
Compact MDDs for Pseudo-Boolean Constraints with At-Most-One Relations in
Resource-Constrained Scheduling Problems

Miquel Bofill, Jordi Coll, Josep Suy and Mateu Villaret
University of Girona, Spain

{miquel.bofill, jordi.coll, josep.suy, mateu.villaret}@imae.udg.edu

Abstract

Pseudo-Boolean (PB) constraints are usually en-
coded into Boolean clauses using compact Binary
Decision Diagram (BDD) representations. Al-
though these constraints appear in many problems,
they are particularly useful for representing re-
source constraints in scheduling problems. Some-
times, the Boolean variables in the PB constraints
have implicit at-most-one relations. In this work
we introduce a way to take advantage of these im-
plicit relations to obtain a compact Multi-Decision
Diagram (MDD) representation for those PB con-
straints. We provide empirical evidence of the
usefulness of this technique for some Resource-
Constrained Project Scheduling Problem (RCPSP)
variants, namely the Multi-Mode RCPSP (MR-
CPSP) and the RCPSP with Time-Dependent Re-
source Capacities and Requests (RCPSP/t). The
size reduction of the representation of the PB con-
straints lets us decrease the number of Boolean
variables in the encodings by one order of mag-
nitude. We close/certify the optimum of many in-
stances of these problems.

1 Introduction
Scheduling problems consist of finding execution times for
each of the activities of a project while respecting some con-
straints. The most frequent involve precedence relations be-
tween activities and limitations over the use of shared re-
sources with finite capacity. Usually, the goal is to find a
schedule that minimizes the makespan, i.e., the total duration
of the project. These problems are NP-hard. Among schedul-
ing problems, the Resource-Constrained Project Scheduling
Problem (RCPSP) is a well-studied one which comprises
non-preemptive activities and renewable constraints. Many
extensions of this problem have been proposed [Brucker et
al., 1999]. One of the key points for solving these problems
is how the resource constraints are handled.

In this work we use SAT Modulo Theories (SMT) en-
codings for scheduling problems: we use Integer Difference
Logic (IDL) to enforce precedences, and SAT encodings of
pseudo-Boolean (PB) constraints to control resources usage.

Interestingly, in some cases the variables of such PB con-
straints have at-most-one (AMO) relations enforced by other
constraints of the global encoding. We show how to take ad-
vantage of this fact to simplify the encodings.

The main contribution of this paper is to provide a spe-
cific way to use Multi-Decision Diagrams (MDD) to repre-
sent PB constraints with AMO relations between their vari-
ables, which we call AMO-PB constraints. AMO-PBs rep-
resent partial functions which do not include in their domain
some assignments which are assumed to be forbidden due to
AMO relations. Having a partial domain allows us to build
compact MDDs which are translated into small SAT encod-
ings. We show that such encodings are very efficient com-
pared to BDD-based SAT encodings of PB constraints. Our
approach can be applied to any problem in which PBs and
AMO constraints between their variables appear together, but
in this work we focus on scheduling problems. The use of
AMO-PBs turns out to be decisive in some problems, where
we are able to outperform state-of-the-art exact solvers.

In the problems we consider, there occur several AMO re-
lations that we can exploit to compact PB constraints into
AMO-PBs. Interestingly, in the formulation of our prob-
lems sometimes we do not need to include any SAT en-
coding of the AMOs, since these are enforced implicitly.
On the one hand, we consider the RCPSP, where AMO re-
lations arise from precedences between activities. On the
other hand, we consider two extensions of it: the Multi-
Mode RCPSP (MRCPSP) [Brucker et al., 1999] where each
activity can be executed in one of many modes, and the
RCPSP with Time-Dependent Resource Capacities and Re-
quests (RCPSP/t) [Hartmann, 2013]. The impact of taking
into account AMOs is higher in these extensions, because the
variables introduced to deal with modes or with resource re-
quirement variations have additional AMO relations which
make AMO-PB encodings much smaller than PB encodings.
Our results show a reduction in the size of the encodings of
one order of magnitude in terms of Boolean variables.

2 Related Work
Many exact approaches have been proposed to tackle the
RCPSP and the MRCPSP, based on Integer Linear Program-
ming (ILP) [Zhu et al., 2006; Koné et al., 2011], Failure-
Directed Search (FDS) [Vilı́m et al., 2015] or Lazy Clause
Generation (LCG) [Schutt et al., 2013; Szeredi and Schutt,

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

555

2016]. SMT has also been shown to be a competitive ap-
proach to solve such scheduling problems [Ansótegui et al.,
2011; Bofill et al., 2016]. The latter demonstrated the good
performance of PB constraints to encode resource constraints.
In [Hartmann, 2015] it was introduced a genetic algorithm to
solve the RCPSP/t, but to our knowledge no exact approach
for this problem has been published.

Regarding the field of PB constraints, there have been
many works on representing them as Binary Decision Dia-
grams (BDDs) and translating them to SAT encodings [Eén
and Sorensson, 2006; Abı́o et al., 2012]. In [Abı́o et al., 2016]
there were presented SAT encodings for the generalized case
of MDDs. [Abı́o et al., 2015] presented an algorithm to con-
struct MDDs from PB constraints with implication chains.
There, it is shown how this approach can be used to capture
AMO relations between variables, but unlike our approach,
it requires some transformations of the original constraints
which introduce many additional clauses and fresh variables.

In [Abı́o and Stuckey, 2014] it was provided an algorithm
to construct MDDs representing Linear Integer (LI) con-
straints. MDDs were also used in [Cire and van Hoeve, 2012]
in the field of scheduling to model the disjunctive global con-
straint.

3 MDDs for Pseudo-Boolean Constraints with
AMO Relations

Before going into the definition of AMO-PBs, we will intro-
duce the concepts of PB and BDD, and illustrate how BDDs
can represent PBs.

Definition 3.1. A pseudo-Boolean (PB) constraint has the
form:

q1 · x1 + · · ·+ qn · xn#K
where qi and K are integer constants, xi are 0/1 (true/false)
variables, and # ∈ {<,≤,=,≥, >}. As usual in the lit-
erature and w.l.o.g. we will assume that # is ≤ [Eén and
Sorensson, 2006].

Definition 3.2. A Binary Decision Diagram (BDD) is a
rooted, directed, acyclic graph which represents a Boolean
function. BDDs have two terminal nodes, namely F -terminal
and T -terminal. Each non-terminal node has associated a
Boolean variable (selector), and has two outgoing edges, rep-
resenting the true and the false assignment of the selector.
Every truth assignment of the variables follows a path from
the root to the T -terminal if it satisfies the formula, or to the
F -terminal otherwise.

A BDD is called ordered if different variables appear in the
same order on all paths from the root. A BDD is said to be
reduced if the following two rules have been applied until fix
point:

• Merge any isomorphic subgraphs.

• Eliminate any node whose two children are isomorphic.

A Reduced Ordered Binary Decision Diagram (ROBDD) is
canonical (unique) for a particular function and variable or-
der.

x1

x2 x2

x3 x3

x4

TF

1 0

1
0

0

1

1

0

0

1

01

(a)

x1, x2

x3, x4

F T

x2

x1, else

x4

x3, else

(b)

Figure 1: (a) ROBDD for 2x1 + 3x2 + 4x3 + 5x4 ≤ 7
(b) ROMDD for 〈2, 3〉 · 〈x1, x2〉+ 〈4, 5〉 · 〈x3, x4〉 ≤ 7

(RO)BDDs can in particular represent PB constraints [Eén
and Sorensson, 2006]. Figure 1a contains the ROBDD repre-
sentation of the PB constraint C : 2x1+3x2+4x3+5x4 ≤ 7
with the variable order x1 ≺ x2 ≺ x3 ≺ x4. As seen in the
picture, a BDD can be organized in different layers, and at
each layer it is considered a different selector variable. For in-
stance, in all the nodes of the second layer we choose whether
to set x2 to true or to false .

In this work we deal with PB constraints whose variables
satisfy AMO relations. For example, consider again the PB
constraint C : 2x1 + 3x2 + 4x3 + 5x4 ≤ 7, and assume
that AMO(x1, x2) and AMO(x3, x4) hold, i.e., these con-
straints are already enforced. A possible truth assignment of
C would be x1 = true, x2 = true, but we know that such
an assignment is already forbidden. Therefore, there is no
need to handle this assignment in an encoding of the PB con-
straint. This motivates the definition of PB constraints with
AMO relations as follows.

Definition 3.3. We refer to an integer linear expression q1 ·
x1 + · · · + qm · xm over 0/1 variables x1, . . . , xm, subject
to the fact that at most one xi is true, as an AMO-product.
We conveniently express AMO-products as QX , where Q =
〈q1, . . . , qm〉 and X = 〈x1, · · · , xm〉.
Definition 3.4. We refer to an expression of the formQ1X1+
· · ·+QnXn ≤ K, where QiXi are AMO-products and K is
an integer constant, as a PB constraint with AMO relations
(AMO-PB).

Note that an AMO-PB can be seen as a partial function,
whose value is undefined if the AMO relation does not hold
for some Xi.

AMO-PBs generalize PBs, since the particular case in
which each AMO-product contains only one variable is in-
deed a PB constraint. Now, still assuming thatAMO(x1, x2)
and AMO(x3, x4) hold, we can redefine C as an AMO-PB
C ′ : 〈2, 3〉 · 〈x1, x2〉 + 〈4, 5〉 · 〈x3, x4〉 ≤ 7. This has to
be read as: the sum of either 2x1 or 3x2 or non of them,
plus 4x3 or 5x4 or none of them, is ≤ 7. Unlike C, C ′ is
not defined for assignments such as x1 = true, x2 = true,

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

556

i.e., the assignments that do not satisfy the AMO relation be-
tween the variables of some AMO-product do not belong to
the domain of C ′. The key point of our approach is construct-
ing decision diagram representations of AMO-PBs which do
not handle such assignments; this lets us obtain more com-
pact structures than the classical BDD representations of PB
constraints. Obviously, it has to be guaranteed that the AMO
constraint of each AMO-product is satisfied but, interestingly,
it may be the case that these constraints are implied by other
constraints, as we will see in Section 4. Now we show how to
represent an AMO-PB constraint with an MDD.

Definition 3.5. A Multi-Decision Diagram (MDD) is a gen-
eralization of a BDD. It is a rooted, directed, acyclic multi-
graph which has two terminal nodes, namely F -terminal and
T -terminal. Each non-terminal node can have an arbitrary
number of outgoing edges, each one corresponding to a dif-
ferent decision. The same notions of ordered and reduced can
be applied to MDDs, thus having also ROMDDs.

In their classical definition, MDDs stand for Multi-valued
Decision Diagrams and can be seen as a generalization of
BDDs which have a multi-valued selector variable in each
node instead of a Boolean variable [Srinivasan et al., 1990].
However, and especially in the context of SAT encodings of
MDDs, a set of Boolean variables can be used as selectors,
each variable representing a different decision.

In our setting, each non-terminal node has associated a list
of Boolean selector variables 〈x1, . . . , xm〉, and has an out-
going edge for each variable. Moreover, there is an additional
outgoing edge, which we denote as the else edge. Each one of
the m+1 outgoing edges corresponds to a different decision,
namely assigning to true exactly one of xi, 1 ≤ i ≤ m, or
assigning all of them to false , hence choosing the else edge.

AMO-PBs can be represented with such MDDs, where
each node handles an AMO-product, and all paths from the
root to a terminal node choose (assign to true) at most one of
the variables of each AMO-product. Every one of these truth
assignments follows a path from the root to the T -terminal if
it satisfies the AMO-PB, or to the F -terminal otherwise. Fig-
ure 1b contains the ROMDD representation of C ′ with the
order 〈x1, x2〉 ≺ 〈x3, x4〉. Unlike BDDs for PB constraints,
where each layer considers a single variable, each layer of an
ROMDD considers the set of variables of a different AMO-
product. Note the significant size reduction with respect to
the ROBDD representation of C in Figure 1a. In particular,
we have now just 2 non-terminal nodes instead of the 6 we
had originally, and the depth is reduced from 5 to 3.

3.1 The Particular Case of Exactly-One
The particular case where the variables of an AMO-product
satisfy an exactly-one (EO) constraint is already supported by
AMO-PBs. However, in this case we can further simplify the
AMO-product as follows. Consider an AMO-PB Q1X1 +
· · · + QnXn ≤ K. Let Xi = 〈x1, . . . , xm〉 such that an
EO relation holds on its variables, and Qi = 〈q1, . . . , qm〉.
We can simplifyXi intoX ′i = 〈x1, . . . , xj−1, xj+1, . . . , xm〉
andQi intoQ′i = 〈q1−qj , . . . , qj−1−qj , qj+1−qj , . . . , qm−
qj〉, for some j, and replace the original AMO-PB byQ1X1+
· · ·+Q′iX ′i+ · · ·+QnXn ≤ K−qj . Moreover, by choosing

a qj which appears more than once, more than one variable
can be removed from the AMO-product.

Example 3.1. Let C : 〈2, 2, 3, 4〉 · 〈x1, x2, x3, x4〉 ≤ 3, and
assume that EO(x1, x2, x3, x4) holds. By removing all xj
with coefficient qj = 2 in the previously described way, we
obtain C ′ : 〈1, 2〉 · 〈x3, x4〉 ≤ 1, and AMO(x3, x4) holds.
Note that we can replace C by C ′ because the following
holds:

C ∧ EO(x1, x2, x3, x4)⇔ C ′ ∧ EO(x1, x2, x3, x4)

3.2 MDD Construction
In [Abı́o et al., 2012], it was presented an algorithm to con-
struct a ROBDD representing a PB constraint with a given
variable ordering, whose running time is polynomial w.r.t. the
size of the resulting ROBDD. Now we present a generaliza-
tion of this algorithm to construct a ROMDD representing an
AMO-PB with a given order on the sets of variables of the
AMO-products. We highlight the main aspects of this gener-
alized algorithm, and refer the reader to [Abı́o et al., 2012]
for further details.

Before describing the algorithm, we introduce the idea of
interval for AMO-PB constraints.

Definition 3.6. Let C be of the form Q1X1+ · · ·+QnXn ≤
K. The interval of C are all integers K ′ such that Q1X1 +
· · · + QnXn ≤ K ′, interpreted as a Boolean function, is
equivalent to C. The set of valid K ′ is always an interval
that we denote as [β, γ].

For example, given the AMO-PB 〈1, 5, 4〉 · 〈x1, x2, x3〉 +
〈4〉 · 〈x4〉 ≤ 6, its interval is [5, 7], because its truth table is
the same for K ′ = 5, K ′ = 6 and K ′ = 7, and different for
K ′ = 4 and K ′ = 8 (taking into account that this AMO-PB
is undefined for some assignments). The ROMDD represen-
tation of an AMO-PB constraint is the same for all the values
of its interval.

At layer i of the global ROMDD, each node is the root
of the ROMDD representing the AMO-PB QiXi + · · · +
QnXn ≤ K, for some different K at each node. The al-
gorithm ensures that the ROMDD is reduced by maintaining
a set Li of tuples ([β, γ],M) for each layer i of the global
ROMDD, where [β, γ] is an interval and M its associated
ROMDD. We denote L = (L1, . . . , Ln+1) the list of all Li
sets of a ROMDD. By means of this dynamic programming
method, the ROMDD representation for a particular inter-
val of an AMO-PB constraint is constructed only once, and
reused as many times as needed.

The main procedure is described in Algorithm 1. It re-
ceives as input an AMO-PB C : Q1X1 + · · ·+QnXn ≤ K,
and the ordering used for the ROMDD is X1 ≺ · · · ≺ Xn.
It starts by computing, for each layer of the final ROMDD,
the interval of the T -terminal ROMDD and the interval of
the F -terminal ROMDD. Then, it calls the recursive proce-
dure MDDBuild (Algorithm 2). This inserts and searches
ROMDDs in the lists Li while recursively constructing the
global ROMDD. More precisely, each call creates (if it was
not already constructed and stored in Li) the ROMDD for a
given AMO-PBC : QiXi+· · ·+QnXn ≤ K and layer i. To
construct this ROMDD, the child for each possible decision

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

557

Algorithm 1 Construction of ROMDD algorithm

Require: constraint C : Q1X1 + · · ·+QnXn ≤ K
Ensure: returnsM the ROMDD of C

for all i such that 1 ≤ i ≤ n+ 1 do

Li ←

{
((−∞,−1],F) , ([

∑
j∈[i,n]

max(Qj),∞), T)

}
end for
L ← 〈L1, . . . , Ln+1〉
([β, γ],M)←MDDBuild(1, C,L)
return M

is recursively constructed, taking into account that choosing
xj contributes with qj to the left-hand-side sum of C, and
that choosing else has a 0 contribution. If all the children are
the same ROMDD, i.e., all the outgoing edges point to the
same ROMDD, no new node is created but this unique child
is already the representation of C. Otherwise, the root node
for the ROMDD representing C is created, and its children
are properly linked. Finally, the obtained ROMDD and its
corresponding interval are inserted in Li.

Algorithm 2 uses the following functions:
search(K,Li): If there is a tuple (I,M) in Li, such that

K ∈ I , it is returned. Otherwise, an empty interval is
returned in the first component of the tuple.

insert((I,M), Li): Inserts (I,M) into the set Li.
indexOfMax(Qi): Returns the position of the maximum co-

efficient in list Qi.
mdd(〈x1, . . . , xm〉, 〈M1, . . . ,Mm〉,Melse): Constructs

an MDD with a new node as root, Mj as child for
selector variable xj , andMelse as the else child.

3.3 SAT Encodings of MDDs for AMO-PBs
The SAT encoding for MDDs that we use was firstly intro-
duced in [Abı́o et al., 2012] for BDDs representing mono-
tonic PB constraints. This encoding is generalized arc-
consistent. A generalized version for MDDs can be found
in [Abı́o et al., 2016]. Many other encodings were presented
in the latter, not restricted to monotonic functions, but we
have observed that in the resource constraints considered in
this paper they generate larger encodings both in number of
variables and clauses, and have a worse runtime performance.

In the AMO-PBs that we use in Section 4, all the coeffi-
cients are positive, and therefore we adapt the encoding for
monotonic MDDs of [Abı́o et al., 2016] to take into account
the else case. We add a fresh auxiliary Boolean variable v
for each node of the MDD. Each non-terminal node of the
MDD has as selector variables 〈x1, . . . , xm〉, and v as aux-
iliary variable. Each selector xi of a node has associated an
outgoing edge to a child node with auxiliary variable vi. We
assert the following clauses for each non-terminal node:

¬vi ∧ xi → ¬v ∀i ∈ [1,m], vi 6= velse

¬velse → ¬v
Moreover, we assert the clauses {vr}, {vT } and {¬vF},
where vr, vT , vF , are the auxiliary variables of the root, the

Algorithm 2 Procedure MDDBuild

Require: integer i ∈ {1, . . . , n+ 1},
constraint C : QiXi + · · ·+QnXn ≤ K and list L

Ensure: returns [β, γ] interval of C,M its ROMDD
([β, γ],M)← search(K,Li)
if [β, γ] 6= ∅ then

return ([β, γ],M)
else
〈x1, . . . , xm〉 ← Xi

〈q1, . . . , qm〉 ← Qi
α← indexOfMax(Qi)
for all j such that 1 ≤ j ≤ m do
C ′ ← Qi+1Xi+1 + · · ·+QnXn ≤ K − qj
([βj , γj],Mj)←MDDBuild(i+ 1, C ′,L)

end for
C ′ ← Qi+1Xi+1 + · · ·+QnXn ≤ K
([βelse, γelse],Melse)←MDDBuild(i+ 1, C ′,L)
if [βα, γα] = [βelse, γelse] then
M←Mα

[β, γ]← [βα + qα, γα]
else
M← mdd(〈x1, . . . , xm〉, 〈M1, . . . ,Mm〉,Melse)
[β, γ]← [βelse, γelse] ∩

⋂
j∈[1,m]

[βj + qj , γj + qj]

end if
insert(([β, γ],M), Li)
return ([β, γ],M)

end if

T -terminal and the F -terminal nodes respectively. Note that
a node can have more than one selector pointing to the same
child, and if it happens with the else child, there is no need to
add the clauses corresponding to selector variables pointing to
the else child. We remark that this encoding does not enforce
AMO constraints on the variables of the AMO-products, but
we have constructed the AMO-PBs assuming that such con-
straints hold. For the soundness of the whole encoding of
a problem, these constraints must be already enforced either
implicitly, as shown in Section 4, or explicitly.

4 Application to Scheduling Problems
The Resource-Constrained Project Scheduling Problem
(RCPSP) consists of finding a start time for each activity (a
schedule) in a project while respecting precedence and re-
source usage constraints. The schedule must minimize the
total duration of the project (makespan). It is defined by a
tuple (V, p, E,R,B, b) where:
• V = {A0, A1, . . . , An, An+1} is a set of activities. Ac-

tivities A0 and An+1 are dummy activities representing,
by convention, the start and the end of the schedule, re-
spectively. They don’t consume resources and have du-
ration 0.
• p is a vector of naturals, where pi is the duration of Ai.
• E is a set of pairs of activities representing precedence

relations. Concretely, (Ai, Aj) ∈ E iff the execution
of activity Ai must precede that of activity Aj , i.e., ac-
tivity Aj must start after activity Ai has finished. We

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

558

assume that we are given a precedence activity-on-node
graph G(V,E) that contains no cycles, since otherwise
the precedence relation is inconsistent.

• R = {R1, . . . , Rv} is a set of renewable resources.

• B ∈ Nv is a vector of naturals, whereBk is the available
amount of each resource Rk.

• b is a matrix of naturals corresponding to the resource
demands of activities, and bi,k represents the amount of
resourceRk that activityAi is using per time step during
its execution.

A schedule is a vector of naturals S =
(S0, S1, . . . , Sn, Sn+1) where Si denotes the start time
of activity Ai.

It is common in the literature to compute the transitive clo-
sure E∗ of E, which contains a pair of activities (Ai, Aj) iff
there is a path from Ai to Aj in the precedence graph. We
will denote G∗ = (A,E∗) as the extended precedence graph.

In ([Bofill et al., 2016]) it is proposed an SMT encod-
ing for the MRCPSP which models the precedences as IDL
expressions, and enforces the resource constraints with BDD
encodings of PB constraints. The overall idea of the encoding
is to capture, for each activity Ai ∈ V , and for each discrete
time instant t ∈ TW (Ai), whether Ai is running at time t.
Here TW (Ai) is the range of time instants in which Ai can
be running according to some preprocessed information [Ar-
tigues et al., 2007]. In the current work we use the precedence
graph to infer earliest start times and latest close times. Then,
the encoding enforces the resource constraints at all time in-
stants t ∈ [0, H], where H is a large enough time horizon to
ensure the feasibility of the project. The following equations
are a subset of this encoding properly adapted for the case
of RCPSP. We do not reproduce the whole encoding, but the
principal equations involved in the contributions of this paper.

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E (1)
xi,t ↔ (Si ≤ t < Si + pi) ∀Ai ∈ V, ∀t ∈ TW (Ai) (2)

(∑
Ai ∈ V, t ∈ TW (Ai), bi,k > 0

bi,k · xi,t

)
≤ Bk

∀Rk ∈ {R1, . . . , Rv}, ∀t ∈ [0, H] (3)

Si are integer variables denoting the start time of activity Ai,
and xi,t are Boolean variables which are true iffAi is running
at time t. Constraints (1) enforce the precedence relations,
Constraints (2) define xi,t, and PB Constraints (3) ensure that
the capacity of Rk is not surpassed at time t.

4.1 Implicit AMO from Precedences
A precedence (Ai, Aj) ∈ E introduces an incompatibility
between these two activities, i.e., they can never be running
at the same time. It is also the case for any pair of activities
connected by a path in the precedence graph. For this reason,
for a given time instant t there is a mutual exclusion between
any pair of variables (xi,t, xj,t) such that (Ai, Aj) ∈ E∗.
This means that all the variables xi,t of activities in a path

A0

A1

A2

A3

A4

A5

A6

Figure 2: An example precedence graph with a minimum path cover
of its extended precedence graph.

are pairwise mutually exclusive, or in other words, they sat-
isfy the AMO relation. Note that there are no clauses explic-
itly enforcing the AMO over variables xi,t in a path, but it is
guaranteed by Equations (1) and (2).

What we will do is to compute a path cover P =
〈P1, ..., Pl〉 in G∗, i.e., Pi = 〈Ai1 , . . . , Aik〉 is a path in G∗
and every activity belongs to one and only one path.

For every path Pi ∈ P we will have an AMO-product
in an AMO-PB constraint, and thus a layer in the result-
ing ROMDD. For this reason we are interested in finding a
minimum path cover, which can be done in polynomial time
in directed acyclic graphs [Fulkerson, 1956]. Note the im-
portance of computing the minimum path cover in G∗ in-
stead of G. Figure 2 depicts a precedence graph of a project
with 7 activities. For the sake of simplicity, the picture does
not contain all the additional extended precedences but only
(A2, A5) ∈ E∗. Thanks to this extended edge, we can
find P = 〈〈A1, A3, A4〉, 〈A0, A2, A5, A6〉〉 which only has 2
paths. Otherwise, using the non-extended precedence graph
a minimum path cover would contain 3 paths.

4.2 AMO-PB for Resource Constraints
Now we show how to use minimum path covers on G∗ to
reformulate the resource constraints (3) as AMO-PB con-
straints. For some time instant t:

1. Compute G∗(t) the subgraph from G∗ that contains all
the nodes of the activities Ai such that t ∈ TW (Ai),
i.e., G∗(t) = (V (t), E∗(t)), where V (t) = {Ai |Ai ∈
V, t ∈ TW (Ai)}, and E∗(t) = {(Ai, Aj) | (Ai, Aj) ∈
E∗, Ai ∈ V (t), Aj ∈ V (t)}.

2. Compute a minimum path cover P(t) = 〈P1, ..., Pl〉 of
G∗(t).

3. Formulate the AMO-PB constraint by defining an AMO-
product for each Pi ∈ P(t)

The first two steps remain the same for many generaliza-
tions of the RCPSP, and in particular for the ones considered
in this paper. The implementation of the third step for each
particular problem is described below.

RCPSP
We substitute PB constraints (3) for the following AMO-PB
constraints:∑

Pi∈P(t)

Q(Pi, k) ·X(Pi, k, t) ≤ Bk

∀Rk ∈ {R1, . . . , Rv}, ∀t ∈ [0, H] (4)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

559

Where Q(Pi, k) is the list of coefficients:

Q(Pi, k) = 〈bj,k | Aj ∈ Pi ∧ bj,k > 0〉

And X(Pi, k, t) is the list of Boolean variables:

X(Pi, k, t) = 〈xj,t | Aj ∈ Pi ∧ bj,k > 0〉

Note the AMO constraint among the variables of the AMO-
products is implicitly enforced by the precedences in the
paths. This also happens in MRCPSP and RCPSP/t.

MRCPSP
The Multi-Mode Resource-Constrained Project Scheduling
Problem (MRCPSP) introduces different execution modes for
the activities. The durations and the demands of the activities
depend on their execution mode. In addition to the start times,
solutions have also to assign a single execution mode to each
activity.

We denote the number of possible execution modes of Ai
as Mi. For an activity Ai, running in mode o ∈ [1,Mi], its
demand over resource Rk is bi,k,o, and its duration is pi,o.
As done in [Bofill et al., 2016], we add the Boolean variables
mi,o which are true iffAi runs in mode o. It has to be ensured
that each activity runs in exactly one mode. We encode this
constraint (5) with the classical quadratic encoding. The de-
pendence of the durations and the demands on the execution
modes slightly modifies the precedence constraints (6), and
requires the substitution xi,t for xi,t,o (7), now meaning that
Ai is running at time t in execution mode o:

exactly oneo∈[1,Mi](mi,o) ∀Ai ∈ V (5)

mi,o → (Sj − Si ≥ pi,o)
∀(Ai, Aj) ∈ E, ∀o ∈ [1,Mi] (6)

xi,t,o ↔ (Si ≤ t ∧ t < Si + pi ∧mi,o)

∀Ai ∈ V, ∀t ∈ TW (Ai), ∀o ∈ [1,Mi] (7)

We update Constraints (4) by redefining Q and X:

Q(Pi, k) = 〈bj,k,o | Aj ∈ Pi ∧ o ∈ [1,Mj] ∧ bj,k,o > 0〉

X(Pi, k, t) = 〈xj,t,o | Aj ∈ Pi ∧ o ∈ [1,Mj] ∧ bj,k,o > 0〉
Moreover, in this problem there can be non-renewable re-
sources, whose demanded capacity is not recovered af-
ter the demanding activity ends its execution. Letting
{Rv+1, . . . , Rw} be the non-renewable resources, the AMO-
PB constraint which guarantees that their capacity is not ex-
ceeded is the following:∑

Ai∈V
Q(Ai, k) ·X(Ai, k) ≤ Bk

∀Rk ∈ {Rv+1, . . . , Rw} (8)

Having:
Q(Ai, k) = 〈bi,k,o | o ∈ [1,Mi]〉
X(Ai, k) = 〈mi,o | o ∈ [1,Mi]〉

Since variables mi,o maintain an EO relation for a fixed
Ai (5), we apply the reduction explained in Section 3.1 to

Constraints (8). In order to preserve the monotonicity re-
quired in the SAT encoding that we use for the MDDs, we
take the minimum qj in each AMO-product. Thanks to this,
we can remove at least one variable from each AMO-product.
This turns out to be very significant in the benchmark in-
stances considered in Section 5, which contain activities with
3 execution modes, and hence the number of variables in
AMO-PB constraints is reduced at least to 2/3.

Note that the AMO constraint among the variables of
AMO-products is preserved both in renewable and non-
renewable resource constraints. This follows from Con-
straints (5) and (7).

An interesting property of using AMO-PBs in MRCPSP
is that the inclusion of multiple execution modes for the ac-
tivities in the resource constraints do not yield an increase
of the depth of the MDDs with respect to the single-mode
case, because all the variables of possible modes of a particu-
lar activity are included in a same AMO-product (and hence
handled in the same MDD layer). The BDD representation of
resource PB constraints in [Bofill et al., 2016] multiplies the
depth of the BDDs by the number of modes of the activities.

RCPSP/t
In this generalization of the RCPSP, the resources’ capacities
can be different at each time instant, and the requirements of
an activity can be different at each time instant of its execu-
tion. Now we denote the capacity of resource Rk at time t as
Bk,t, and the demand of activity Ai at its e-th execution time
instant as bi,k,e. In order to encode this problem, we rede-
fine variables xi,t to have a different meaning than in RCPSP.
Now xi,t is true iff activity Ai starts at time t:

xi,t ↔ Si = t ∀Ai ∈ V, ∀t ∈ TW ′(Ai) (9)

Where TW ′(Ai) is the range of time instants at whichAi can
start. Note that TW ′(Ai) ⊆ TW (Ai). Now we can redefine
the resource constraints (4) as:∑

Pi∈P(t)

Q(Pi, k, t) ·X(Pi, k, t) ≤ Bk,t

∀Rk ∈ {R1, . . . , Rv}, ∀t ∈ [0, H] (10)

Having:

Q(Pi, k, t) = 〈bj,k,e | Aj ∈ Pi ∧ e ∈ [0, pj) ∧
∧ t− e ∈ TW ′(Aj) ∧ bj,k,e > 0〉

X(Pi, k, t) = 〈xj,t−e | Aj ∈ Pi ∧ e ∈ [0, pj) ∧
∧ t− e ∈ TW ′(Aj) ∧ bj,k,e > 0〉

The main idea of Constraints (10) is that an activity can only
be running at time t because it has started at some time t− e
for e ∈ [0, pj). Note that the AMO relation among all the
variables xi,t of a given Ai is guaranteed by the domain of Si
and Constraints (9), i.e., an activity has only one start time.

5 Experiments
We have run our experiments on a 8GB Intel R© Xeon R© E3-
1220v2 machine at 3.10 GHz. In all experiments we use

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

560

set tool 25% 50% 75% avg t.o.
MRCPSP

j30
(640)

FDS 0.03 0.07 6.4 38.6 15
LCG 0.11 0.21 0.6 29.6 25
PB 1.04 2.00 4.4 23.7 14
APB 0.33 0.49 0.8 14.7 9

M50
(540)

FDS 0.04 1.33 t.o. 173.4 140
LCG 0.59 6.59 338.0 162.4 115
PB 3.35 7.94 127.3 143.1 105
APB 1.07 1.93 24.2 108.2 88

RCPSP/t
j30
(2880)

PB 0.26 1.04 3.1 3.1 0
APB 0.05 0.16 0.4 0.4 0

j120
(3600)

PB 29.61 t.o. t.o. 368.1 2085
APB 7.16 56.18 t.o. 253.8 1390

Table 1: Solving time results. All values are in seconds, with a
timeout of 600 seconds. The first column contains two values: on
top there is the name of the dataset, which specifies the number of
non-dummy activities of each instance; below that, between paren-
thesis, there is the number of instances in the dataset. Column 2
specifies, for each row, the tool used to solve the instances of the
dataset. Columns 25%, 50% and 75% specify the first, second, and
third quartile of the running times of solving each instance of the
dataset, and t.o. means timeout. Column avg contains the average
run time, counting timeouts as 600 seconds. The last column con-
tains the number of instances that timed out without having found
an optimal solution and proven its optimality.

Yices 2.4.2 [Dutertre and de Moura, 2006] as the core SMT
solver. We have also implemented the optimization procedure
described in [Bofill et al., 2016]. We have tested our pro-
posal on benchmark datasets of different hardness available in
PSPLib [Kolisch and Sprecher, 1997] and MMLIB [Van Pe-
teghem and Vanhoucke, 2014].1

First of all we compare the time performance of our system
(APB in short) with the best known exact methods for these
problems. Namely, for RCPSP and MRCPSP we consider
Failure-Directed Search (FDS) [Vilı́m et al., 2015], Lazy
Clause Generation (LCG) [Schutt et al., 2013; Szeredi and
Schutt, 2016], and SMT with PB constraints (PB) [Bofill et
al., 2016]. We have been able to run all the solvers in the
described environment except LCG for the RCPSP, for which
we have considered results from [Schutt et al., 2013]. To the
best of our knowledge there is no exact approach to tackle
RCPSP/t. In order to evaluate the impact of using AMO-PB
constraints we have also codified this problem by transform-
ing AMO-PBs into PBs in the obvious way (i.e., splitting all
AMO-products into single variable products). These results
are given in Table 1.

In the MRCPSP, APB is able to solve to optimality within
the timeout many more instances than the other approaches,
especially for MMLIB50 (M50 in the table), which is the
hardest set of instances. Both in MRCPSP and RCPSP/t there
is a significant speedup using AMO-PB constraints w.r.t. us-
ing PB constraints. One possible cause for this can be found
in Table 2. It contains, for PB and APB, the average size

1Our solvers and detailed results can be downloaded at
http://imae.udg.edu/recerca/LAP

problem tool vars clauses

MRCPSP PB 281 569
APB 45 277

RCPSP/t PB 3450 5605
APB 360 3012

Table 2: Comparison of the number of Boolean variables and
clauses. The values are expressed in thousands. We consider the
set MMLIB50 for MRCPSP and j120 for RCPSP/t.

of the encoding of a dataset in terms of number of Boolean
variables and number of clauses. We consider the hardest set
of each problem, i.e., MMLIB50 for MRCPSP and j120 for
RCPSP/t. It can be seen that the reduction is an order of mag-
nitude for the number of Boolean variables and halving for
the number of clauses.

Regarding RCPSP, we have tested our system with sets j30,
j60, j90 and j120 from PSPLib. We do not include detailed
results for lack of space, but we have observed that APB aver-
age runtimes are very similar with the ones of FDS and LCG,
and the number of unsolved instances is equal or smaller in
all cases. Overall, we certify the optimality of 6 new in-
stances and decrease the upper bound of 2 instances for the
MMLIB50 dataset with respect to the best reported results
until now [Bofill et al., 2016; Geiger, 2013]. Finally, as men-
tioned earlier, to our knowledge no previous results of exact
methods have been published for the RCPSP/t datasets, but
they have been tackled with heuristic methods in [Hartmann,
2013] and [Hartmann, 2015]. We have certified the optimal-
ity, or infeasibility for the time horizon specified, of 5090
instances, and improved the upper bound of 1763 instances
with respect to the heuristic methods.

6 Conclusions
In this work we have shown that the codification into SAT of
PB constraints which have AMO relations among their vari-
ables can be enhanced by using MDD representations. Al-
though our technique can be used in any problem with such
kind of constraints, we have shown that in the particular case
of scheduling problems it performs very well. This suggests
that the presented approach could be successfully used in
other domains. In addition, we have presented SMT encod-
ings for scheduling problems which have shown to provide
very good performance, and that can be handled by any off-
the-shelf SMT solver.

Acknowledgments
Work supported by grants TIN2015-66293-R (MINECO/FE-
DER, UE), MPCUdG2016/055 (UdG), and Ayudas para
Contratos Predoctorales 2016 (grant number BES-2016-
076867, funded by MINECO and co-funded by FSE). We
thank the authors of [Vilı́m et al., 2015; Szeredi and Schutt,
2016] for sharing with us the FDS and LCG solvers, and the
author of [Hartmann, 2013; 2015] for sharing the heuristics
results for the RCPSP/t. We are also grateful to Dr. Alan
Frisch for his helpful comments.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

561

References
[Abı́o and Stuckey, 2014] Ignasi Abı́o and Peter J Stuckey.

Encoding linear constraints into SAT. In International
Conference on Principles and Practice of Constraint Pro-
gramming, pages 75–91. Springer, 2014.

[Abı́o et al., 2012] Ignasi Abı́o, Robert Nieuwenhuis, Albert
Oliveras, Enric Rodrı́guez-Carbonell, and Valentin Mayer-
Eichberger. A new look at BDDs for pseudo-Boolean con-
straints. Journal of Artificial Intelligence Research, pages
443–480, 2012.

[Abı́o et al., 2015] Ignasi Abı́o, Valentin Mayer-Eichberger,
and Peter J Stuckey. Encoding linear constraints with
implication chains to CNF. In International Conference
on Principles and Practice of Constraint Programming,
pages 3–11. Springer, 2015.

[Abı́o et al., 2016] Ignasi Abı́o, Graeme Gange, Valentin
Mayer-Eichberger, and Peter J Stuckey. On CNF En-
codings of Decision Diagrams. In Integration of AI and
OR Techniques in Constraint Programming: 13th Inter-
national Conference, CPAIOR 2016, Banff, AB, Canada,
May 29-June 1, 2016, Proceedings, volume 9676, page 1.
Springer, 2016.

[Ansótegui et al., 2011] Carlos Ansótegui, Miquel Bofill,
Miquel Palahı́, Josep Suy, and Mateu Villaret. Satis-
fiability Modulo Theories: An Efficient Approach for
the Resource-Constrained Project Scheduling Problem.
In Proceedings of the Ninth Symposium on Abstraction,
Reformulation, and Approximation (SARA), pages 2–9.
AAAI, 2011.

[Artigues et al., 2007] Christian Artigues, Sophie Demassey,
and Emmanuel Neron. Resource-Constrained Project
Scheduling: Models, Algorithms, Extensions and Appli-
cations. ISTE Ltd., 2007.

[Bofill et al., 2016] Miquel Bofill, Jordi Coll, Josep Suy,
and Mateu Villaret. Solving the multi-mode resource-
constrained project scheduling problem with SMT. In 28th
IEEE International Conference on Tools with Artificial In-
telligence, ICTAI 2016, San Jose, CA, USA, November 6-8,
2016, pages 239–246, 2016.

[Brucker et al., 1999] Peter Brucker, Andreas Drexl, Rolf
Mhring, Klaus Neumann, and Erwin Pesch. Resource-
Constrained Project Scheduling: Notation, Classification,
Models, and Methods. European Journal of Operational
Research, 112(1):3 – 41, 1999.

[Cire and van Hoeve, 2012] Andre A Cire and Willem Jan
van Hoeve. MDD Propagation for Disjunctive Schedul-
ing. In International Conference on Automated Planning
and Scheduling (ICAPS), pages 11–19, 2012.

[Dutertre and de Moura, 2006] B. Dutertre and L. de Moura.
The Yices SMT Solver. Technical report, Computer Sci-
ence Laboratory, SRI International, 2006. Available at
http://yices.csl.sri.com.

[Eén and Sorensson, 2006] Niklas Eén and Niklas Sorens-
son. Translating pseudo-boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Compu-
tation, 2:1–26, 2006.

[Fulkerson, 1956] Delbert Ray Fulkerson. Note on Dil-
worths decomposition theorem for partially ordered sets.
In Proc. Amer. Math. Soc, volume 7, pages 701–702, 1956.

[Geiger, 2013] Martin Josef Geiger. Iterated variable neigh-
borhood search for the resource constrained multi-mode
multi-project scheduling problem. CoRR, abs/1310.0602,
2013.

[Hartmann, 2013] Sönke Hartmann. Project scheduling with
resource capacities and requests varying with time: a case
study. Flexible Services and Manufacturing Journal, 25(1-
2):74–93, 2013.

[Hartmann, 2015] Sönke Hartmann. Time-varying resource
requirements and capacities. In Handbook on Project
Management and Scheduling Vol. 1, pages 163–176.
Springer, 2015.

[Kolisch and Sprecher, 1997] Rainer Kolisch and Arno
Sprecher. PSPLIB - A Project Scheduling Problem
Library. European Journal of Operational Research,
96(1):205–216, 1997.

[Koné et al., 2011] Oumar Koné, Christian Artigues, Pierre
Lopez, and Marcel Mongeau. Event-Based MILP Mod-
els for Resource-Constrained Project Scheduling Prob-
lems. Computers & Operations Research, 38:3–13, Jan-
uary 2011.

[Schutt et al., 2013] Andreas Schutt, Thibaut Feydy, and Pe-
ter J Stuckey. Explaining time-table-edge-finding propa-
gation for the cumulative resource constraint. In Interna-
tional Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems,
pages 234–250. Springer, 2013.

[Srinivasan et al., 1990] Arvind Srinivasan, Timothy Ham,
Sharad Malik, and Robert K Brayton. Algorithms for dis-
crete function manipulation. In Computer-Aided Design,
1990. ICCAD-90. Digest of Technical Papers., 1990 IEEE
International Conference on, pages 92–95. IEEE, 1990.

[Szeredi and Schutt, 2016] Ria Szeredi and Andreas Schutt.
Modelling and solving multi-mode resource-constrained
project scheduling. In International Conference on Princi-
ples and Practice of Constraint Programming, pages 483–
492. Springer, 2016.

[Van Peteghem and Vanhoucke, 2014] Vincent Van Pe-
teghem and Mario Vanhoucke. An experimental
investigation of metaheuristics for the multi-mode
resource-constrained project scheduling problem on new
dataset instances. European Journal of Operational
Research, 235(1):62–72, 2014.

[Vilı́m et al., 2015] Petr Vilı́m, Philippe Laborie, and Paul
Shaw. Failure-directed search for constraint-based
scheduling. In Integration of AI and OR Techniques in
Constraint Programming, pages 437–453. Springer, 2015.

[Zhu et al., 2006] Guidong Zhu, Jonathan F. Bard, and Gang
Yu. A Branch-and-Cut Procedure for the Multimode
Resource-Constrained Project-Scheduling Problem. IN-
FORMS J. on Computing, 18(3):377–390, January 2006.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

562

