Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Relaxed J-Step Plans in Planning as SMT

Miquel Bofill, Joan Espasa, Mateu Villaret
University of Girona, Spain.
{miquel.bofill, joan.espasa, mateu.villaret} @udg.edu

Abstract

Planning Modulo Theories (PMT), inspired by Sat-
isfiability Modulo Theories (SMT), allows the in-
tegration of arbitrary first order theories, such as
linear arithmetic, with propositional planning. Un-
der this setting, planning as SAT is generalized to
planning as SMT. In this paper we introduce a new
encoding for planning as SMT, which adheres to
the relaxed relaxed 3-step (R?3-step) semantics for
parallel plans. We show the benefits of relaxing the
requirements on the set of actions eligible to be ex-
ecuted at the same time, even though many redun-
dant actions can be introduced. We also show how,
by a MaxSMT based post-processing step, redun-
dant actions can be efficiently removed, and pro-
vide experimental results showing the benefits of
this approach.

1 Introduction

The possibility of several actions being planned at the same
time step, i.e., the notion of parallel plans, is crucial for plan-
ning as satisfiability approaches [Rintanen et al., 2006], in
which the feasibility of a plan in a given number of time steps
is encoded as a SAT formula; the greater the number of time
steps, the bigger the formula. Hence, parallel plans may help
improve the performance of the planner because they enable
the reduction of the time horizon.

Pioneering work on parallel plans [Kautz and Selman,
1996] was based on the so-called V-step semantics, which re-
quires that parallel actions can be executed sequentially in
any order, and the same terminal state is reached. Therefore,
parallel application of actions is allowed only if they do not
interfere in any way. The 3-step semantics, proposed in [Di-
mopoulos et al., 1997] and further developed in [Rintanen et
al., 2006], is less restrictive since it only requires that parallel
actions can be executed in some order. This relaxation allows
much more parallelism. Another improvement is the relaxed
J-step semantics [Wehrle and Rintanen, 2007], which allows
actions to be scheduled in parallel in a state s even if not all
of them are applicable in s. Basically, those actions’ precon-
ditions will be satisfied by the effects of other previously ex-
ecuted actions, when serialized. In the relaxed relaxed 3-step
(R?3-step) semantics [Balyo, 2013] the application of action

563

effects is relaxed similarly to precondition requirements in the
relaxed 3-step semantics. Therefore the only requirement in
the R%3-step semantics is that parallel actions can be ordered
to form a valid sequential plan. From the 3-step semantics
and its subsequent relaxations, actions planned in a time step
cannot be executed in parallel anymore, but the terms parallel
plan and parallel step are used anyway.

In this work we go a step further in the pursuit of paral-
lelism in the context of planning as SMT. Inspired by the
highly relaxed semantics of [Balyo, 2013] for planning as
SAT, we introduce a non-trivial encoding that lifts the R%3-
step semantics to SMT.

The rest of the paper is structured as follows. In Section 2
we introduce PMT problems, together with the notation used
throughout the paper. In Section 3 we present our encoding
for planning as SMT, that adheres to the R?3-step seman-
tics. In Section 4 we show how the redundant actions oc-
curring in the resulting plans can be easily removed. In Sec-
tion 5 we provide experimental results showing a dramatic
decrease in the number of time steps needed to reach a valid
plan in many numeric domains, compared to other similar
exact (non-heuristic) planners. Since the presented encoding
is parametric to a given order between actions (which gov-
erns how, given a parallel plan, actions are serialized and ex-
ecuted) in the experimental section we give some insights on
the impact of this order on the efficiency, and some hints on
suitable orders. Finally, in Sections 6 and 7 we explain the
connections of this work to similar ideas and present some
conclusions.

2 Planning Modulo Theories

We follow the notation defined in [Gregory et al., 2012] for
Planning Modulo Theories (PMT).

A state is a valuation over a finite set of variables X, i.e., an
assignment function, mapping each variable x € X to a value
in its domain, D,,. A state space for a set of variables X is the
set of all valuations over X. In a state space modulo T, T is
a theory defining the domains of the state space variables and
interpretations for the constants, functions and predicates.

Definition 1 (Action). An action a, for a state space S mod-
ulo T, is a state transition function, comprising:

e A first-order sentence over S modulo T, Pre, (the pre-
condition of a).

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

o Aset Eff , (the effects of a), of assignments to a subset of
the state variables in S, each setting a distinct variable
to a value defined by an expression over S modulo T

An action a, for a state space S modulo T, is applicable
(or executable) in a state s € S if T, s = Pre, (that is, the
theory together with the valuation s satisfies the precondi-
tion of a). We represent actions a as pairs (Pre,, Eff ,), with
the effects Eff , often written as a substitution o, = {z1
erpi, ..., T, — expy,}, where exp; is an expression that de-
fines the value of variable x; in the resulting state, for each 4
in 1.n (e.g. © — x + k, for increasing a numeric variable
x by k). We use T and L to denote the Boolean frue and
false values, respectively. Given an expression e and a substi-
tution o, by ec we will denote the expression e after apply-
ing the substitution o, i.e., after simultaneously replacing the
variables in e by the expressions indicated in the substitution.
Making abuse of notation, we will talk of a substitution as an
assignment.

Following the application of a, the state is updated by the
assignments in Eff , to the variables that they affect, leav-
ing all other variables unchanged. We denote the unique
state resulting from applying an action a, in a state s
in which is applicable, by app,(s). For any given se-
quence of actions ay; as;. .. ;a, we define appa,.qs:....a,, (5)
as appa,, (* -+ appa, (appa, (s)) -+).

Definition 2 (Planning Modulo Theory). A Planning Modulo
T problem, for a theory T, is a tuple 1 = (S, A, I, G) where:

e S is a state space in which all variable domains are de-
finedin'T,

e A s a set of actions for S modulo T,
e [is avaluation in S (the initial state), and
o G is a first order sentence over S modulo T (the goal).

A (sequential) plan for m is a sequence of actions
ai;...;ay such that, forall i in 1..n, a; is applicable in state
Si—1 and s; is the result of applying a; to s;_1, where sy = 1
and T, s, E G.

3 Encoding Plans under the R*3-Step
Semantics in PMT

The notion of R%3-step plan in the context of PMT is the
following.

Definition 3 (R%23-Step Plan). Given a set of actions A and
an initial state I, for a state space S modulo T, a relaxed
relaxed 3-step (R?3-step) plan for A and I is a sequence
P = [Ay,...,Ai_1] of sets of actions together with a se-
quence of states sq,...,S; (the execution of P), for some
I > 0, such that sy = 1, and for all i € {0,...,1 — 1}
there is a total ordering a1 < --- < a, of A;, such that
T, appa,;....a;_, (5i) = Preq, for all aj = <Pre,,,j,Eﬁaj> €
A;, and aPPay;...;an (Sz) = Si+1-

This is a weakening of the definition of relaxed 3-plan
in [Wehrle and Rintanen, 2007], since we remove the con-
sistency requirement between effects of actions occurring at
the same time step and, hence, the only requirement left is
that those actions can be ordered to form a valid sequential

564

plan. The definition also generalizes to the setting of PMT.
It is equivalent to the definition of 3-step plan in [Bofill et
al., 2016b], as well as to the definition of 3-step plan in [Rin-
tanen et al., 2006] for the propositional case, which already
captures R?3-step plans. In those works, however, the encod-
ings given for 3-step plans are restricted to happenings which
require, among other things, that preconditions of actions in
each parallel step hold at the same time. On the contrary,
here we are properly considering R?3-step plans in the sense
of [Balyo, 2013]. Notice however that no formal definition of
R?3-step plan is given in [Balyo, 2013].
Let us introduce a motivating example.

Example 1. A merchant is looking to amass a small fortune
in the fastest way. We will use the variable x to represent his
gains. Suppose the merchant starts with no money (x = 0)
and can perform two actions: work carrying boxes of tulips
and gaining 10 coins a month, or invest some of his money
in the tulip industry, doubling his earnings. His objective is
reaching the sum of 20 coins. The actions can be modeled as
follows:

work: ay; = {(T,z— x+ 10)

invest: ag = (x > 5,z T *2)

If we consider the 3-step semantics of [Rintanen et al., 2006],
one of the requirements is that preconditions of parallel ac-
tions must hold at the start of the time step in which they are
planned. Since the precondition of ay is not satisfied in the
initial state, this would make the shortest 3-step plan the fol-
lowing: T] = [{a1}, {a2}].

With the Relaxed 3-step semantics of [Wehrle and Rinta-
nen, 20071, there is no requirement that forces preconditions
of parallel actions to hold at the start of the time step in which
they are planned. Still, there is a requirement of consistency
between the effects applied at the same time step. The concept
of consistency with numerical variables could be generalized
as that all effects should be commutative. Since the effects
x +— x+ 10 and x — x * 2 are not commutative, the shortest
plan would also be || = [{a1}, {az}].

With the R23-step semantics, these requirements are lifted,
so, considering the ordering between actions a1 < ao, our
merchant can reach its goal with the one step plan || =
[{a1,as}]. This ordering can be used to model the applica-
tion of non-commutative effects as follows, where x* (resp. a')
denotes the value of variable x (resp. execution of action a)
at time step t:

=0 initial state
a(l) — T precondition of a,
a) = 29 = 2] +10, =af — 27 = 2 effects of a;

ay —2) >5 precondition of asy

ad = a9 =20 %2, —ad — x5 =20 effects of as
20 =20,) =2t tying constraints
z' =20 goal

The additional variables xo, x1 and xo (superscripted with
the time step) permit us to accumulate effects over the vari-
able x. The variable xq denotes the initial value of x. The

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

variable x1 embodies the value of x after the possible execu-
tion of ay1. Note that x1 gets an updated value if aq is exe-
cuted, or keeps the previous value x(otherwise. Therefore,
in the precondition of action as we need to check x; instead
of x. The effects of action asy are applied on x1 and captured
on xo. Finally, the tying constraints link these auxiliary vari-
ables to the initial and final values of x. This encoding of
chained effects will be the key to increase parallelism.

3.1 Encoding into SMT

In this section we propose an encoding for planning as SMT,
as a particular case of PMT, that adheres to the R?3-step se-
mantics. The given encoding is valid for any theory 7" under
quantifier-free first-order logic with equality. In particular,
for numeric planning we could take 7" as the theory of the in-
tegers (or the reals) and use quantifier free linear integer (or
real) arithmetic formulae.

Letm = (S, A, I, G) be a planning problem modulo theory
T under a quantifier-free first-order logic with equality. For
each variable x in var(S) and each time step ¢, a new variable
x¢ of the corresponding type is introduced, denoting the value
of x at step t. Moreover, for each action a and each time step
t, a Boolean variable a' is introduced, denoting whether a is
executed at step t.

Given a term s, by s' we denote term s, where all variables
x in var(S) have been replaced by z*, and analogously for
formulas. For example (z + y)! = z* + ', and (p Az >
0)! = p' A a' > 0. For the case of effects, we define {z
TH =2 {z— L} =2l and {z — s}t = (2T =
s?), where s is a non-Boolean term belonging to theory 7.
For example, for an assignment {x — x + k}, where k is
a constant, we have {r — x + k}' = (2!t! = 2! + k).
For sets of assignments, i.e., action effects, we define ({z —
sYUEf)! = {z+— s} AEff* and (' = T where sisa
term (either Boolean or not) and Eff is a set of assignments.

For each action a = (Pre,, Eff) and each variable z €
var(S), let Eff , ., denote the assignment {x > exp} in Eff ,
if any, or the empty set if there is no such assignment. For
each x € var(9),let A, = {a | a € ANEff,, # 0}, ie.,
the set of actions that modify . '

As it has already been said, the only requirement in the
R?3-step semantics is that actions in each parallel step can
be ordered to form a valid sequential plan. Then, let L =
[a1,az, ..., a 4] be alist enumerating all actions. The rela-
tive position of each action in L will determine the total or-
dering <1, needed to serialize the actions in each parallel step.
Although according to the definition of R?3-step a different
ordering could be used in each parallel step, we will use the
same ordering everywhere. It is worth noting that the chosen
ordering governs the amount of possible parallelism. In any
case, completeness of the method is guaranteed by the fact
that the possibility of choosing exactly one action per time
step is retained.

The encoding will need to refer to the i-th action (accord-
ing to <) in each set A,. To this purpose, a mapping p,
is defined, such that p, (i) = j if the i-th action in A, ac-
cording to <z, is a;. Formally: for each x € var(S), let
pz0 {1,...,|Az|} — {1,...,]A|} be a mapping such that

a,-0¢) € Agforalliinl.|Ag|and a o,y <p a,-0(;) for

565

all i in 1..|A,| — 1. Let p, : {0,...,]4.]} = {0,...,|Al}
be p;° U {0 ~ 0}. The mapping {0 + 0} is added for
notational convenience (see below).

Example 2. Consider a set of actions A = {a1,a2,as3,a4}
and L = [a37a2,a17a4], ie, a3 <p as <p a1 < G4.
Suppose that variable x is modified by actions a; and as, so
Ay = {a1,a3} and |A;| = 2. Then we have p,(1) = 3 and
pz(2) = 1, because a3 <y, ay. Semantically, p,(1) can be
read as “What is the first action that modifies x, given <p,?”.

For each time step ¢t and variable x, we introduce
al,)+ ,ah (|A,|) NeW chaining variables of the same type

: t
of x. Variable T,

time step ¢ and, for all 4 in 1..|A,], le (s Will denote the
value of x after the sequential application (or not) of actions
Gp. (1) -0y, (). These variables allow us to encode a pos-
sible chain of assignments at each parallel step. The formu-
lation here is more complicated than in [Balyo, 2013], where
only Boolean variables are considered and so serialization of
actions is very simple.

To represent chains of assignments, in the encoding we
need to refer, for a given action a; and variable z, to the last
action before a; (according to <) that may have modified x.
Therefore, we define prev, : {1,...,|4|} — {0,...,|A]} to
be the mapping satisfying prev, (i) = py(max({0} U {k €
1..|Az| | ap, x) <r ai})). Notice that, if there is no previous
action that may modify x, then prev, (i) = 0.

o (e, x§) will denote the value of z at

Example 3. Continuing with Example 2, we would have
prevg (1) = 3, prevy,(2) = 3, prev,(3) = 0 and prev, (4) =
1. Semantically, prev, (1) = 3 could be read as “Given the
ordering <, what action that modifies x comes before a,?”.
Note that prev,.(3) = 0 because no action before az modifies
X, given the ordering <.

The constraints of the proposed encoding are the following.
The execution of an action implies its preconditions, with the
variables conveniently renamed in order to consider the ef-
fects of the execution of previous (according to <j,) actions
in the same time step ¢:

al — Prefzi a;;rev(i)

Va; € A @))
where

J;rev (Z) = U'JfEUaT(S){xt = x;revm(i)}

This substitution is in charge of renaming all variables in
Prefli that may have been modified previously in the same
time step.

The execution of an action implies its effects (again, with
the variables conveniently renamed):

ai = Bff 4,000, 0pres (i) Va;, € A (2)
where

Ornod; = UzeDom(gg,) {e! = af}

Recall that each effect in Eff,, is translated as an equality.
Substitution o7, , only renames the left hand side of the

equality '™ by 2, while o7, (i) renames all variables oc-
curring in the right hand side that could have been possibly

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

modified by previous actions according to <. See Exam-
ple 4 for a particular case of this renaming.

If an action is not executed, the previous value of each vari-
able that it would have modified is carried forward:

A Va; € A

a:EDom(Eﬁai)

3

!

t —
a; —» i xprevz(i)

Moreover, initial and final auxiliary variables are linked with
the original variables x* and z!*!:

t

— gt t+1
=2

and Va € var(S) (&)

Finally, explanatory axioms express the reason of a change in
state variables:

xt #£ 2t \/ at

a€A,

.t

Yz € var(S))

That is, a change in the value of x implies the execution of at
least one action that has an assignment to x among its effects.

Remark 1. Explanatory axioms (5) are redundant in our set-
ting, since they follow from Equation (4) and the inductive
application of Equation (3).

The following example illustrates the behavior of the sub-
stitutions in Equation (2).

Example 4. Let {a1,as} be a set of actions such that ay <,
as . If actions are defined as

ap = <T7y'_>y+1>7 a2 = <T,$*—>I+y>
then the effects of a1 and ao at time step t will be encoded as
ay = y1 =y +1, ah = @) =5 +y

3.2 Soundness and Completeness

Definition 4. Let 7 = (S, A, I, G) be a PMT problem, <,
a total order on the actions in A and n a number of steps
greater than 0. We denote by E(m,n,<y,), the SMT formula
resulting from the encoding of w described in Section 3.1 us-
ing order <y, for n consecutive time steps.

For each t € {0..n}, we define X* = {zt|x € var(S)}.

We define I° as the formula describing the initial state I
with variables superscripted by time point 0.

We define G™ as the formula describing the goal G with
variables superscripted by time point n.

Theorem 1 (Soundness). Given a PMT problem T
(S, A, I,G), a number of steps n and a total order <y, be-
tween actions in A, if M is a model of the SMT formula
¢ = E(m,n,<z) AN I° A G", then we can infer a valid se-
quential plan for T from M.

Proof sketch. We first prove that the theorem is true forn = 1
and then argue why this can be generalized ton > 1.

Let n = 1. Let a(l), ey a’O“ be the, according to <j,, or-
dered action variables set to true in the model of ¢. Then, the
corresponding sequence of actions ag; . .. ;af is a sequential
plan of 7: if £ = O we are done since this means that G is al-
ready satisfied from X without executing any action. Notice
that if no action is executed, constraints (3) enforce equal-
ity between chained variables in X° and X'. If £ > 0 we

566

need to prove that each action af) is applicable after applying
aé; - ag_l. This is guaranteed by constraints (1), (2) and
(3). By (2) the effects of the previous actions are applied, re-
sulting in a “temporal state”. By (1) the precondition of a is
satisfied by this temporal state. Roughly, this temporal state
consists of the valuation assigning, to each z € S, its updated
value due to the effects of actions a;...;as . This value
is captured by the closest previous chaining variable xgrev (i)
thanks to constraints (2) and (3).

For n > 1, constraint (4) properly links, for each m in
1..n, the variables X™~! to the first temporal state of step
m and the last temporal state of step m to X". Hence,

if ab,...,ako, ... al, ... af are the action variables set

to true in the model of E(m,n,<r), where each subset
! ki is ordered according to <p, the corresponding

N
.;algo;...;arll;...'ak" is a valid
O

a

sequence of actions ag;. .
sequential plan of .

r'n

Completeness is guaranteed since the possibility of execut-
ing exactly one action per time step is retained.

Theorem 2 (Completeness). Given a PMT problem
(S, A, I, G), if there exists a valid sequential plan ay; . . . ; ay,
for T then, for any total order <y, on the actions of A, the
SMT formula ¢ = E(m,n, <) A I° A G" is satisfiable.

Proof sketch. Let <y, be an arbitrary order on the actions in
A. Mimicking the valid sequential plan ai;...;a,, we build
an assignment M to the variables of ¢ such that I° holds, and
forallzin 1..n,

a.

b.

al is true in M, and aj» is false in M for all j # 4,
Eff E‘Lto-:;nodi o ;,rev(i) holds under M,

c. holds under M for all j #

Tl
/\zeDom(Eﬁ,,,j) Ij - 'rprevw(j)

1, and

zt = x§ and 21! = xi’w(‘Aml) hold under M for all x €
var(S).

Now let us consider any particular step number 7. Accord-

ing to c, and by transitivity of equality, we have that a:;)m]m (i)

which corresponds to x; for some a; < a;, has the same
value as xé under M, for every variable x. Moreover, we
have that 2° = z{ holds by d. Therefore, (the succedent of)
constraint (1) will hold if a; can be executed in step ¢ of the
sequential plan, which is the case, since by assumption the
sequential plan is valid, and I° holds by construction.

Analogously to before, by ¢ and d, we have that 2'+! has
the same value as x! under M, for every variable x modified
by a;, i.e., the new value of z is carried forward to the next
step. By induction, and validity of the sequential plan, this
implies that G™ holds under M.

Note that constraint (2) holds by a and b, constraint (3)
holds by a and c, and constraint (4) by d. Consistency of M
follows from the validity of the sequential plan at hand. [

4 Elimination of Redundant Actions

Roughly speaking, redundant actions are those that can be
removed from a plan, resulting in a plan still valid.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

In our setting, either during the search or when retrieving
a model, there is the possibility that some variables, denoting
the execution of actions that may not be necessary to achieve
the goal, are set to true by the SMT solver. Since highly paral-
lel encodings like the one we have presented make this issue
more noticeable, here we show how a plan can be optimized
by removing redundant actions in a post-processing step.

For this purpose, a MaxSMT solver will be used, as the
idea is to add soft clauses that penalize the optimum when
variables that represent the execution of actions are assigned
to true by the solver. Given a plan [] for the PMT problem,
two new sets of clauses are added. The first is a set of soft
clauses {—a‘|a € []} that will (softly) ask the solver to set
to false all actions included in the plan. This will force the
MaxSMT solver to set to true the minimum number of actions
already included in the plan.

The second set consists of hard clauses {—a‘|a ¢ []} to
force the solver to not consider any action that was outside of
the original plan. After solving the new problem, the resulting
plan will not necessarily be makespan-optimal, but the quan-
tity of actions pruned will be usually notable, as shown in the
next section. Moreover, the optimization time with respect to
the solving time turns out to be negligible.

The presented approach is slightly different to the one pre-
sented in [Balyo er al., 2014]. The difference lies in that in
our approach there is no need to reformulate all the problem
from scratch to include only clauses referring to the plan re-
turned by the solver. It suffices to add the new clauses to the
problem and ask the solver for an optimal solution.

S Empirical Evaluation

In this section we evaluate the impact of the presented en-
coding under the R?3-step plan semantics and the proposed
strategy for eliminating redundant actions. The proposed en-
coding (R?Chained onwards)' is compared with the encod-
ing in [Bofill et al., 2016b] which uses the 3-step seman-
tics (from now on noted as SEM+C), and the two planners
Springroll [Scala et al., 2016] and SMTPlan [Cashmore er al.,
2016]. The three systems are the most recent non-heuristic
numeric planners available. The SEM+C encoding is similar
to the disabling graph based encodings for 3-step semantics
of [Rintanen et al., 2006]. It differs by incorporating the idea
of chains of assignments that occur at the same time step.
It also provides a semantic notion of interference to reduce
the number of false positives in interference detection. This
SEM+C encoding and the R?Chained encoding are imple-
mented in the RANTANPLAN system [Bofill et al., 2016al.
Springroll also uses the planning as SMT approach, but with
a V-step semantics. The planner focuses on producing more
succinct encodings by “rolling up” an unbounded yet finite
number of instances of an action into a single plan step. In
problems where “foldable” actions occur, the planner is able
to greatly reduce the number of time steps. SMTPIlan pro-
poses an approach to PDDL+ planning through SMT, with
an encoding that captures all the features of the PDDL+ lan-

'The planner and the non-IPC instances can be obtained from
http://imae.udg.edu/recerca/lap/rantanplan/rantanplan.html

567

Solved Springroll | SMTPlan | SEM+C | R%2C
Depots (22) 7 1 4 7
Driverlog (20) 12 7 11 12
Petrobras (60) 0 3 6 51
Planes (12) 3 5 7 8
Rovers (20) 12 4 6 16
Zenotravel (20) * 6 16 15
Total 34 26 50 109

Table 1: Number of instances solved by each planner in each domain
(total number of instances between parentheses), with a timeout of
1 hour. Boldface indicates the best results, with ties broken by total
solving time. “*” denotes an execution problem.

guage. Its encoding focuses on domains with nonlinear and
continuous change.

In [Balyo and Bartdk, 2015] it was found experimentally
that none of the considered orderings between actions could
be clearly defined as the best, for the considered encoding
under the R?3-Step semantics for planning as SAT. In the
first experiments, the ordering considered for the R?Chained
encoding is the order from which actions are read from the
input files, which we refer as dec. Some insights and results
on more clever orderings, other than dec, are given in Sec-
tion 5.1. It is also worth noticing that, although we choose
the same order for each time step, the encoding is general
enough to allow for a different order in each time step.

We consider the domains of the third IPC [Long and Fox,
2003] with integer numeric fluents and without quantified
preconditions, as the rest of the domains contain features
that are not commonly supported by the considered plan-
ners. These domains are: Zenotravel, Driverlog, Depots and
Rovers. The Petrobras and Planes domains from [Bofill ez
al., 2016b] are also considered since they have a higher nu-
merical component.

Experiments have been run on 8GB Intel® Xeon® E3-
1220v2 machines at 3.10 GHz, using Yices [Dutertre and
De Moura, 2006] v2.5.1 as the back-end SMT solver, under
the quantifier-free linear integer arithmetic logic [Barrett er
al., 2010]. Z3 [de Moura and Bjgrner, 2008] v4.5.1 is used as
the MaxSMT solver to remove redundant actions. The total
timeout is set to 1 hour.

Table 1 shows that with the R2Chained (R?C) encoding
we are able to solve notably more instances than the rest of
the approaches. Springroll is unable to process the Zenotravel
domain.? The R?Chained encoding dominates in most of the
families. Thanks to the increased number of actions selected
at each step, it generally needs fewer steps to find a valid plan
than the rest of the planners. The number of Petrobras in-
stances solved by this approach is noticeable. This domain is
notably bigger in terms of formula size and more constrained
in terms of resources than the rest. If this domain is set aside,
the R2Chained encoding still solves a few more instances
than the other approaches.

Next we evaluate the plan quality in terms of makespan.
As it has already been stated, the R?Chained approach al-
lows many more actions per time step. This increases the

2 After reading the instance, it reports “Error in the encoding”.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Springroll [SMTPlan | SEM+C | R2C [R?0
depotsl 13/6 13/6 13/6 | 13/2|13/2
depots7 29/10 - 25/10 | 30/4 | 25/4
depots16 34/8 - - 59/3 | 33/3
driverlog5 30/8 25/8 18/4 | 30/4 | 20/4
driverlog6 26/5 17/5 21/4 | 22/3|22/3
petro-A2 - 9/3 11/4 [11/2110/2
petro-A6 - - 33/9 | 38/5|34/5
petro-B15 - - - 82/2| 5712
petro-C1 - - - 34/2 | 5/2
planes2 17/16 18/11 17/11 | 19/7 | 19/7
planes3 19/17 27/13 19/10 |23/7 | 23/7
planes8 - - 24/12 | 27/7 | 25/7
rovers| 11/9 11/8 11/8 |13/3| 9/3
rovers4 31/6 10/6 8/5 8/1 | 8/1
rovers14 50/11 - - 41/3 | 32/3
zeno7 * 16/6 19/3 | 18/2]16/2
zeno8 * - 22/3 |37/2|22/2

Table 2: Number of actions / number of steps, per instance and plan-
ner. “-” denotes a timeout. R2O denotes the R*C approach plus the
redundant action removal presented in the previous section. “*” de-
notes an execution problem.

number of instances solved, since the number of time steps is
in general smaller and, hence, so is the resulting formula. But
unfortunately, this is bad in terms of plan quality, since it may
add some redundant actions in the plan.

Table 2 shows the number of actions and time steps of the
plans found in a selected number of instances. Comparing
the R2C and the R?O columns we can see that the reduction
is notable in all domains, except for Planes. We remark that
the time spent on the process of removing redundant actions
is negligible (typically less than two seconds).

In general, in instances where the reduction is small, the
plan was already reasonably good, in terms of number of ac-
tions, compared to the rest of the planners. See for exam-
ple instances driverlog6, petro-A2, planes2 or rovers4. In in-
stances where the reduction is significant, the original plan
was too long and the optimized one turns to be reasonably
good compared to the others. See for instance depots7, de-
pots16, driverlog5 or zeno8. In particular, (see petro-C1 for
example) there can be many agents (namely, the ships) that
are not relevant for the plan objective, so the procedure can
remove many actions. In contrast, the Planes domain is very
tight, as there are very few agents that need to act, and thus
all planners produce similar plans in terms of makespan.

Since the R2Chained encoding relaxes the SEM+C en-
coding, we provide some insights on why, in general, it be-
haves better. The relaxation is done by applying the idea of
creating chains of assignments to all variables, while in the
SEM+C encoding only a subset of them are eligible to be
chained, due to the interference notion considered. In con-
trast to R2Chained, there is no possible chain for Boolean
variables in SEM+C. In fact, the difference between the two
encodings can be seen as a trade-off between the need for
mutex clauses and the extra number of chaining variables and
linking constraints. Moreover, the relaxation by the R?3-step

568

R?’Cwurt. clauses/ | variables/ || final num. | final num.
SEM+C time step | time step || variables clauses
Depots(4) +24.1%| +39.3% -48.1% | -54.1%
Driver.(11) -1.7%| +18.1% -125% | -28.2%
Petrobras(6) || -54.9% | +27.7% 271% | -74.2%
Planes(7) +2.1%| +14.3% 262% | -29.7%
Rovers(6) +65.5% | +52.4% -482% | -52.0%
Zeno.(15) -0.6% | +17.2% -10.0%| -23.2%

Table 3: Average problem size difference between the R?Chained
encoding and the SEM+C encoding for each domain. The number
of commonly solved instances is between parentheses. The first two
columns show the average size difference in a single time step, and
the second pair similarly but at the step where the solution is found.

Time steps SEM+C R2C

t. steps | avg. steps || t. steps | avg. steps
Depots (4) 37 9.25 14 3.50
Driverlog (11) 51 4.64| 38 3.45
Petrobras (6) 36 6.00 21 3.50
Planes (7) 76 10.86| 49 7.00
Rovers (6) 41 6.83 13 2.17
Zenotravel (15) 49 3.27 37 2.47

Table 4: Results on the number of time steps needed for the com-
monly solved instances between the R*Chained and the SEM+C
approaches. The number of commonly solved instances is shown
between parentheses. Columns 7. steps show the sum of all the
steps of the commonly solved instances of each family, and columns
avg. steps show the average steps per instance commonly solved.

semantics of actions’ applicability at the beginning of a time
step, as well as that of the consistency of effects, not only
allows us to solve more instances, but also to use many less
time steps on the commonly solved ones.

Table 3 essentially shows that although R2C uses more
clauses and variables in each formula tested for satisfiabil-
ity, it is able to solve the problem at an earlier step than
SEM+C. This reduction in steps is especially noticeable in
Depots and Rovers, where although the formula size per time
step is bigger, the size of the last checked formula (i.e., the
first satisfiable formula) is nearly cut in half. In the Petro-
bras domain, even using a semantic notion of interference,
the SEM+C approach generates many mutexes, as there are
many incompatibilities between actions. The removal of mu-
texes lets the R2Chained encoding state the problem more
compactly at each time step. This decrease in size per step,
combined with the decrease in the number of needed time
steps, lets the planner find a feasible solution with a reduc-
tion of nearly 75% of the problem clauses. The gains of these
reductions are also reflected in Table 1, where the difference
in the number of problems solved on the Depots, Rovers and
Petrobras domains is noticeable.

To better illustrate the size of the final formulas shown on
the second pair of columns of Table 3, in Table 4 the results on
the number of steps are shown. Note that Depots and Rovers
instances with the R?Chained encoding need nearly a third of
the steps needed by the SEM+C approach, and in the Petro-
bras domain this is nearly the half.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

R?C dec R?C informed dec

t. time | t. steps || t. time | t. steps || A;
Depots(7) 79947 34 116.6 29 +2
Driverlog(11) 1734.3| 49 2049.3 42 +2
Petrobras(49) 9546.3| 150 57.1 57 -2
Planes(8) 1196.2| 65 67.0 48 +2
Rovers(16) 3755 72 257.4 58 +1
Zenotravel(15)|| 3735.6| 52 631.6 42 +1
Total (96) 24582.6| 422 ||3179.0 276 +6

Table 5: Total time and steps needed to solve the commonly solved
instances with R2Chained and the dec ordering, with and without
informing. The number of commonly solved instances is shown
between parentheses. Column A; shows the difference in total in-
stances solved.

5.1 Orderings

In this section we try to reason about the effect of the se-
lected ordering between actions on the efficiency of the en-
coding. Imagine a planning task with three actions a1, as, as,
applicable in the initial state and with a goal state that can
be reached by the execution of the three tasks. Consider that
aq disables as, as disables a3, and there are no further dis-
abling relations. The disabling graph based encodings for 3-
step semantics of [Rintanen et al., 2006] will not produce any
constraints with respect to parallelism, because there are no
cyclic disabling relations. Supposing that all actions are ini-
tially applicable and have consistent effects, it will find the
plan as, as, a1 with only one time step. However, bad order-
ings like a; < as < as would force the R?Chained encoding
to make three time steps.

To avoid this, we have considered the rdfs ordering, be-
ing the reverse of a depth-first search on the disabling graph.
The rationale for this ordering is to try to minimize the num-
ber of possible interferences on actions appearing later in the
ordering, and thus maximizing the number of actions poten-
tially executed at the same time step. Surprisingly, the rdfs
ordering solved globally three fewer instances. Probably, this
happens because the a-priori computed interferences are not
a good indicator on how the actions should be ordered.

Intuitively, a good ordering for the encoding at hand would
be one inferred from a valid sequential plan, because the se-
quence of actions needed for a valid plan is strongly influ-
enced by the objective and the initial state. Thus, finding an
optimal ordering should be as hard as finding a plan itself.

To experimentally validate the previous assumption, we
propose to inform a given total ordering using a sequential
plan obtained from a relaxed version of the planning prob-
lem. This plan is obtained by using delete relaxation heuris-
tics [Bonet and Geffner, 2001] on the original problem and
removing the predicates belonging to the considered theory
T. Once a plan is obtained by solving the relaxed problem,
we extract an ordering by serializing this plan and removing
duplicate occurrences of each action. Then, given a total or-
dering on the actions, we can inform it by only reordering the
subset of actions appearing in the relaxed plan, according to
the order in which they occur in the relaxed plan.

Table 5 shows that informing the previously used dec or-

569

dering, results in needing 146 steps fewer to solve the same
number of instances than without informing it. This increase
in parallelism is followed by a dramatic reduction on solv-
ing times (of about two orders of magnitude) in most of the
families, resulting in 6 more instances solved.

We also informed the rdfs ordering, a random ordering and
all its inverted versions. None of the orderings was clearly
better. However, the gains on the number of solved instances
by informing them was always positive, ranging from 4 to 9
extra instances, experimentally supporting the intuition.

Regarding plan quality, with respect to the number of ac-
tions, experiments with informed orderings show that no sig-
nificant change can be seen. Note that fewer time steps im-
ply less space for possible redundant actions, but more paral-
lelism can also mean more selected actions per time step.

6 Related Work

A macro-action [Korf, 1985; Minton, 1985] expresses the
combination of one or more actions. Methods for automat-
ically learning macro-actions have been developed [Botea er
al., 2005]. Also, macro-actions have been extended for nu-
meric planning problems [Scala, 2014].

The way actions are sequenced in a time step is de-facto
a combination of regression and progression of precondition
and action effects. This can be achieved via substitution, and
it amounts to computing weakest precondition and cumula-
tive effects, which is how numeric macro-actions can be built.
However, a difference with macro-actions is that, in the pre-
sented encoding, the actions that are going to be sequenced
are not fixed. In other words, our encoding benefits from let-
ting the solver decide which subsequence is necessary to use.

7 Conclusion

The R2Chained encoding has empirically proven to allow for
more parallelism than that of the rest of the considered plan-
ners for planning modulo theories. It is able to put many more
actions per step, also making the search space wider for each
step considered. However, generally a shorter horizon pays
off in terms of formula size and solving time, as can be seen
from the experiments. The post-processing step for eliminat-
ing redundant actions has proven to be cheap in terms of solv-
ing time, and useful for maintaining the plan quality when
considering highly parallel encodings. Also, a good heuristic
for improving orderings for actions has been proposed.

Designing better orderings and heuristics is a matter of fu-
ture work. We would also like to study the effects of adding
or removing implied constraints, like (5), in the encoding.

Acknowledgments

Work supported by grants TIN2015-66293-R (MINECO/-
FEDER, UE) and MPCUdG2016/055 (UdG). We would like
to thank the reviewers for their constructive comments and
the observations regarding Constraint (5) of the encoding. We
also thank Dr. Alan Frisch for his helpful comments.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Balyo and Bartédk, 2015] Tomas Balyo and Roman Bartdk.
No One SATPlan Encoding To Rule Them All. In Pro-
ceedings of the Eighth Annual Symposium on Combinato-
rial Search, SOCS 2015, 11-13 June 2015, Ein Gedi, the
Dead Sea, Israel., pages 146-150, 2015.

[Balyo ef al., 2014] Tomas Balyo, Lukds Chrpa, and Asma
Kilani. On different strategies for eliminating redundant
actions from plans. In Proceedings of the Seventh An-
nual Symposium on Combinatorial Search, SOCS 2014,
Prague, Czech Republic, 15-17 August 2014., 2014.

[Balyo, 2013] Tomas Balyo. Relaxing the Relaxed Exist-
Step Parallel Planning Semantics. In 2013 IEEE 25th
International Conference on Tools with Artificial Intelli-
gence, ICTAI 2013, Herndon, VA, USA, November 4-6,
2013, pages 865-871, 2013.

[Barrett e al., 2010] Clark Barrett, Aaron Stump, and Ce-
sare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2010.

[Bofill et al., 2016a] Miquel Bofill, Joan Espasa, and Ma-
teu Villaret. The RANTANPLAN planner: system de-
scription. The Knowledge Engineering Review (KER),
31(5):452-464, 2016.

[Bofill ef al., 2016b] Miquel Bofill, Joan Espasa, and Mateu
Villaret. A semantic notion of interference for planning
modulo theories. In Proceedings of the Twenty-Sixth Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2016, London, UK, June 12-17, 2016., pages
56-64, 2016.

[Bonet and Geffner, 2001] Blai Bonet and Hector Geffner.
Planning as heuristic search. Artificial Intelligence, 129(1-
2):5-33, 2001.

[Botea et al., 2005] Adi Botea, Markus Enzenberger, Mar-
tin Miiller, and Jonathan Schaeffer. Macro-ff: Improving
Al planning with automatically learned macro-operators.
Journal of Artificial Intelligence Research (JAIR), 24:581—
621, 2005.

[Cashmore et al., 2016] Michael Cashmore, Maria Fox,
Derek Long, and Daniele Magazzeni. A compilation of
the full PDDL+ language into SMT. In Proceedings of
the Twenty-Sixth International Conference on Automated
Planning and Scheduling, ICAPS 2016, London, UK, June
12-17, 2016., pages 79-87, 2016.

[de Moura and Bjgrner, 2008] Leonardo Mendonga
de Moura and Nikolaj Bjgrner. Z3: an efficient
SMT solver. In Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference,

TACAS March 29-April 6, 2008., pages 337-340, 2008.

[Dimopoulos et al., 1997] Yannis Dimopoulos, Bernhard
Nebel, and Jana Koehler. Encoding Planning Problems in
Nonmonotonic Logic Programs. In Recent Advances in Al
Planning, Fourth European Conference on Planning, ECP
1997, volume 1348 of LNCS, pages 169-181. Springer,
1997.

570

[Dutertre and De Moura, 2006] Bruno Dutertre and
Leonardo De Moura. The Yices SMT Solver. Technical
report, Computer Science Laboratory, SRI International,
2006. Available at http://yices.csl.sri.com.

[Gregory er al., 2012] Peter Gregory, Derek Long, Maria
Fox, and J. Christopher Beck. Planning Modulo The-
ories: Extending the Planning Paradigm. In Twenty-
Second International Conference on Automated Planning
and Scheduling, ICAPS 2012. AAAI, 2012.

[Kautz and Selman, 1996] Henry A. Kautz and Bart Selman.
Pushing the envelope: Planning, propositional logic and
stochastic search. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence and Eighth
Innovative Applications of Artificial Intelligence Confer-
ence, AAAI 96, IAAI 96, Portland, Oregon, August 4-8,
1996, Volume 2., pages 1194—-1201, 1996.

[Korf, 1985] Richard E. Korf. Macro-operators: A weak
method for learning. Artificial Intelligence, 26(1):35-77,
1985.

[Long and Fox, 2003] Derek Long and Maria Fox. The 3rd
international planning competition: Results and analysis.
Journal of Artificial Intelligence Research (JAIR), 20:1—
59, 2003.

[Minton, 1985] Steven Minton. Selectively generalizing
plans for problem-solving. In Proceedings of the 9th Inter-
national Joint Conference on Artificial Intelligence, IJCAI
1985. Los Angeles, CA, USA, August 1985, pages 596—
599, 1985.

[Rintanen er al., 2006] Jussi Rintanen, Keijo Heljanko, and
Ilkka Niemeld. Planning as satisfiability: parallel plans
and algorithms for plan search. Artificial Intelligence,
170(12-13):1031-1080, 2006.

[Scala er al., 2016] Enrico Scala, Miquel Ramirez, Patrik
Haslum, and Sylvie Thiébaux. Numeric planning with dis-
junctive global constraints via SMT. In Proceedings of
the Twenty-Sixth International Conference on Automated
Planning and Scheduling, ICAPS 2016, London, UK, June
12-17, 2016., pages 276-284, 2016.

[Scala, 2014] Enrico Scala. Plan repair for resource con-
strained tasks via numeric macro actions. In Pro-
ceedings of the Twenty-Fourth International Conference
on Automated Planning and Scheduling, ICAPS 2014,
Portsmouth, New Hampshire, USA, June 21-26, 2014,
2014.

[Wehrle and Rintanen, 2007] Martin Wehrle and Jussi Rinta-
nen. Planning as Satisfiability with Relaxed Exists-Step
Plans. In Al 2007: Advances in Artificial Intelligence,
20th Australian Joint Conference on Artificial Intelligence,
Gold Coast, Australia, December 2-6, 2007, Proceedings,
pages 244-253, 2007.

