position 1 ≤ i ≤ n − l + 1. Find the
components of the subgraph of G induced by the vertices
xi, xi+1, . . . , xi+l−1. Choose an interleaving of the com-
ponents uniformly at random such that the elements in the
same component stay in the same order, and reorder the
vertices accordingly.

Since the transition matrix of the chain is symmetric, the sta-
tionary distribution of the chain is the uniform distribution.

The most time consuming part of the transition is finding
the components of the subgraph. For a subgraph of l vertices,
a depth-first search can take time O(l2) since there can be
O(l2) edges. However, by using bit vectors to store the adja-
cency lists in G and bitwise logic operators for set union and
intersection, this can be optimized to O(l(dn/we + log n))
where w is the number of bits in a word.

The choice of the distribution q affects the expected com-
plexity of the transition, because a transition is more demand-
ing for longer intervals. We let q(l) = n/[l(l − 1)(n − 1)]
for all l ∈ {2, 3, . . . , n}. With this choice, the expected inter-
val length is O(log n) and the expected time requirement of a
transition is O((dn/we+ log n) log n).

The shuffle chain mixes in polynomial time:

Proposition 1. If the distribution q is as above, then the mix-
ing time of the shuffle chain is O(n4 log2 n).

Proof (sketch). With probability q(2) > 1/2, the transition is
the same as in the Karzanov–Khachiyan chain. Combining
the O(n3 log n) mixing time bound of that chain with a result
of Dyer and Greenhill [2000, Theorem 5.3] yields a bound
O(n3 log n(log |Ω|+ log ε−1)).

4.2 Exact Sampling
Sometimes one can turn an approximate Markov chain sam-
pler into an exact sampler by using a technique called cou-
pling from the past (CFTP) [Propp and Wilson, 1996]. In
general this requires that either the Markov chain is mono-
tonic or we can construct a so called bounding chain for the
Markov chain. A bounding chain is a Markov chain itself that
“bounds” in which states the original Markov chain can be. In
the beginning of the simulation the bounding chain allows all

states. Once the bounding chain has converged to bound only
one state, we know it must be the current state of the original
Markov chain, regardless of the starting state. Discovering a
bounding chain that converges quickly can be challenging.

Two bounding chains have been proposed for the exact
sampling of linear extensions.

Exact Karzanov–Khachiyan Chain
Huber [2006] gives a bounding chain for the Karzanov–
Khachiyan chain. The idea is to keep track of a right bound
for the position of each element in the order. Like in the
Karzanov–Khachiyan chain, each step takes a constant time.

The expected running time of the resulting CFTP algorithm
isO(n3 log n). If implemented as described in the original ar-
ticle, the algorithm always takes the same number of steps for
a fixed number of elements n (and a fixed output sequence of
the random number generator). A modification that initializes
the bounding chain adaptively according to the input partial
order can terminate after a smaller number of steps (Mark L.
Huber, personal communication, August 12, 2016).

Exact Relocation Chain
Rcently Huber [2014] gave another type of bounding chain,
which is related to the insertion chain but instead operates in
a continuous state space, the unit n-cube [0, 1]n. The idea is
that any point u = (u1, . . . un) (except a zero-measure sub-
set) corresponds to a unique total order x satisfying ux1 <
ux2

< · · · < uxn
. Moreover, ua ≤ ub for all ab ∈ P if and

only if the corresponding x is a linear extension of P . Draw-
ing a point from {u ∈ [0, 1]n : ua ≤ ub for all ab ∈ P} then
corresponds to drawing a linear extension of P .

A straightforward Gibbs sampler makes a transition by
drawing an element a from [n] and then resampling the co-
ordinate ua. This roughly corresponds to reinserting an ele-
ment to a randomly selected location as in the insertion chain.
It turns out that such a chain is monotonic and yields an effi-
cient CFTP algorithm. As in the case of the insertion chain,
the straightforward implementation of a single iteration runs
in time O(n). Huber shows that the expected running time
of the algorithm is O(∆2n log n) on height-2 partial orders
where every element is comparable with at most ∆ other ele-
ments, but he does not give any bound for the general case.

5 Experimental Results
We have studied empirically the performance of the Markov
chain algorithms of Section 4 using partial orders of different
types and sizes. For the Karzanov–Khachiyan chain we here
only show the results for the original version as there was not
much difference to the weighted version. For the insertion
chain we only show the results of the modified version as
it seemed to mix consistently faster than the basic variant.
Because all the algorithms are iterative, we compare both the
average running time of a single iteration (i.e., transition) and
the number of required iterations.

We consider the following classes of DAGs of sizes
10 ≤ n ≤ 50 generating the partial orders.
AVGDEG(k) is a random DAG with expected average de-

gree k, generated by adding an arc (a, b) with probability
k/(n− 1) for all 1 ≤ a < b ≤ n.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

527

Figure 1: The median and the range over all test instance types (see
Figure 2) of the average per-iteration times in nanoseconds as a func-
tion of the instance size n.

MAXINDEG(k) is a random DAG of maximum indegree at
most k. The DAG is generated by first drawing a number
nb from

{
0, 1, . . . ,min{k, b−1}

}
for each vertex b, and

then adding an arc (a, b) for nb vertices a drawn from
{1, 2, . . . , b− 1} without replacement.

BIPARTITE(p) is a random DAG generated by adding an arc
(a, b) with probability p for all a ≤ n/2 < b.

GRIDTREE(k) is a random DAG generated as follows: Start
with a directed k by k grid. Until the DAG contains at
least n vertices, repeatedly join a new directed k by k
grid along a randomly selected side of a grid already in
the tree, so that the directions of the shared arcs agree.
Remove potential extra vertices from the last added grid.

TWOPATHS is the DAG consisting of the two length-n/2
paths (1, 2, . . . , n/2) and (n/2 + 1, n/2 + 2, . . . , n).

LADDER is obtained from TWOPATHS by adding the arcs
(1, n/2 + 2), (2, n/2 + 3), . . . , (n/2− 1, n).

The first four classes are adopted from Kangas et al. [2016].
The last two classes are derived from the hard instances we
found for the insertion and shuffle chains using a local search
with the objective of maximizing the (estimated) mixing time.

5.1 Performance of a Single Iteration
To measure how time consuming a single iteration in each of
the chains is in practice, we implemented the simulation al-
gorithms in C++, also paying attention to code optimization.
We measured the performance over all the test instances. The
results are summarized in Figure 1.

As expected, the constant time transitions of the Karzanov–
Khachiyan chain are the fastest. For the other chains the
time requirements are substantially larger, however, growing
only slowly in n. While the shuffle chain is expected to be-
have logarithmically, the large constant factors involved make
it slower than the linearly behaving insertion and relocation
chains in the range of n in question.

5.2 Number of Iterations
We estimate the mixing times of the Markov chains in rela-
tion to the all-pairs event set A(P) of the input partial order
P , initial state s = {ab : 1 ≤ a ≤ b ≤ n}, and distance

ε = 1/4, using the method of Section 3.1. Putting ε′ = 0.01
and K = 5 · 105, the confidence of each returned interval is
at least 0.999 (cf. Theorem 2). For the exact samplers, we
simply report the average number of iterations over 105 runs.
The results are shown in Figure 2.

The Karzanov–Khachiyan chain mixes typically an order
of magnitude faster than suggested by the known worst case
bound. Yet, the chain appears to require a nearly cubic num-
ber of steps on all instance types. The insertion chain and the
shuffle chain not only scale quadratically in most cases but
also mix faster than the Karzanov–Khachiyan chain already
on very small instances. On the TWOPATHS and LADDER
instances, where the insertion chain seems cubic, the shuf-
fle chain remains about quadratic. Despite the advantage of
the Karzanov–Khachiyan chain in transition performance, the
difference of relative mixing times becomes more significant
in larger instances. For example, when n = 50, the median
total performance (the product of the running time of a sin-
gle iteration and the relative mixing time) is 92 µs for the
Karzanov-Khachiyan chain and 57 µs for the shuffle chain.

For the exact Karzanov–Khachiyan sampler and the exact
relocation sampler the numbers of iterations seem to follow
the relative mixing times of the Karzanov–Khachiyan chain
and the insertion chain, respectively, with a constant-factor
overhead between 10 and 100. While the comparison of ex-
act and approximate samplers is not completely fair, it gives
some indication of the overhead of these exact samplers.

6 Concluding Remarks
We introduced a notion of relative mixing time. Like standard
mixing time, it is a sufficient in applications to approximate
counting; but unlike standard mixing time, it renders estima-
tion computationally feasible, provided that a related count-
ing problem is feasible. We demonstrated this methodology
in the context of linear extensions of moderate-size partial or-
ders. The approach could be applicable in other domains as
well. While we utilized an exact algorithm for counting lin-
ear extensions [Kangas et al., 2016], extending the method to
tolerate approximate counts is conceptually straightforward.

Our experimental results reveal that the known worst-case
bounds poorly characterize the actual mixing times of several
Markov chains on linear extensions. In particular, the inser-
tion chain and the shuffle chain exhibit much smaller mixing
times than suggested by the worst-case upper bounds. These
two chains appear to be the most efficient chains in practice;
while the transitions have nonconstant complexity, they are
amenable to tools from algorithm engineering. It remains an
open question, whether the promise of the shuffle chain can
be realized via better analytic upper bounds or variants that
enable CFTP (coupling from the past). Regarding the latter,
our findings about exact relocation, a recent CFTP algorithm
[Huber, 2014], are encouraging: it has just a constant-factor
overhead to the related insertion chain, and it is often superior
to the worst-case bound of the Karzanov–Khachiyan chain.

Acknowledgements
This work was supported in part by the Academy of Finland,
under Grant 276864 and Grant 303816.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

528

Figure 2: The estimated relative mixing times of three Markov chains and average iteration counts of two exact samplers in various test
instance classes as functions of the instance size n. The relative mixing times are shown as confidence intervals that turned out to be very
tight. Note that both axis are logarithmic. For comparison, also two polynomials, 4n3 log(n)/π2 (known bound for the mixing time of the
Karzanov–Khachiyan chain) and n2, are shown.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

529

References
[Banks et al., 2010] Jacqueline Banks, Scott Garrabrant,

Mark L. Huber, and Anne Perizzolo. Using TPA to count
linear extensions. arXiv preprint arXiv:1010.4981, 2010.

[Bhatnagar et al., 2011] Nayantara Bhatnagar, Andrej Bog-
danov, and Elchanan Mossel. The computational complex-
ity of estimating MCMC convergence time. In Proc. of the
15th International Workshop on Randomization and Com-
putation (RANDOM), pages 424–435, 2011.

[Brightwell and Winkler, 1991] Graham Brightwell and Pe-
ter Winkler. Counting linear extensions. Order, 8(3):225–
242, 1991.

[Bubley and Dyer, 1999] Russ Bubley and Martin Dyer.
Faster random generation of linear extensions. Discrete
Mathematics, 201(1):81–88, 1999.

[Chakraborty et al., 2015] Supratik Chakraborty, Dror Fried,
Kuldeep S. Meel, and Moshe Y. Vardi. From weighted to
unweighted model counting. In Proc. of the 24th Interna-
tional Joint Conference on Artificial Intelligence, (IJCAI),
pages 689–695, 2015.

[Dyer and Greenhill, 2000] Martin Dyer and Catherine
Greenhill. On Markov chains for independent sets. J.
Algorithms, 35(1):17–49, 2000.

[Dyer et al., 1991] Martin Dyer, Alan Frieze, and Ravi Kan-
nan. A random polynomial-time algorithm for approxi-
mating the volume of convex bodies. J. ACM, 38(1):1–17,
1991.

[Gomes et al., 2006] Carla P. Gomes, Ashish Sabharwal, and
Bart Selman. Model counting: A new strategy for obtain-
ing good bounds. In Proc. of the 21st National Conference
on Artificial Intelligence (AAAI), pages 54–61, 2006.

[Hoeffding, 1963] Wassily Hoeffding. Probability inequali-
ties for sums of bounded random variables. J. American
Statistical Association, 58(301):13–30, 1963.

[Hsu et al., 2015] Daniel Hsu, Aryeh Kontorovich, and
Csaba Szepesvari. Mixing time estimation in reversible
Markov chains from a single sample path. In Advances in
Neural Information Processing Systems 28, pages 1459–
1467. Curran Associates, Inc., 2015.

[Huber, 2006] Mark Huber. Fast perfect sampling from lin-
ear extensions. Discrete Mathematics, 306(4):420–428,
2006.

[Huber, 2014] Mark Huber. Near-linear time simulation of
linear extensions of a height-2 poset with bounded inter-
action. Chicago J. Theoretical Computer Science, 2014.

[Jerrum et al., 2004] Mark Jerrum, Alistair Sinclair, and Eric
Vigoda. A polynomial-time approximation algorithm for
the permanent of a matrix with nonnegative entries. J.
ACM, 51(4):671–697, 2004.

[Kangas et al., 2016] Kustaa Kangas, Teemu Hankala,
Teppo Niinimäki, and Mikko Koivisto. Counting linear
extensions of sparse posets. In Proc. of the International
Joint Conference on Artificial Intelligence (IJCAI), pages
603–609, 2016.

[Karzanov and Khachiyan, 1991] Alexander Karzanov and
Leonid Khachiyan. On the conductance of order Markov
chains. Order, 8(1):7–15, 1991.

[Lukasiewicz et al., 2014] Thomas Lukasiewicz, Maria V.
Martinez, and Gerardo I. Simari. Probabilistic preference
logic networks. In Proc. of the 21st European Conference
on Artificial Intelligence (ECAI), pages 561–566, 2014.

[Mannila and Meek, 2000] Heikki Mannila and Christopher
Meek. Global partial orders from sequential data. In Proc.
of the Sixth International Conference on Knowledge Dis-
covery and Data Mining (KDD), pages 161–168, 2000.

[Mitzenmacher and Upfal, 2005] Michael Mitzenmacher
and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge
University Press, 2005.

[Muise et al., 2016] Christian Muise, J. Christopher Beck,
and Sheila A. McIlraith. Optimal partial-order plan re-
laxation via MaxSAT. J. Artificial Intelligence Research,
57:113–149, 2016.

[Niinimäki et al., 2016] Teppo Niinimäki, Pekka Parviainen,
and Mikko Koivisto. Structure discovery in Bayesian net-
works by sampling partial orders. J. Machine Learning
Research, 17(57):1–47, 2016.

[Propp and Wilson, 1996] James G. Propp and David B. Wil-
son. Exact sampling with coupled Markov chains and ap-
plications to statistical mechanics. Random Structures &
Algorithms, 9(1-2):223–252, 1996.

[Rabinovich et al., 2016] Maxim Rabinovich, Aaditya Ram-
das, Michael I. Jordan, and Martin J. Wainwright.
Function-specific mixing times and concentration away
from equilibrium. CoRR, abs/1605.02077, 2016.

[Sinclair and Jerrum, 1989] Alistair Sinclair and Mark Jer-
rum. Approximate counting, uniform generation and
rapidly mixing Markov chains. Information and Compu-
tation, 82(1):93–133, 1989.

[Wilson, 2004] David B. Wilson. Mixing times of lozenge
tiling and card shuffling Markov chains. The Annals of
Applied Probability, 14(1):274–325, 2004.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

530

