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Abstract

Maximum Satisfiability (MaxSAT) is an important
NP-hard combinatorial optimization problem with
many applications and MaxSAT solving has attract-
ed much interest. This work proposes a new in-
complete approach to MaxSAT. We propose a novel
decimation algorithm for MaxSAT, and then com-
bine it with a local search algorithm. Our approach
works by interleaving between the decimation algo-
rithm and the local search algorithm, with useful in-
formation passed between them. Experiments show
that our solver DeciLS achieves state of the art per-
formance on all unweighted benchmarks from the
MaxSAT Evaluation 2016. Moreover, compared
to SAT-based MaxSAT solvers which dominate
industrial benchmarks for years, it performs better
on industrial benchmarks and significantly better
on application formulas from SAT Competition.
We also extend this approach to (Weighted) Partial
MaxSAT, and the resulting solvers significantly
improve local search solvers on crafted and indus-
trial benchmarks, and are complementary (better on
WPMS crafted benchmarks) to SAT-based solvers.

1

Given a propositional formula expressed in the Conjunctive
Normal Form (CNF), the maximum satisfiability problem
(MaxSAT) is to find an assignment of Boolean values to
the variables of the formula that maximizes the number of
satisfied clauses (equally minimizes the number of unsatisfied
clauses). MaxSAT is the optimization version of the famous
NP-complete problem namely the propositional satisfiability
problem (SAT), and has applications in various domains
[Xu er al., 2003; Safarpour et al., 2007; Chen et al., 2010;
Janota er al., 2012]. An important variant of MaxSAT is the
Partial MaxSAT (PMS) problem, in which clauses are divided
into hard and soft clauses and the goal is to find an assignment
that satisfies all hard clauses and maximizes the number of
satisfied soft clauses.

There has been much interest in developing efficient
MaxSAT solvers, including both complete solvers and
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incomplete solvers. A MaxSAT solver is complete if
it proves the optimality of the solution it finds when it
terminates. Otherwise, it is an incomplete solver. Over
the past decade, the most successful approach to solving
industrial instances of MaxSAT is the SAT-based approach,
which relies on iteratively calling a SAT solver.

For many large industrial instances, because of the NP-
hardness of the problem and the time constraint, we do not
expect to solve them exactly. Instead, the goal is often to find
a good-quality solution in a reasonable amount of time. To
this end, many incomplete algorithms have been developed.

A main incomplete approach to MaxSAT is local search.
Typically, a local search algorithm for MaxSAT starts with
a complete assignment, and chooses a variable and flips its
value in each subsequent step. The best found assignment is
returned when the algorithm reaches its termination condition
(e.g., a time limit). Modern local search solvers for MaxSAT
[Luo et al., 2015; Cai et al., 2016; Luo et al., 2017] prove
efficient in solving random and crafted instances, but their
performance on industrial instances is poor.

Another incomplete approach of interest is the decimation-
based approach, which proceeds by assigning sequentially the
value of some (typically one) of the variables and simplifies
the formula accordingly. A main kind of decimation algo-
rithms for satisfiable SAT problems are the message passing
algorithms, such as the Survey Propagation (SP) algorithm
[Braunstein et al., 2005]. SP has been extended to solve
MaxSAT in [Chieu and Lee, 2009]. These algorithms have
close connections to statistical physics, and they can be
hardly applied to structured instances, mainly because they
rely heavily on the statistical properties of solutions [Altarelli
et al., 2009]. There are also decimation algorithms based
on unit propagation (UP) [Chao and Franco, 1986; 1990;
Paturi et al., 2005], which have been studied in the context
of SAT and mainly for theoretical interest.

Although various incomplete approaches have been de-
veloped for solving MaxSAT, they usually have poor per-
formance on industrial instances. On the other hand, SAT-
based complete MaxSAT solvers have achieved very good
performance on a wide range of industrial instances. This
motivates researchers to modify the SAT-based solvers to
make them incomplete (i.e., by returning better assignments
when found) [Ansétegui et al, 2016]. Such incomplete
solvers dominate the industrial categories of the incomplete
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track in recent MaxSAT Evaluations (MSEs).

This work proposes a new incomplete approach to effi-
ciently solving MaxSAT. Firstly, we propose a UP-based
decimation algorithm for MaxSAT, which, to the the best of
our knowledge, is the first UP-based decimation algorithm for
MaxSAT. UP-based decimation algorithms have been studied
for SAT, and they fail when a conflict is detected. How-
ever, when solving MaxSAT, it is unreasonable to stop the
decimation procedure upon detecting a conflict, since there
are usually unsatisfied clauses under optimal assignments.
Instead, in this case, we introduce a heuristic to assign a value
to the variable to which the two contradictory unit clause
corresponds. When there is no unit clause, we also use the
heuristic to assign variables until UP can be applied again.

By combining this decimation algorithm with an existing
local search algorithm, we design a solver for MaxSAT
named DeciL.S.The solver works by interleaving between a
decimation procedure and a local search procedure. The
assignment produced by the decimation procedure is fed as
the initial assignment to local search. More importantly, a
feedback mechanism is proposed to provide the best assign-
ment found by the local search procedure to guide the next
decimation procedure on assigning variables when UP cannot
be applied. We carry out experiments to compare Decil.S
against state of the art MaxSAT solvers on all unweighted
benchmarks from the MSE 2016 and application formulas
from the SAT Competition 2016. The results show that
DeciLS has the best performance on all benchmarks except
the crafted one. In particular, it outperforms a state of the
art SAT-based solver WPM3-2015-in and a recent portfolio
solver on all benchmarks, and performs better on industrial
benchmark from MSE 2016 and significantly better on the
application formulas from the SAT Competition 2016.

Furthermore, we extend our approach to PMS and WPMS,
by exploiting the distinction of hard and soft clauses and
addressing the issue of no feasible solution found by local
search. We implement it with state of the art local search
solvers, leading to two hybrid incomplete solvers. Our exper-
iments show that their performance on (W)PMS crafted and
industrial benchmarks is significantly better than local search
solvers and is complementary and sometime competitive to
SAT-based solvers.

The reminder of this paper is organized as follows. The
next section introduces the notation and definitions used in
the paper. In Section 3, we discuss the related works. We
propose our approach in Section 4, and present experimental
results of our solver Decil.S in Section 5. Then in Section
6, we extend the approach to (W)PMS and develop two
incomplete solvers named DeciDist and DeciCCEHC, and
present related experiment results. Finally, we conclude the

paper.

2 Preliminaries

Given a set of Boolean variables {x1, 2, ..., x,}, a literal
is either a variable x (which is called a positive literal) or
its negation —a (which is called a negative literal). A CNF
formula F' is a conjunction of clauses (i.e., F' = C7; A Co A
... N Cy,), where a clause is a disjunction of literals (i.e.,
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C; = U1 V4o V ...V {;;). A clause that contains only one
single literal is called a unit clause. For a formula F', we
denote the set of variables in F' by Var(F).

For a formula F, an assignment o is a mapping Var(F) —
{0,1}. A complete assignment is a mapping that assigns to
each variable either 0 or 1. A clause is satisfied if it has at
least one true literal, and unsatisfied if all the literals in the
clause are false literals. By convention the empty clause is
unsatisfied. The cost of an assignment o (may be partial),
denoted by cost(«), is defined to be the number of unsatisfied
clauses under a.. Given a CNF formula, the MaxSAT problem
can be regarded as finding a complete assignment with the
minimum cost.

In the Partial MaxSAT (PMS) problem, some clauses are
declared to be hard and the rest are declared to be soft, and
the task is to find an assignment such that all hard clauses
are satisfied and the number of unsatisfied soft clauses is
minimized. For a PMS instance F', we say a truth assignment
« is feasible iff it satisfies all hard clauses in I, and the cost
of a feasible assignment « is defined to be the number of
unsatisfied soft clauses under o.. In Weighted PMS (WPMS),
each soft clause is associated with an integer as its weight,
and the cost of a feasible assignment is defined to be the total
weight of unsatisfied soft clauses.

The process of conditioning a CNF formula F' on a literal
¢ amounts to replacing every occurrence of literal ¢ by
the constant true, replacing —¢ by the constant false, and
simplifying accordingly. The result of conditioning F' on /¢
is denoted by F'|; and can be described succinctly as follows:
Flo = {¢/{—l}|c € F,{ ¢ c} [Darwiche and Pipatsrisawat,
2009]. Note that F'|, does not contain any literal ¢ or —.
When we assign a variable x with a value v, we can simplify
the formula accordingly.

Unit propagation on a CNF formula F' works as follows:
For a unit clauses in F', the variable is assigned to satisfy
this unit clause. That is, if the unit clause {x;} appears in
the formula, x; is assigned to true; and if the unit clause
{—x;} appears in the formula, z; is assigned to false. Then
the formula is conditioned on this setting. This is a unit
propagation step. The iterative execution of such steps until
no more unit clause remains is called unit propagation (UP).

3 Related Works

We are not aware of any UP-based decimation algorithm for
MaxSAT. Nevertheless, there are a few decimation algorithms
for SAT based on unit propagation, which are mainly studied
for theoretical interest. An early example is an algorithm
called Unit Clause (UC) [Chao and Franco, 19861, which
works iteratively until all clauses are satisfied or a conflict
is generated. At each step of UC, if there exist unit clauses, a
unit clause is picked to perform unit propagation; otherwise,
an unassigned variable is selected uniformly at random and
is assigned to 1 or O uniformly at random. The UC algorithm
was extended to the Generalized Unit Clause (GUC) algorith-
m, where the unassigned variable is always chosen among
those appearing in the shortest clauses [Chao and Franco,
1990]. The core of an advanced theoretical SAT algorithm
dubbed PPSZ [Paturi et al., 2005] is a UP-based decimation
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Figure 1: The process of our approach in a high level.

procedure as follows. Take a random order of variables and
gradually assign values to them in this order. If a variable
currently considered occurs in a unit clause, it is assigned
to the value so that the clause is satisfied; otherwise, it is
assigned randomly. At each step, if the formula is satisfied,
the problem is solved. If two contradictory unit clauses are
detected, the decimation procedure stops.

UP has been used in local search for SAT, and in these
algorithms (e.g. UnitWalk [Hirsch and Kojevnikov, 2005]),
UP is used during local search but not in the generation of
initial assignment. Recently, UP was used in generating the
initial assignment in local search solvers for PMS [Cai et
al., 2016]. The method simply uses UP to produce a partial
assignment, and UP stops when no unit clause exists or a
conflict is generated. After that, the resulting partial assign-
ment is extended to a complete assignment by assigning all
unassigned variables randomly. This initialization process
was applied to a local search solver called Dist, leading to
an improved solver called DistUP [Cai et al., 2016].

4 A New Incomplete Approach to MaxSAT

In this work, we propose a new incomplete approach to
MaxSAT, with the focus on solving industrial formulas.
The proposed approach interleaves between a decimation
algorithm and a local search algorithm, with message passing
between each other. The process of our approach in a high
level is illustrated in Figure 1, and is described below.

The approach works round by round. In each round, an
execution of the decimation algorithm produces a complete
assignment, which is then handed to the local search algorith-
m as the initial assignment for possible further improvement.
Additionally, a feedback mechanism is employed to provide
useful information from local search to the decimation al-
gorithm of the next round. In our approach, the feedback
information from local search to decimation refers to the
best found assignment during local search of the previous
round. However, it could be any information of interest, and
the emphasis is on the feedback mechanism rather than the
specific feedback information.

The feedback mechanism in our approach is described as
follows. The best found assignment in the latest finished
local search procedure, denoted by prev_ls_best, is recorded
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Algorithm 1: A UP-based Decimation Algorithm for
MaxSAT
Input: A CNF formula F’
Output: An assignment of variables in F'
while 3 unassigned variables do
if 3 unit clauses then
if 3 contradictory unit clauses then
¢ <+ pick a unit clause by pick_uc function;
perform a unit propagation step using c;

else

x < the variable related to the two
contradictory unit clauses;

assign x to prev_ls_best[x], simplify F'
accordingly;

else
10 x < pick an unassigned variable by pick_var
function;

assign z to prev_ls_best[z], simplify F

| accordingly;

11

return the resulting assignment to Var(F);

and maintained, and is used in the decimation procedure. In
detail, in the UP-based decimation procedure, if UP cannot
be applied, then the variable x under consideration (either it
relates to a conflict or it does not appear in a unit clause) is
assigned to prev_ls_best[z].

4.1 The Decimation Algorithm for MaxSAT

In this subsection, we propose a UP-based decimation algo-
rithm for MaxSAT, which is outlined in Algorithm 1. The
algorithm works iteratively by assigning variables one by one.

In each step, if there exist unit clauses, the algorithm
distinguishes two different cases. If there are not contra-
dictory unit clauses, then it picks a unit clause to perform
a unit propagation step. Otherwise, the variable x that relates
to two contradictory unit clauses is assigned to the value
prev_ls_best[z], and the formula is simplified accordingly.

If there is no unit clause, then the algorithm picks an unas-
signed variable x and assigns it to the value prev_ls_best[z].
The formula is simplified accordingly.

As can be seen from Algorithm 1, we use the pick_uc
function to pick a unit clause to perform UP, and the pick_var
function to pick an unassigned variable to assign. Our idea is
to employ assigning orders as distant as possible in different
rounds of decimation. Firstly, this exploits different reason
chains as many as possible, among which the correct (or
nearly correct) one may be touched. We believe a key to
efficiently solve industrial instances is to find the right reason
chain. Secondly, different assigning orders help to generate
assignments with large distances in the search space. These
solutions are then improved by local search and thus can
touch local optima in different areas. Additionally, recalling
that our decimation algorithm consults to the best found
solution in the last local search procedure, the introduction
of this diversification is advisable.

With the above considerations, we utilize a heuristic for
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both the two functions, which is based on a diversification
property. For a variable, we use prev_deci_step[z] to denote
the step number in which it was assigned in the previous
round of decimation procedure. For two variables x and y,
if prev_deci_stepx] > prev_deci_step[y], it means that in
the last round of decimation, x is assigned after y.

Our heuristic prefers to pick a variable with a large
prev_deci_step value. We use the Best from Multiple
Selection (BMS) strategy [Cai, 2015] for this purpose.
In detail, it chooses k variables (k is an integer
parameter) randomly with replacement from the set of
candidate variables, and returns the one with the greatest
prev_deci_step value. Note that to pick a unit clause among
a set of unit clauses, we use the BMS strategy to select the
variable from all variables corresponding to unit clauses, and
the corresponding unit clause is returned.

4.2 The Local Search Solver

Our approach needs to call a local search solver. Instead
of developing a solver from scratch, we modify a local
search solver for SAT named CCAnr! to make it fit into our
approach. As shown in [Cai et al., 2015], CCAnr is amongst
the best-performing local search solvers for structured SAT
instances. The source code of CCAnr is available online.

In order to integrate CCAnr into our approach, we make
a few modifications. Firstly, we add codes to keep track
of the best found assignment in each round of local search
procedure. Also note that, this data structure is accessible to
the decimation algorithm. Secondly, we modify the initial-
ization to make it receive the assignment from the decimation
algorithm. Thirdly, each round of local search is stopped if
the solution has not been improved in a fixed number of steps
(this parameter is denoted as MaxNonImprove). Finally,
we remove the ”Aspiration” mechanism to make it simpler,
as removing it does not have obvious effect.

5 Experiment Evaluation of Decil.S

We conduct experiments to evaluate DeciLS on a broad
range of unweighted MaxSAT benchmarks. Experiments
show that DeciLLS obtains state of the art performance on all
benchmarks and performs better than state of the art for the
industrial/application instances.

5.1 Experiment Preliminaries

Implementation: DecilS is implemented in C++ and com-
piled by g++ with *-O3’ option. There are two parameters in
Decil.S: parameter k for the BMS heuristic used in the dec-
imation algorithm and M axNonImprove for local search.
We tune these parameters with the automatic configuration
tool SMAC [Hutter et al., 2011], and set & = 20 and
MaxzNonImprove = 50000 for all benchmarks.
Competitors: We compare our solver DeciL.S with four
state of the art MaxSAT solvers, including WPM3-2015-in
[Ansétegui et al., 2015], CCLS [Luo et al., 20151, MiniWalk
[Kroc ef al., 2009] and a recent portfolio solver dsat-wpm3-
in-ms [Ansétegui er al., 2017]. All these solvers except

"http://lcs.ios.ac.cn/ caisw/SAT.html
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MiniWalk are the versions submitted to the MSE 2016.
MiniWalk is provided by its authors.

WPM3-2015-in is an incomplete version of the WPM3
solver [Ansétegui er al., 2015]; it is the best SAT-based
incomplete solver for the unweighted MaxSAT industrial
category of the MSE2016, and placed 3rd in the category.
The portfolio solver dsat-wpm3-in-ms placed 2nd in the
category. Note that the winner of this industrial category is
an implementation of DeciL.S by us. CCLS represents state of
the art in local search for unweighted MaxSAT, and has won
several categories in recent MSEs, including the incomplete
crafted category in MSE 2016. MiniWalk is a hybrid solver
that uses a complete SAT solver MiniSAT [Eén and Biere,
2005] to guild a local search solver WalkSAT [Selman et
al., 1994] in parallel, and is effective for solving structured
MaxSAT instances for which the optimal solutions have only
a few unsatisfied clauses [Kroc et al., 2009].

Additionally, to show the complimentary of the solvers, we
also report the results of the Virtual Best Solver (VBS), i.e.,
the perfect selector (not an actual solver) — on each instance,
the solution of VBS is the best one of the solutions reported by
both solvers; if more than one solver report the best-quality
solution, the computing time of VBS is the shortest one.

Benchmarks: We evaluate DecilLS on all random, crafted
and industrial benchmarks of unweighted MaxSAT from the
MSE2016. Also, we conduct experiments on Application
instances from the SAT Competition (SC) 2016, including
all formulas that are unsatisfiable (UNSAT), and all those
cannot be solved by any solver in the competition (UN-
KNOWN). These UNSAT and UNKNOWN formulas are a
good resource of structured instances for testing MaxSAT
algorithms. SAT solvers terminate once they identify a
conflict, but MaxSAT solvers can provide useful information.
For example, some of these formulas have only a few (even
1) unsatisfied clauses under the optimal solution, and such
formulas can be modified to become satisfiable by removing
the unsatisfied clauses under the solution.

Experiment setup: All experiments in this work are car-
ried out on a cluster of workstations equipped with Intel Xeon
E7-8830 2.13 GHz CPU, 24MB L3 cache and 1.0TB RAM
under the operating system CentOS (version: 7.0.1406).
Each solver is executed with the runsolver software [Roussel,
2011] for each instance with a cutoff time of 300 seconds (as
in the incomplete track of MSEs), and the cost of the best
found solution and the time for finding it (the last 0’ line) is
recorded. For each solver on each benchmark, we report the
number of instances where the solver finds the best solution
among all competing solvers in the experiment, denoted by
‘#win.’, and the averaged time of doing so on such winning
instances, denoted by ‘time’ (in CPU seconds).

5.2 Experiment Results on DecilLS

We summarize the experiment results on all unweighted
benchmarks in Table 1. DecilS is overall the best solver
on these benchmarks and is particularly effective on the
industrial/application benchmarks.

DeciLS is the best solver for all the benchmarks except
the crafted benchmark, where it is slightly worse then CCLS.
This demonstrates the robustness of DeciLLS. Comparatively,
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Table 1: Experimental Results of DecilLS and state of the art solvers on all unweighted MaxSAT benchmarks.

. DecilS CCLS WPM3-2015-in MiniWalk dsat-wpm3-in-ms VBS

Benchmark #inst.

#win. time #win. time #win. time  #win. time #win. time #win. time
MSE2016_Random 454 454 0.04 454 0.73 0 0 6  51.88 403 10.53 454 0.03
MSE2016_Crafted 402 397 0.02 402 1.93 10 13.18 1 1.99 394 7.35 402 1.88
MSE2016_Industrial 55 4 55.46 0 0 42 3834 1 14.77 43 44.90 55 39.14
SC_App-Unknown 103 80 102.81 8 122.93 1 3.78 39 6225 1 15.55 103 101.63
SC_App-Unsat 109 99 92.32 22 59.53 14 2732 34 4404 12 18.28 109 77.86

Table 2: Comparison of DeciLS and its alternative versions as well as DistUP on all unweighted MaxSAT benchmarks.

B . DeciL§ DeciLS _onlyLS  DecilS_onlyDeci  DistUP VBS
enchmark #inst.

#win. time  #win. time  #win. time  #win. time  #win. time
MSE2016_Random 454 454 0.04 454 0.06 2 94.64 426 7.49 454 0.02
MSE2016_Crafted 402 398 0.72 400 1.55 6 <0.01 396 1.23 402 1.60
MSE2016_Industrial 55 54 63.66 0 <0.01 15 26.69 7 2.31 55 57.20
SC_App-Unknown 103 76 107.11 38 29.92 10 111.13 12 80.06 103 101.02
SC_App_Unsat 109 95 91.32 40 4944 17 69.31 12 147.04 109 85.93

Table 3: Experimental Results of DeciDist, Dist and DistUP on the MSE2016 PMS benchmarks.

. DeciDist Dist DistUP VBS
Benchmark #inst.
#win. time  #win. time  #win. time  #win. time
MSE2016_PMS _Random 210 180 17.75 208 1.51 208 0.71 209 0.33
MSE2016_PMS _Crafted 678 494 39.16 357 7.82 391 5.69 566 33.67
MSE2016_PMS _Industrial 601 398 8491 225  57.31 260 4347 504 79.83

Table 4: Experimental Results of DeciDist and WPM3-2015-in on
the MSE2016 PMS benchmarks.

Benchmark Hinst. DeciDist WPM3-2015-in VBS
#win. time #win. time #win. time
PMS_Random 210 206 22.05 39 74.38 209 21.46
PMS _Crafted 678 417 16.72 608 2479 678 22.84
PMS _Industrial 601 221 50.44 553 26.01 601 29.30

other solvers including the portfolio solver have much worse
performance than DeciLS on at least three benchmarks.

DecilLS is particularly effective and outperforms its com-
petitors on industrial/application benchmarks. This is re-
markable, as industrial benchmarks have been dominated by
SAT-based solvers for years. This is the first time a approach
that does not call a SAT solver has better performance on
such instances. Besides, DecilLS performs very well on also
random and crafted instances at the same time, where SAT-
based solvers are much worse.

5.3 Experiment Analysis on DecilL.S

DeciLS combines a decimation algorithm and a local search
algorithm CCAnr. In order to show the effectiveness of
the cooperation of these two algorithms in the framework,
we test two alternatives, denoted as DeciL.S_onlyDeci and
DeciLS_onlyLS respectively. DeciL.S_onlyDeci calls the
decimation algorithms iteratively, and records the best found
solution. DeciL.S_onlyLS is indeed the local search solver
without modifications made in DeciLS. Since DistUP [Cai et
al., 2016] uses UP in the initialization and then performs local
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search, we also compare DeciL.S with DistUP.

Seen from Table 2, DecilLS significantly outperforms the
alternatives and DistUP on inudstrial/application benchmark-
s, while it has almost the same performance with the local
search solver on random and crafted benchmarks. The results
indicate that the cooperation is critical in our approach,
and that the approach is particularly effective for solving
industrial instances.

We are also interested in the number of rounds of DecilLS
to get the best found solution for each instance. We calculate
the averaged number for each MaxSAT benchmark, which
are as follows: 1.87 for Random, 7.89 for Crafted, 106.56
for Industrial, and 542.35 for App_Unknown, 384.77 for
App_-Unsat.

6 A New Incomplete Approach to (W)PMS

In this section, we extend our approach to solving (Weighted)
Partial MaxSAT. The extension method for WPMS is simply
the same one for PMS, and thus we only present the extension
to PMS. To extend the approach and make it effective for
PMS, some modifications have been carried out as follows:

Firstly, we extend the UP-based decimation algorithm
(Algorithm 1) to PMS. When there exist both hard and soft
unit clauses, our decimation algorithm for PMS prefers to
pick a hard unit clause to perform unit propagation. Similarly,
if conflicts are detected, the one that involves hard clauses
is addressed first by assigning the corresponding variable
according to the heuristic.

Secondly, we must deal with the situation that the previous
local search process fails to find a feasible solution. In
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Table 5: Experimental Results of DeciCCEHC, CCEHC and CCEHC+UP on the MSE2016 WPMS benchmarks.

. DeciCCEHC CCEHC CCEHC+UP VBS
Benchmark #inst.
#win. time  #win. time  #win. time  #win. time
MSE2016_WPMS _Random 502 501 1.12 501 1.32 501 1.24 501 0.72
MSE2016_WPMS _Crafted 331 262 40.66 238 28.56 248 28.14 320 51.35
MSE2016_WPMS _Industrial 630 319 117.67 140 103.74 224 113.95 553 12943

Table 6: Experimental Results of DeciCCEHC and WPM3-2015-in on the MSE2016 WPMS benchmarks.

. DeciCCEHC WPM3-2015-in  VBS
Benchmark #inst.
#win. time  #win. time  #win. time
WPMS _Random 502 501 1.12 12 107.89 501 1.12
WPMS _Crafted 331 232 4221 180 29.21 331 41.04
WPMS _Industrial 630 138 72.72 527 38.77 630 46.82

this case, when UP cannot be performed, the decimation
algorithm cannot consult the best found solution by previous
local search, and we simply assign the variable randomly.

6.1 Experiments on PMS

We choose Dist [Cai ef al., 2016] as the local search solver for
PMS in our approach. Dist has been ranked 1st many times in
PMS categories of recent MSEs. The resulting hybrid solver
is thus named DeciDist. The DeciDist is implemented on the
codes of Dist (version 2016), and adopts the default parameter
setting there. MaxNonImprove is set to 10000000 for
local search in DeciDist. We evaluate DeciDist on all PMS
benchmarks in the MSE 2016.

First, we compare DeciDist with two local search PMS
solvers namely Dist and DistUP. DistUP improves Dist slight-
ly on PMS industrial instances. The results are reported in
Table 3. Compared to the local search solvers, DeciDist has
worse performance on PMS random instances. However, De-
ciDist shows a dramatic improvement over both local search
solvers (noting that DistUP uses UP in its initialization) on
PMS crafted and industrial benchmarks.

We also compare DeciDist with WPM3-2015-in, which
placed 2nd and is the best non-portfolio solver in PMS crafted
and industrial categories of the incomplete track in the MSE
2016. We summarize the comparison results in Table 4.
Unsurprisingly, the performance of the SAT-based solver
WPM3-2015-in is much worse on random instances. On
the other hand, WPM3-2015-in has better performance than
DeciDist on PMS crafted and industrial benchmarks. Nev-
ertheless, DeciDist still finds better solutions than WPM3-
2015-in for 70 PMS crafted instances and 48 PMS industrial
instances. This indicates that Decidist is complementary to
WPM3-2015-in on these two benchmarks.

The averaged rounds of DeciDist to get the best found
solution for PMS benchmarks are: 1.43 for PMS Random,
6.42 for PMS Crafted and 11.83 for PMS Industrial.

6.2 Experiments on WPMS

We use this approach to improve a state of the art local
search solver for WPMS called CCEHC [Luo et al., 20171,
resulting in a solver named DeciCCEHC. We first compare
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DeciCCEHC with CCEHC and CCEHC+UP [Luo et al.,
20171, where the later is an improved version of the former by
using a UP based initialization as in DistUP. We then compare
DeciCCEHC with the SAT-based solver WPM3-2015-in. The
experiments are carried out on all WPMS benchmarks in the
MSE 2016.

The experiment results for WPMS benchmarks are present-
ed in Tables 5 and 6. Our solver DeciCCEHC outperforms
both local search solvers on all WPMS benchmarks, and
outperforms WPM3-2015-in on WPMS crafted benchmark,
although it is worse on industrial benchmark.

The averaged rounds of DeciCCEHC to get the best found
solution for WPMS benchmarks are: 1 for WPMS Random,
1.26 for WPMS Crafted and 113.94 for WPMS Industrial.

7 Conclusions

In this work, we proposed a new incomplete approach to
MaxSAT and Partial MaxSAT. The approach is based on
a new framework that interleaves between a decimation
algorithm and a local search algorithm. We proposed a novel
decimation algorithm for MaxSAT which is based on unit
propagation, and used it in our framework. The resulting
MaxSAT solver named Decil.S showed state of the art per-
formance on random, crafted and industrial benchmarks, and
outperforms state of the art SAT-based solvers on industrial
benchmarks. We then extended the approach to solving
(Weighted) Partial MaxSAT, and the experiments showed that
this approach significantly improves the performance of local
search on (W)PMS crafted and industrial benchmarks and is
complementary to SAT-based solvers.

We believe this new approach is promising for MaxSAT
solving and deserves further research. We would like to
further improve the approach for (W)PMS problems.
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