Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Stochastic Constraint Programming with And-Or Branch-and-Bound

Behrouz Babaki', Tias Guns'?2, Luc De Raedt!
1Department of Computer Science, KU Leuven, Belgium
2Department of Business Technology and Operations, VUB, Belgium
{behrouz.babaki,tias.guns,luc.deraedt@cs.kuleuven.be }

Abstract

Complex multi-stage decision making problems of-
ten involve uncertainty, for example, regarding de-
mand or processing times. Stochastic constraint
programming was proposed as a way to formu-
late and solve such decision problems, involving
arbitrary constraints over both decision and random
variables. What stochastic constraint programming
currently lacks is support for the use of factorized
probabilistic models that are popular in the graph-
ical model community. We show how a state-of-
the-art probabilistic inference engine can be inte-
grated into standard constraint solvers. The result-
ing approach searches over the And-Or search tree
directly, and we investigate tight bounds on the ex-
pected utility objective. This significantly improves
search efficiency and outperforms scenario-based
methods that ground out the possible worlds.

1 Introduction

Increasingly, complex decision making requires one to make
decisions under constraints while taking into account the un-
certainty of the environment. Each of these aspects has in-
tensively been studied by different communities within ar-
tificial intelligence. Indeed, constraint programming has fo-
cussed on solving constraint satisfaction problems and mak-
ing decisions while the field uncertainty in artificial intelli-
gence is concerned with probabilistic graphical models and
inference. For each of these problems, advanced solutions
have been developed and solvers exist that can tackle substan-
tial problems. But today, there is a growing awareness that in
many real-life applications, these aspects cannot be addressed
in isolation, but rather need to be tackled by an integrated
approach. Stochastic constraint programming [Walsh, 2002;
Tarim et al., 2006] covers all three aspects as it extends
constraint programming with decision making under uncer-
tainty. However, such methods do not yet support standard
probabilistic techniques from the graphical model commu-
nity [Koller and Friedman, 2009]. It is well-known in prob-
abilistic graphical models that factorizing the joint probabil-
ity distribution is beneficial for modeling, inference and for
learning [Koller and Friedman, 2009]. Stochastic constraint
programming currently uses trivial factorizations, assuming

539

either that all random variables are marginally independent
[Walsh, 2002], or using the joint as the only factor [Tarim et
al., 2006]. The latter corresponds to enumerating all possible
worlds, also called scenarios. On the other hand, [Mateescu
and Dechter, 2008] have integrated constraint programming
and probabilistic graphical models, but do not deal with de-
cisions and utilities; and influence diagrams [Jensen et al.,
1994] integrate probabilistic graphical models with decision
theory, but do not handle constraints.
Our contribution is as follows:

e We support stochastic constraint programming with fac-
torized joint probability distributions (as in Bayesian
networks) and integrate state-of-the-art inference en-
gines for such graphical models.

We use a generic constraint solver both for the determin-
istic constraints and for doing constrained branch-and-
bound search over an and-or tree.

We develop and exploit a novel bound for expected util-
ity in the search. The key is that we use a probabilistic
inference to compute marginal probabilities and interval
arithmetic for the utility.

We now introduce the problem and review the two standard
approaches, after which we explain and evaluate our method.

2 Stochastic Constraint Programming

We consider multi-stage decision problems where a number
of decisions can be taken (such as the production amount) af-
ter which external factors are observed (such as the demand)
followed by new decisions etc. The goal is to assign in a
stage-wise manner the decision variables so that the expected
utility over all possible instantiations of the random variables
is maximized. To model the stochastic aspect of the external
factors we use random variables with a (joint) discrete prob-
ability distribution P.

Example 1. Consider a simple stochastic production prob-
lem from [Walsh, 2002] where each stage corresponds to one
quarter of the year, and the decisions V; are how many books
to produce at the start of quarter ¢, and the random variables
S; represent how many books were sold at the end of quarter
1. The company is conservative so shortages are not allowed,
yet the goal is to minimize the sum of surpluses in each quar-
ter due to stocking costs.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

H\ H | P(H:|H1)
0 0 0.9
0 1 0.1
1 0 0.2 \4
1 1 0.8
3
Sh
Va Va V2
1 2 3

Figure 1: Left: Bayesian network with 2 observed and 2 hidden
variables. Right: a tree for Example 1 with D(V1) = D(S1) =
D(V2) = D(52) = {1,2,3}.

More formally for the 2 stage variant:
minimize min ; min SZ P(S)xU(WV,S)
1 2

3

> (Vi=5)20

Jj=1
where U(V,8) =V; —S1 + Vo — S

2.1 Factored Distributions

We will assume that the probability distribution P is speci-
fied as a factored distribution, that is, the probability can be
computed as a product of individual factors [Koller and Fried-
man, 2009]. One popular such representation is a Bayesian
network.

An example Bayesian network is shown in Figure 1, left. It
has two observed variables (factors) Sy and S, which would
typically be two random variables present in the stochas-
tic problem formulation. The Bayesian network is a hidden
Markov model with 2 hidden variables (factors) where the
probability of observation is influenced by the hidden vari-
ables (e.g. market sentiment), and the second hidden variable
is influenced by the hidden variable of the previous stage.
Such a rich structure models complex interactions, and sup-
ports learning them from observations.

s.t. Vi=1.2

2.2 Problem Description
We define a multi-stage Factored Stochastic Constraint Prob-
lem (FSCP) as a 7-tuple P = (V, S, D, P, U, C, <) where:
e V and S are decision variables and random (stochastic)
variables, respectively;

D is the domain of variables in VUGS, namely a mapping
from variable to the set of values it can take;

P is a factored discrete distribution over S, i.e. P(S) =
[[s,cs ¢(Si) with each factor ¢(S;) over a subset of
S. As in previous works, we assume that the decision
variables have no measurable impact on the probability
distribution.

U(V,S) is a function that computes the utility of an in-
stantiation of the decision and random variables.

VN N g

540

e (is a set of deterministic constraints. Each constraint is
specified over a non-empty subset of V and a (possibly
empty) subset of S.

e =< isapartial ordering over VUS that orders the variables
by stage, and within each stage the decision variables
before the random variables.

For notational convenience and without loss of generality we
will assume one decision variable V; and one random variable
S;perstagei: V43 <S1 < ... < Vp < Sp.

The objective is to maximize (or similarly minimize) the
expected utility of the multi-stage problem according to <:

H%/ETXZH%/E;X -+ T0AX P(Sy,...,87)
Sl S2 ST
XU(Vl,...,VT,Sl,...,ST) (1)

where we note that sum and max are not transitive and hence
can not be reordered in this formula. Constraints can range
over random variables but are deterministic: they must be sat-
isfied for all possible (non-0 probability) instantiations of the
random variables.

An assignment to the variables)V U S that satisfies all con-
straints is not a solution to the FSCP, rather, it holds only with
probability P(S) and hence contributes P(S) (), S) to the
expected utility. Indeed, the solution is a policy tree [Walsh,
2002] where each node corresponds to a variable and for each
path in the tree the variables satisfy the ordering <. Each de-
cision variable V; has just one child (corresponding to an as-
signment of this variable) and each random variable S; has
a child for each value in its domain. Figure 1 (right) shows
a policy tree for the problem of Example 1, where 1,2 or 3
thousand books can be sold per stage.

An optimal policy tree is a policy tree where each decision
variable in the tree is assigned to a value such that Eq. (1) is
maximized, while always satisfying all constraints.

2.3 Scenario-Based Search

One approach [Tarim er al., 2006] is to ground out each of
the possible worlds and compute their probability, and at the
same time flatten the policy tree by creating copies of each
decision variable for all instantiations of the random variables
preceding it. One assignment to this set of decision variables
then corresponds to a policy tree.

For example for the policy tree in Figure 1 (right) we would
create a decision variable for every decision node in the tree,
so 4 variables in total: one for V] and three different ones for
V4, corresponding to cases S; = 1,57 = 2 and S; = 3.

Constraints are added over these decision variables as
needed, and the expected utility function becomes a linear
sum over all possible worlds) . P(s) *u(V, s) with s a pos-
sible world (also called scenario). For the example in Figure
1 (right), there would be 3 * 3 scenarios corresponding to the
possible worlds.

An obvious downside of this approach is that the number
of decision variables and the number of scenarios grows ex-
ponentially in the number of random variables, with the base
of the exponent determined by the number of possible values
for the random variables.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2.4 And-Or Search

Initially, a simple And-Or search algorithm (plain backtrack-
ing and forward checking) for stochastic constraint program-
ming was proposed [Walsh, 2002].

The And-Or search tree has two types of internal nodes:
the AND nodes correspond to random variables, and the OR
nodes correspond to the decision variables. The leaves do not
correspond to a variable. An outgoing edge from an internal
node represents the assignment of a value to the variable as-
sociated with that node.

Every path from the root to a node corresponds to a par-
tial assignment to V U S, and must respect the ordering <.
Given an assignment, we denote by v; the value of variable
Vi € Vin the assignment. We label each node n by the partial
assignment (vq, $1, - - ., Uk, Si) represented by the path from
the root to this node and denote it by label(n). The value of a
labeled node 7 is then defined as follows:
.,vk,sk):maxz...max 2)

Vk VT
+ Sk+1 St

val(vy,81, . .

P(s1:k, Sk+1:7) X Uvik, Vier 1.7, 810k Skt1:7)
where we use vy.; as shorthand for (vy,...,vx). The value
of alabel (v1, $1,. .., vx) ending in a decision variable is de-
fined analogously. The notation follows [Jensen ef al., 1994].

Observe how the expression in Eq. (1) corresponds to the
above value function when none of the variables are assigned,
that is, the value of the root node of the And-Or tree.

The value of any node n in the And-Or tree can be com-
puted recursively as follows:

1. The value of a leaf with label(n) = (vi.r,s1.7) is
P(s1.1) x U(vr.r, s1.7)

2. If n corresponds to a random variable, then
val(label(n)) = Zn,€children(n) val(label(n'))

3. If n corresponds to a decision variable, then
val(label(n)) = max,, cchilgren(n) val (label(n'))

A generic depth-first search procedure to recursively com-
pute this function, while also ensuring satisfaction of all con-
straints in non-0 probability worlds, is shown in Algorithm 1.
The symbol D represents the domain, that is, a mapping from
variables to the values they can take.

First, the AndOr() procedure on line 2 does propagation,
which is the act of removing those values from the domain
that would violate a constraint. If all variables are assigned
(their domain has size 1), then the value of this leaf is com-
puted and returned. Next, on line 6, the variable to expand
in this node is selected in such a way that the order < is re-
spected and the value for each of the children in the domain
is recursively computed. In case of an AND node, first one
has to verify that all children (not just those with a value in
the domain) were visited and did not fail (line 13) because all
possible worlds must be possible in a policy tree. If so, the
sum of child values is returned. For OR nodes the maximum
of the child values is returned.

3 Branch-and-Bound And-Or Search

We improve on the above And-Or search in the following two
ways, which requires the probabilities of partial assignments:

Algorithm 1 And-Or search over domain D’ following <

1: procedure ANDOR(D')

2: if propagate(D’) == failure and probability > 0 then
return failure

3 ifVe e VUS : |D'(z)| =1 then

4 return val(label (D))

5: end if

6: Select unassigned variable X according to <

7.

8

> In leaf

> Expand this node by assigning values to X
: forz € D'(X)do 1 For all children of this node
9: D" =D andset D"(X) := {z}
10: childval,, := AndOr(D"")
11: end for

12: if X € S then > AND node
13: if one of the children failed then return failure
14: else return 3, 5) childval,

15: else > OR node
16: return max;cp(x) childval,

17: end if

18: end procedure

e before exploring a node in the tree, we verify that the
probability of the assignment to the stochastic variables
explored so far (a partial assignment) is not 0. If it is,
then all leaves that are descendants of this node will have
0 probability and hence the value of this node will al-
ways be 0 and it should not be explored. This was stud-
ied in [Qi and Poole, 1995] where it was shown that even
anaive and-or search can be sped up significantly in case
of determinism (0 probabilities) in the graphical model.

e we compute upper bounds on the expected utility achiev-
able by a node in the and-or tree to prune the search.

3.1 Querying the Partial Probabilities

The probability of a partial assignment can be obtained
through marginalization; this has been studied for many years
by the uncertainty in Al community [Pearl, 1989]. Given a
distribution over 7' variables, the marginal probability of a
subset of k variables is obtained by marginalizing out all other
variables: P(S1, ..., 56) = g, ,, --- 2, P(S1, .., S1).

Probabilistic inference methods can efficiently exploit
structure and determinism in the factored distribution when
queried for a marginal probability. To take advantage of this
during search, we integrate an existing query inference engine
into our approach.

The characteristics of our queries are that: 1) we will query
the engine many times during search (at every node in the
tree); 2) our queries will always contain random variables
satisfying the order <, following the depth-first search; 3)
we wish to obtain the partial probabilities of all possible
values of a random variable at once. Motivated by this, we
chose the ACE engine [Chavira and Darwiche, 2008] as query
engine, because 1) it first compiles the Bayesian network
into an arithmetic circuit (AC). While this circuit may have
worst-case exponential size, once the AC is compiled com-
puting a (marginal) probability takes time linear in the size
of the AC. In practice, the size of the AC is often reasonably

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

small making this approach very attractive to many applica-
tions [Chavira and Darwiche, 2005]; 2) the ACE engine al-
lows to incrementally commit and retract assignments which
fits the depth-first search procedure well and prevents the en-
gine from traversing the AC from scratch each time; 3) it can
return, at low extra cost, the probabilities for all values of a
random variable. For more details on the inference engine,
see [Darwiche, 2003].

3.2 Interval Arithmetic for the Utility

The computation of our novel bounds during the branch-
and-bound And-Or search relies on the following key ideas:
to query the inference engine for an upper bound on the
probability of a partial assignment, to use interval arith-
metic [Moore, 1966] to get an upper-bound on the utility of
a partial assignment and to combine this into an upper bound
on the value of any node in the And-Or tree.

The basic idea of interval arithmetic is that, given an equa-
tion over intervals, using just the upper and lower bounds
one can derive an upper and lower bound on the out-
come of the equation [Moore, 1979]. For example given
f(X,Y) = 3X — Y, then using interval arithmetic we can
derive that f([vaanmarL [Yminaymax]) = [3szn -
Yinazs 3Xmaz — Ymin| where |- -] represents the minimum
and maximum value of an interval. Interval arithmetic is a
technique that constraint solvers often use internally to ob-
tain bounds-consistency [Choi er al., 2006].

Given a partial assignment (v, S1,...,Vk, Sk)s
we wish to derive an upper bound on the value of

U(vi:k, Vk+1.7, S1:k» Sk41.7) over all possible as-
signments to Vi1 and Spii1.r. We define the
upper bound on the utility as: U(vig,sik) =

maxy, , maxg,,, ... maxs, U(vig, Vg 1.7, S1:, Skt 1:7)-
The bound is obtained by applying interval arithmetic
to U with interval [v;,v;] for each assigned variable and
[min(D(V;)), max(D(V;))] for each unassigned variable V;;
likewise for the S;. For simple utilities, as is the case here,
this interval bound computation can be provided by hand.

3.3 Shallow Upper Bound
Theorem 1. For each partial assignment label(n)

(v1,81,- .., Uk, Sk), We have:
val(vi, 81, .., 0, 5k) < P(s1x) X U(vig, s1e) ()
Proof.
max .max Yy P(s1.x, Sk+1.7)
Vit Vr
Sk41 St
X U1k, Vg 1:7» S1iks Skt1:7)
< max comax » P(s1k, k1) X U(vis, s1:6)
V41 Vr
Sk+1 St
= U(v1.x, S1:5) X max .max P(s1.k, Sk+1.7)
Vit Vr
Sk41 St
=U(v1k, 516) X D - ZP (s1:ks Sk1:7)
Sk41

== U(U1:k751:k’) X P(Sl:k)
O

542

Hence, by efficiently querying for the probability P(s1.x)
and computing U (v1.k, $1.5), We obtain an upper bound on
the value of this node.

Pruning OR nodes. This upper bound can be used to prune
children of an OR node, as only the child with the maximum
value is sought. In the search, every OR node will store as
lower bound the value of its best child so far. If the upper
bound of the next child to explore is below this lower bound,
the child does not need to be visited and can hence be pruned.

Pruning AND nodes. We observed that sometimes it is
possible to prune an AND node before all its children have
been explored. In those cases, the values of the children al-
ready visited are too low for the AND node to improve its
closest parent OR node.

Assume that every AND node can receive from its parent
what the minimum value is that it should achieve, that is, its
lower bound LB. Let ‘Ch’ be the set of children of an AND
node and let ‘Pre’ be the children already explored during
search. Then, the following needs to hold:

LB < Z val(label()) “4)
ieCh
—LB < Y wval(label(i)) + > UB(i (5)
iEPre zeCh\Pre

where U B(i) is the upper bound on child ¢ computed using
Theorem 1. Hence, after exploring a child of an AND node,
we can verify whether Eq. (5) holds and if it doesn’t we do
not need to visit the remaining children.

For this to work, all nodes must be able to pass a lower
bound LB to its children. For an OR node, the lower bound
of a child is simply the lower bound of the OR node itself. For
AND nodes, we can derive from Eq. (5) the following lower
bound on an unvisited child c:

>

LB — Z val(label(i)) —
1€Ch\ (PreU{c})

1EPre

UB(i) < wval(label(c))

hence the value of child node c needs to be larger than the
left-hand side of this equation.

3.4 Deep Upper Bound

A tighter upper bound on the value of a node can be computed
by realizing that the summation of an AND node S}, corre-
sponds to a weighted sum of the children’s value, weighted by
their (conditional) probability. Hence, we can obtain a tighter
bound by computing the probability and upper bound on the
utility for each child of this AND node separately:

k) <Y P(s1k-1,5%) X U(vi, s1:5-1, Sk)
Sk

val(v1,81,...,v

The same reasoning is valid for any sequence of unassigned
random variables, that is, up to any depth:

Theorem 2. Given the partial assignment (vy, 1, ...
and an arbitrary depth d such that k + d < T', we have:

avk)

val(vy, 81,...,0%)

S22l P

Sk+d

($1:6=1, Skektd) X U(V1:ks S1:k—1, Skik+d)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Proof.
max... E P(s1:k—1, Skr) X U(viik, Vig1:1, S1:k—1, Sket)
Vi+1
Sk St
< max. .. E P(s1:k—1, Skik+d)
k+1
S, Tt Sk+d

X U1k, Vit1:k+ds S1:kh—1, Skik+d)

< max... E P(s1:k—1, Skik4d) X U(v1:k, S1:k—1, Skik+d)
Vie+1
s Sptd

k
= Z Z P(s1.5-1, Sk:krd) X Uik, $1:6—1, Skiktd)

Sk Sk41 Sk+4d

the last step is possible because the remaining P and U com-
putation is independent of the assignments to V1.7, as it
was taken out of U in the step before.

This bound can be recursively computed by a simple depth-
first search over the assignments to the next d unassigned ran-
dom variables. At depth d of the recursive computation, the
probability P(s1.5—1, Sk:k-+d) is queried and the upper bound
on the utility is computed. Even if all probabilities of all ran-
dom variables are equal, this bound will be tighter than the
shallow bound thanks to the utility being computed for the ac-
tual value of the random variables explored. The complexity
of this computation is exponential with respect to the depth.

4 And-Or search in a Constraint Solver

A strong argument in favor of scenario-based search in [Tarim
et al., 2006] is the possibility to use any existing constraint
solver, and hence the expressivity and the constraints avail-
able in such solvers. We also support this argument and use a
generic constraint solver for our And-Or search and the con-
straints. The key issue is that such a solver performs depth-
first backtracking search but is oblivious to nodes being AND
or OR nodes. What it considers a solution, namely an assign-
ment to all of the variables, is just a leaf in the And-Or tree.

However this is not a fundamental issue, as constraint
solvers are inherently modular depth-first search engines. To
obtain a correctly working And-Or search, we added three
modules to a constraint solver, which can be added to most if
not all modern CP solvers:

1. a global constraint that verifies whether no values are
removed from the domain of random variables, except
by the search method, and otherwise fails because the
constraints should be satisfied in all possible worlds;

2. a variable and value ordering module that respects <,
that will fail the remaining children of an AND node if
one of its children failed, and that also computes and
prunes using the upper bounds, as well as pushing the
lower bound to the child nodes;

3. amodule that is called each time a complete assignment
is found, and that updates the expected utility values in
its ancestor nodes appropriately.

At a technical level, we maintain the state of the policy
tree in an object that is shared by all three modules and that is
not backtracked over by the regular backtracking mechanism.
This object also provides an interface to the probabilistic in-
ference engine and caches all queries to increase efficiency.

S Experiments

We investigate the following questions: Q1: Does our pro-
posed method improve over existing approaches? Q2: What
is the impact of bounding depth on the efficiency of search?
Q3: What is the interplay between bounding and constraint
propagation?

We used two problems in our experiments:

Knapsack (based on an example from [Hnich ez al., 2011])
As items arrive, we must decide whether to pick or leave the
item. The weight and cost of an item are stochastic, and only
revealed immediately after a decision is made for that item.
The weight (5 possibilities) and cost (3 possibilities) in each
stage depend on a hidden variable (2 possibilities), which it-
self depends on the hidden variable of the previous stage. The
goal is to maximize the expected sum of values under the con-
straint that the total weight does not exceed the capacity.

Investment At the start of each season, a company can in-
vest in option A or B. The stochastic return is revealed at the
end of the season. The two return values in each season (4
possibilities for each option) depend on the market sentiment
(2 possibilities), which itself depends on the market sentiment
in the previous season. Option A has a higher return on aver-
age, but a major tax relaxation is applied at the end of the
horizon if the majority of income comes from investment in
B. The goal is to maximize the expected returns under the
constraint that the tax relaxation applies.

The Bayesian Networks are HMMs similar to Figure 1 but
with two observed variables per hidden variable (correspond-
ing to each stage). The hidden variables have 0.9 probability
for staying in the same state. Other distribution parameters
for both problems were generated randomly, such that at each
stage for Knapsack the weight and cost have positive correla-
tion and for Investment the returns have negative correlation.
Higher-order HMMs did not impact compilation or runtime
much because of the small number of variables/depth.

We ran the experiments on Linux machines with 32 GB
of memory. The time-out used was 1800 seconds. The CP
solver used is Gecode-4.4.0 and the MIP solver is Gurobi-
6.5'. We used the the ACE? package to compile the Bayesian
networks into arithmetic circuits, and ported the inference li-
brary to C++ for integration with Gecode. The code and data
are available online 3.

5.1 Results

To answer Q1, we compare our method with a scenario-based
approach that copies the decision variables, using both a CP
solver and a MIP solver. The latter is possible because both
problems only have linear constraints, though our method can
handle any CP constraint. Table 1 shows the results. Standard
CP quickly fails due to the huge search space and weak prun-
ing. ILP is more effective thanks to its presolving (> 50%
reductions in variables) and cutting planes. However, our na-
tive method is faster and can handle larger number of stages.

To answer Q2, we compare the runtime of our method for
different depths of the bound. Figure 2 shows that even the

"http://www.gecode.org and http://www.gurobi.com
Zhttp://reasoning.cs.ucla.edu/ace
*https://github.com/Behrouz-Babaki/FactoredSCP

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

knapsack investment
| #stages | scen-vars scen-CP scen-ILP AOB&B | scen-vars scen-CP scen-ILP AOB&B |

1 1 0.000089 0.000416 0.000120 | 2 0.000134 0.000392 0.000213
2 16 0.001410 0.002101 0.001291 | 34 0.000667 0.001199 0.001141

3 241 T(S) 0.013641 0.016774 | 546 T(S) 0.023160 0.015718
4 3616 T(S) 0.202595 0.19052 8738 T(S) 0.724038 0.220448
5 54241 T(S) 4.092760 4.02639 139810 M(S) 34.09311 5.84844

6 813616 T(S) 117.2034 75.9437 2236962 T(S) 779.4099 162.892

7 12204241 M (G) M(G) 1494.54 35791394 M (G) M(G) T(S)

Table 1: Comparing the runtime (s) of our method (AOB&B) with scenario-based approaches (CP and ILP). The unsuccessful cases either
ran out of time (T) or memory (M) during generation of scenario-based problem (G) or solving the problem (S).

0
600 &0 AND 2801 % =0 AND
¢ ¢ OR 260 ¢ ¢ OR
g 500 o—e BOTH g 240 o—e BOTH
'JS‘ 400 #* # NONE 33 920 * % NONE
= 300 g 200 P S
£ 200 180
100 3\%&»3—&«4__._‘.. 160 e p—p ot
(
NONEO 1 2 3 4 5 6 YNONEO 1 2 3 4 5 6
depth of bound depth of bound

Figure 2: Effect of depth of bounds on instances of the knapsack
problem (left) and investment problem (right).

700

600 no bound depth=6
QD 500} e—e depth=None C #failures #nodes #failures #nodes
g 400} ¢-¢ depth=0 210 0.0E+00 1.1E+09 8.1E+05 1.8E+07
& a0} 0 T o= 180 | 59E+04 1.1E+09 | 8.IE+05 1.8E+07
2 a0l e+ donthos o 8| 150 | 7.6E+05 1.0E+09 | 2.3E+06 5.4E+07
100 o 120 3.2E+06 9.3E+08 6.3E+06 1.5E+08
| ——— s 90 5.7E+06 6.4E+08 9.1E+06 2.4E+08
0210 180 150 120 90
capacity

Figure 3: The effect of tightening the knapsack constraint (C) on
runtime (left) and on the number of nodes and failures (right) in a
6-stage problem.

shallow bound is much better than no bound. Deeper bounds
have a marginal gain in runtime for knapsack and a marginal
overhead for investment but always lead to smaller search
spaces (not shown). On the investment problem, it is clear
that also bounding the AND nodes (or both) is better than
only the OR nodes.

To answer Q3, we gradually tighten the capacity constraint
in the knapsack problem and observe the effect on runtime,
number of nodes, and number of failures. Figure 3 shows that
in the absence of bounds, tightening the constraint leads to
more failures and fewer nodes; meaning that the search space
becomes smaller. When bounding is employed, tighter con-
straints increase both the number of nodes and failures. This
indicates fewer solutions and weaker bounding. Such interac-
tions demonstrate the need for approaches that can both han-
dle constraints and prune with bounds.

6 Related Work

[Walsh, 2002] also employed And-Or search (backtracking
and forward checking) but no bounds, independent random
variables and one global stochastic constraint. Nested con-
straint programming [Chu and Stuckey, 2014] is a related
framework in which stochastic CP as well as other nested
problems can be expressed; their clause learning solver per-
forms and-or search and caches the valuation of identical

544

subproblems/nodes, but it assumes independent random vari-
ables. Quantified constraint optimization [Benedetti et al.,
2008] nests existential and universal quantification but does
not consider probability distributions. Arbitrary non-factored
probability distributions have been considered before in a
scenario-based setting [Tarim et al., 2006]. Global chance
constraints have been investigated in that setting too [Hnich
et al., 2012]. Another work investigates relaxation methods
for convex expected utility functions [Rossi ef al., 2008]; see
[Hnich er al., 2011] for a survey on such methods.

FSCPs are also related to influence diagrams [Jensen et al.,
1994] but are different in that the utility function in influence
diagrams is assumed to be additive and that (F)SCPs support
arbitrary complex constraints over both decision and random
variables; The typical jointree algorithms [Jensen ef al.,
1994] can have prohibitive memory requirements. A depth-
first branch-and-bound algorithm was investigated [Yuan et
al., 2010] but the bound uses (simplified) influence diagrams
itself. Other connections between constraint programs and
probabilistic graphical exist. Notably probabilistic queries on
mixed deterministic and probabilistic networks [Mateescu
and Dechter, 2008] and a more theoretical, unifying frame-
work of algebraic graphical models [Pralet et al., 2007].

7 Conclusion and Future Work

We presented a novel stochastic constraint programming
method with three distinguishing features: a novel bound that
works on the And-Or search space directly; the use of (non-
trivial) factorized probability distributions and querying dur-
ing search using a state-of-the-art inference engine from the
UAI community; and within a generic constraint solver mean-
ing that any existing global constraint can be used. This al-
lows to reason over larger problems for which grounding out
all possible worlds is not feasible or incurs too much over-
head. Our CP-based method can handle complex constraints
and not just linear/convex constraints as MIP solvers do.

In the future, we aim to investigate a generic mechanism
for global chance constraints [Hnich et al., 2012], which can
be violated in a small amount of possible worlds [Walsh,
2002]. An option is also to to find approximate solutions by
not exploring worlds with a very small probability/expected
utility. A last promising avenue is to reason over probability
distributions that are influenced by the decisions too, where
our method has the advantage that it reasons over the (non-
ground) problem structure directly.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Benedetti et al., 2008] Marco Benedetti, Arnaud Lallouet,
and Jérémie Vautard. Quantified Constraint Optimization,
pages 463-477. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2008.

[Chavira and Darwiche, 2005] Mark Chavira and Adnan
Darwiche. Compiling bayesian networks with local struc-
ture. In IJCAI, pages 1306—1312. Professional Book Cen-
ter, 2005.

[Chavira and Darwiche, 2008] Mark Chavira and Adnan
Darwiche. On probabilistic inference by weighted model
counting. Artif. Intell., 172(6-7):772-799, 2008.

[Choi et al., 2006] Chiu Wo Choi, Warwick Harvey, Jimmy
Ho-Man Lee, and Peter J Stuckey. Finite domain bounds
consistency revisited. In Australasian Joint Conference on
Artificial Intelligence, pages 49-58. Springer, 2006.

[Chu and Stuckey, 2014] Geoffrey Chu and Peter J. Stuckey.
Nested constraint programs. In Principles and Practice of
Constraint Programming - 20th International Conference,
CP 2014, Lyon, France, September 8-12, 2014. Proceed-
ings, pages 240-255, 2014.

[Darwiche, 2003] Adnan Darwiche. A differential approach
to inference in bayesian networks. J. ACM, 50(3):280—
305, 2003.

[Hnich et al., 2011] Brahim Hnich, Roberto Rossi, S. Arma-
gan Tarim, and Steven Prestwich. A survey on CP-AI-OR
hybrids for decision making under uncertainty. In Pas-
cal van Hentenryck and Michela Milano, editors, Hybrid
Optimization: The Ten Years of CPAIOR, pages 227-270.
Springer, 2011.

[Hnich et al., 2012] Brahim Hnich, Roberto Rossi, S. Arma-
gan Tarim, and Steven Prestwich. Filtering algorithms for
global chance constraints. Artificial Intelligence, 189:69 —
94, 2012.

[Jensen et al., 1994] Frank Jensen, Finn Verner Jensen, and
Sgren L. Dittmer. From influence diagrams to junction
trees. In UAI, pages 367-373. Morgan Kaufmann, 1994.

[Koller and Friedman, 2009] Daphne Koller and Nir Fried-
man. Probabilistic Graphical Models - Principles and
Techniques. MIT Press, 2009.

[Mateescu and Dechter, 2008] Robert Mateescu and Rina
Dechter. Mixed deterministic and probabilistic networks.
Ann. Math. Artif. Intell., 54(1-3):3-51, 2008.

[Moore, 1966] Ramon E. Moore. Interval Analysis.
Prentice-Hall, Englewood Cliffs, N.J., 1966.

[Moore, 1979] Ramon E Moore. Methods and applications
of interval analysis. SIAM, 1979.

[Pearl, 1989] Judea Pearl. Probabilistic reasoning in intel-
ligent systems - networks of plausible inference. Morgan
Kaufmann series in representation and reasoning. Morgan
Kaufmann, 1989.

[Pralet et al., 2007] Cédric Pralet, Gérard Verfaillie, and
Thomas Schiex. An algebraic graphical model for deci-

sion with uncertainties, feasibilities, and utilities. J. Artif.
Int. Res., 29(1):421-489, August 2007.

545

[Qi and Poole, 1995] Runping Qi and David Poole. A new
method for influence diagram evaluation. Computational
Intelligence, 11(3):498-528, 1995.

[Rossi et al., 2008] Roberto Rossi, S. Armagan Tarim,
Brahim Hnich, and Steven Prestwich. Cost-Based Domain
Filtering for Stochastic Constraint Programming, pages
235-250. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[Tarim er al., 2006] Armagan Tarim, Suresh Manandhar, and
Toby Walsh. Stochastic constraint programming: A
scenario-based approach. Constraints, 11(1):53-80, 2006.

[Walsh, 2002] Toby Walsh. Stochastic constraint program-
ming. In ECAI, pages 111-115. IOS Press, 2002.

[Yuan er al., 2010] Changhe Yuan, XiaoJian Wu, and Eric A.
Hansen. Solving multistage influence diagrams using
branch-and-bound search. In UAI pages 691-700. AUAI
Press, 2010.

