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Abstract
A fundamental problem in coding theory concerns
the computation of the maximum cardinality of a
set S of length n code words over an alphabet of
size q, such that every pair of code words has Ham-
ming distance at least d, and the set of additional
constraints U on S is satisfied. This problem has
application in several areas, one of which is the
design of DNA codes where q = 4 and the al-
phabet is {A,C,G, T }. We describe a new con-
straint model for this problem and demonstrate that
it improves on previous solutions (computes bet-
ter lower bounds) for various instances of the prob-
lem. Our approach is based on a clustering of DNA
words into small sets of words. Solutions are then
obtained as the union of such clusters. Our ap-
proach is SAT based: we specify constraints on
clusters of DNA words and solve these using a
Boolean satisfiability solver.

1 Introduction
This paper is about the design of error-correcting
codes [MacWilliams and Sloane, 1977] for biological
applications. The goal is to compute as large as possible a
set S of length n code words over the alphabet {A,C,G, T}
such that every pair of code words has Hamming distance
(HD) at least d, and the set of additional constraints U on S is
satisfied. The maximum cardinality of such a set S is denoted
AU

4 (n, d). The constraints in U typically include a subset of:
the reverse complement constraint (RC) which requires that
for each pair of words, the Hamming distance between the
reverse of one and the Watson-Crick complement of the other
is at least d; and a percentage constraint (P) which requires
that 50% of letters in each word are from {C,G}.

The design of DNA code words has its motivation in tasks
related to: information storage in DNA computing [Adle-
man, 1994; Lipton, 1995], storing information in DNA
strands [Brenner and Lerner, 1992], DNA computing on sur-
faces [Frutos et al., 1997], probes in DNA micro-array tech-
nologies [Fodor et al., 1991; Schena et al., 1995], use as
tracking tags [Qiu et al., 2003], and many others. DNA code
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words are also used as molecular bar codes enabling to ma-
nipulate and identify individual molecules in complex chem-
ical libraries [Shoemaker et al., 1996]

The impact of DNA codes is notable also today. Recent
applications of DNA-encoded libraries to drug discovery are
described, for example, in [Mullard, 2016; Goodnow Jr et
al., 2017; Yuen and Franzini, 2017]. In [Buschmann and
Bystrykh, 2013] the authors present recent results on error-
correcting DNA codes. A recent application in the area of
DNA data storage is described in [Blawat et al., 2016].

For the combinatorial constraints that arise in this type of
problem, there are no known efficient algorithms. Techniques
from coding theory have been applied [Brenner and Lerner,
1992; Frutos et al., 1997], stochastic local search is ap-
plied [Tulpan, 2000; Tulpan and Hoos, 2003; Chee and Ling,
2008], and genetic algorithms are also considered [Garzon et
al., 1999; Ashlock et al., 2002; Ashlock and Houghten, 2005;
2009]. In [Montemanni et al., 2014], the authors present three
different meta-heuristic approaches for these types of prob-
lems. They show improvements on some of the best known
codes and present an extensive experimental comparison with
previous works. Constraint and SAT programming [van Don-
gen, 1999; Metodi et al., 2011] have also been applied.

The instance A
{ P,RC }
4 (8, 4) occurs as problem CSPLib

033: Word Design for DNA Computing on
Surfaces [van Dongen, 1999] and we focus special atten-
tion on this instance in the presentation of this paper. For
this instance we mention the following results reported in the
literature: In [Frutos et al., 1997] (1997) the authors report
a solution with 108 DNA words. They search for solutions
that have a specific form which they call template—map.
In [Tulpan and Hoos, 2003] (2003) the authors present
an algorithm based on stochastic local search. Initializing
their algorithm with the 108 word set found by Frutos et al.
[Frutos et al., 1997] they construct a set with 112 words in
“less than one day of CPU time”. Marc van Dongen also
reports a solution with 112 words [van Dongen, 1999]. In
[Mancini et al., 2008] (2008) the authors present a solution
consisting of 87 DNA words, reported to be found in 554
seconds of CPU time using an OPL [Hentenryck et al.,
1999] model. In [Metodi et al., 2011] (2011), the authors
apply the BEE constraint solver and report finding a solution
of 112 words “in a fraction of a second”. They also show
that this is the optimal code size for the DNA word design
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problem when using the template—map strategy of Frutos et
al. [Frutos et al., 1997]. In his PhD thesis, Tulpan [Tulpan,
2000] presents a solution with 128 words. Prior to 2016, this
solution was not known to the CSPLIB library of constraints.
The technique presented in this paper finds a solution with
128 words in under 30 seconds of computation time. This
is the first time that a SAT/CSP-based approach is able to
match the best known solution for this instance.

In this paper we describe a new constraint model for the
design of error-correcting codes for biological applications
based on clustering of DNA words. We report solutions
which improve the prior state-of-the-art.

2 The Problem Specification
For given parameters (n, d, U) (an instance of the DNA word
problem) we seek a set S of cardinality |S| = m consisting
of n-letter words over the alphabet Σ = {A,C,G, T} which
satisfies the constraint (HD) as well as a subset U of the con-
straints {(RC),(P)} detailed below:
The Hamming distance constraint (HD): Each pair of
distinct words in S differ in at least d positions.
The reverse complement constraint (RC): For every
w1, w2 ∈ S (not necessarily distinct): wR

1 (the reverse of w1)
and wc

2 (the word obtained from w2 by replacing each A by
T , each C by G, and vice versa) differ in at least d positions.
The percentage constraint (P): The number of letters
from the set {C,G} in each word from S is between bn/2c
and dn/2e (50%).

We denote by AU
4 (n, d) the maximum cardinality of such a

set S and we seek lower bounds of AU
4 (n, d) together with

corresponding sets S of words which satisfy the constraints.
For a letter x ∈ {A,C,G, T}, we denote by xc the com-

plement letter of x: Ac = T , T c = A, Cc = G, and Gc = C.
We sometimes express the (RC) constraint in terms of two
separate cases. (RC1): For every w ∈ S, wR and wc differ
in at least d positions; and (RC2): Each pair of distinct words
w1, w2 ∈ S, wR

1 and wc
2 differ in at least d positions. For a

word w we write P(w) and RC1(w) to specify that w satisfies
the constraints (P) and (RC1). Similarly, for a pair u, v of
words, we write HD(u,v) and RC2(u, v).

3 Base Words and their Generated Images
Let Σ = {C, G, T, A} and denote Σn, the set of all n let-
ter words over Σ. A word transformation is a mapping
f : Σn → Σn. We are interested in (small) sets of word trans-
formations which are self-inversive and which commute with
respect to composition. A word transformation, f , is self-
inversive if f ◦ f = id. A pair of word transformations, f, g
is commutative with respect to composition if f ◦ g = g ◦ f .
The composition of word transformations is always associa-
tive — a property inherited from the composition of rela-
tions. So for word transformations, f, g, h we always have
(f ◦ g) ◦ h = f ◦ (g ◦ h). We say that a set of word transfor-
mations, T , is SCA if for all f, g, h ∈ T , f is self-inversive,
f, g are commutative, and f, g, h are associative.

Let B ⊆ Σn and T be a set of word transformations. We
denote by T (B) ⊆ Σn the closure of B under composition of

transformations from T . These are all of the words that can be
generated from B by repetitive application of transformations
from T . Note that if T is SCA then T (B) consists of (at most)
|B|×2|T | words. For simplicity, for w ∈ Σn, we write T (w)
instead of T ({w}). We write T ′(w) to denote T (w) \ {w}.

In this paper we focus on 4 simple word transformations
introduced in the following example. In practice, any set of
word transformations defined in terms of a self-inversive per-
mutation of the alphabet Σ and a self-inversive permutation
on the letters in a word is SCA.

Example 1 Consider the set T4 = {wc, fc, hs,ms} consist-
ing of four word transformations defined by:

1. wc: (Watson-Crick complement) applies to a word
swapping letters A↔ T , C ↔ G.

2. fc: (full complement) applies to a word swapping letters
A↔ G, C ↔ T .

3. hs: (half swap) applies to a word by swapping the left
bn/2c letters with the right bn/2c letters. If n is odd
then the middle letter of the word remains in place.

4. ms : (middle swap) applies to a word by swapping letters
in positions i ≤ bn/2c and n − i. If n is odd then the
middle letter of the word remains in place.

One can check that (any subset of) T4 is SCA. We denote
T3 = {wc, fc, hs}, T2 = {fc,wc}, T1 = {fc} and T0 = ∅.

Example 2 Consider the context where n = 8, the word
w = C T A C G A A C and the set of word transformations T3
introduced in Example 1. The set of eight words generated
from w under T3 is detailed below (to the right of each word
the transformation under which it is obtained from w).

CTACGAAC w
GAACCTAC hs(w)
TCGTAGGT fc(w)
GATGCTTG wc(w)

AGGTTCGT hs(fc(w))
CTTGGATG wc(hs(fc(w)))
AGCATCCA wc(fc(w))
TCCAAGCA hs(wc(fc(w)))

The following two examples illustrate that T3(w), for some
words w might consist of less than eight words. In Exam-
ple 3, each (individual) word in T3(w) is closed under the half
swap transformation. In Example 4, the set of words T3(w)
is closed under the half swap transformation.

Example 3 Consider the word w = C T T G C T T G and the
set of word transformations T3 introduced in Example 1. The
set T3(w) consists of the following four words (to the right
of each word we detail the transformation under which it is
obtained from w). Note that each word v ∈ T3(w) is closed
under the half swap transformation. Namely, hs(v) = v.

CTTGCTTG w
AGGTAGGT wc(fc(w))

GAACGAAC wc(w)
TCCATCCA fc(w)

Example 4 Consider the word w = C A C T G T G A and the
set of word transformations T3 introduced in Example 1. The
set T3(w) consists in the following four words (to the right
of each word we detail the transformation under which it is
obtained from w). Note that T3(w) is closed under the half
swap transformation. Namely, hs(T3(w)) = T3(w).

CACTGTGA w
TGTCACAG wc(fc(w))

GTGACACT wc(w)
ACAGTGTC fc(w)
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In this paper we represent elements of Σn as length 2n bit
vectors. We adopt the convention that each letter of Σ =
{A,C,G, T} is represented as follows by two bits:

C = 00 G = 01 (both have msb=0)
A = 10 T = 11 (both have msb=1)

Example 5 The eight words detailed in Example 2 are rep-
resented respectively by the following eight bit vectors:

0011100001101000
0110100000111000
1100011110010111
0110110100111101

1001011111000111
0011110101101101
1001001011000010
1100001010010010

For a given word w ∈ Σn in bit vector representation,
and a set of word transformations T ⊆ T4 of Example 1 the
set T (w) can be specified by a corresponding set of literals.
Thus, when encoding to CNF a constraint model to represent
the set T (w) no CNF clauses are required — all of the infor-
mation is in the Boolean variables.

Example 6 Consider w ∈ Σ8 represented by the bit vector
〈x1x2 x3x4 x5x6 x7x8 x9x10 x11x12 x13x14 x15x16〉.
Then, the following are the bit-vector representations of
w, hs(w), fc(w), wc(w), hs(fc(w)), wc(hs(fc(w))),
wc(fc(w)), and hs(wc(fc(w))), respectively:

1. 〈x1x2 x3x4 x5x6 x7x8 x9x10 x11x12 x13x14 x15x16〉
2. 〈x9x10 x11x12 x13x14 x15x16 x1x2 x3x4 x5x6 x7x8〉
3. 〈x̄1x̄2 x̄3x̄4 x̄5x̄6 x̄7x̄8 x̄9x̄10 x̄11x̄12 x̄13x̄14 x̄15x̄16〉
4. 〈x̄9x̄10 x̄11x̄12 x̄13x̄14 x̄15x̄16 x̄1x̄2 x̄3x̄4 x̄5x̄6 x̄7x̄8〉
5. 〈x1x̄2 x3x̄4 x5x̄6 x7x̄8 x9x̄10 x11x̄12 x13x̄14 x15x̄16〉
6. 〈x9x̄10 x11x̄12 x13x̄14 x15x̄16 x1x̄2 x3x̄4 x5x̄6 x7x̄8〉
7. 〈x̄1x2 x̄3x4 x̄5x6 x̄7x8 x̄9x10 x̄11x12 x̄13x14 x̄15x16〉
8. 〈x̄9x10 x̄11x12 x̄13x14 x̄15x16 x̄1x2 x̄3x4 x̄5x6 x̄7x8〉
The interested reader can double check that for w =

C T A C G A A C, represented by 00 11 10 00 01 10 10 00
these eight bit vectors correspond precisely to those given as
Examples 2 and 5.

Let T ⊆ T4 and U ⊆ {(P),(HD),(RC)}. We say that
w ∈ Σn is a base word with respect to T and U if the words
in T (w) satisfy the constraints U , and w is the minimal ele-
ment of T (w) (under the lexicographic order on the bit vector
representation of the words).

Example 7 The word w1 = C T A C G A A C is a base word
with respect to T3 and U = {(P),(HD),(RC)}. The
eight words of T3(w1) detailed in Example 2 satisfy the con-
straints (P), (HD), and (RC), and the bit vector represen-
tation of w1 is minimal in the lexicographic order of the
bit vector representations detailed in Example 5. The word
w2 = C T T G C T T G is also a base word with respect to T3
and U . The four words of T3(w2) detailed in Example 3 sat-
isfy the constraints, and w2 is minimal (in the lexicographic
order of the respective bit vector representations).

Our strategy to solve the DNA word design problem is to
seek a solution S constructed in terms of a much smaller set,
B, of base words such that S = T (B) for a set of word

transformations T . In this sense, one can view T as inducing
a clustering of the words in Σn. However, it is not just about
the size of the set B. Expressing the constraints of the DNA
word design problem in terms of the set B turns out to be
much more compact as well. We demonstrate this in the next
three lemmas where we focus on the case where T ⊆ T4.

Let x1 . . . x2n be a bit vector representing a word w ∈ Σn

and B = T (w) represented as a set of bit vectors. A model
that constrains w to be a base word must constrain w to be
the lexicographic minimum in T (w). That means imposing
at most 16 constraints (assuming that T ⊆ T4). A model
that constrains w to be a base word must impose constraints
(P) and (RC1) on each word of T (w). The following lemma
implies that it suffices to impose them only on w.

Lemma 1 Let w ∈ Σn. If w satisfies Constraint (P), then
so does T (w). If w satisfies Constraint (RC1), then so does
T (w).

Proof: Let w ∈ Σn and f ∈ {hs,wc, fc,ms}. We show
that if w satisfies the constraint, then so does f(w). De-
note w = 〈x1, . . . , xn〉 and f(w) = 〈y1, . . . , yn〉 and as-
sume the constraints hold for w. The proof for constraint
(P): If f ∈ {hs,wc,ms} then w and f(w) have the same
number of letters from {C,G}. If f = fc and n is even,
then the number of {C,G} in f(w) equals the number of
{A, T} in w, which by constraint (P), equals the number
of {C,G} in w. For odd n the proof follows with a simi-
lar argument. The proof for constraint (RC1): consider the
Boolean values bi ↔ xi 6= xc

n−i+1 and di ↔ yi 6= ycn−i+1
for 1 ≤ i ≤ n. For each choice of f , direct inspection reveals
that

∑n
i=1 bi =

∑n
i=1 di. So (RC1) holds for f(w). �

A model that constrains w to be a base word must impose
constraints (HD) and (RC2) on each pair of distinct words
from T (w) i.e., two constraints for each pair of distinct words
from T (w). In the case that T (w) contains k words that
means at most

(
k
2

)
constraints in total. The following lemma

implies that it suffices to consider only the pairs including the
base word w i.e., at most k − 1 constraints only.

Lemma 2 Let w ∈ Σn. If all pairs (u,w), where u ∈ T (w)
and u 6= w satisfy Constraints (HD) and (RC2), then T (w)
satisfies Constraints (HD) and (RC2).

Proof: We detail the proof for constraint (HD). The proof for
constraint (RC2) is similar. Assume that w is a base word and
that w differs from every other word w′ ∈ T4(w) in at least
n/2 positions. We argue (∗) that for any pair of distinct words
u, v ∈ T4(w), also u and v differ in at least 4 positions. By
definition of T4(w), u = f(w) where f is some composition
of functions from {fc, wc, hs,ms}. The pair u, v differ in
the same number of positions as the pair f(u), f(v). The
argument (∗) follows because the functions composing to f
are all inversive and so f(u) = w. But we already know that
w and f(v) differ in at least four positions. �

Now consider a set B of base words. A model that con-
strains S = T (B) to be a solution of the DNA word design
problem must impose constraints (HD) and (RC2) on pairs
of words: for each w1, w2 ∈ B (viewing B as a sequence
we can assume that w1 occurs before w2) all pairs u, v where
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u ∈ T (w1) and v ∈ T (w2). The following lemma implies
that it suffices, for the pair (w1, w2) to impose the constraints
for pairs of the form (w1, v) with v ∈ T (w2) and ignoring
the symmetric ones of the form (u,w2). That means check-
ing a linear number of constraints, two for each pair (u,w2),
instead of a quadratic number.

Lemma 3 Let w1, w2 ∈ Σn. If all pairs (w1, v) with v ∈
T (w2) satisfy Constraints (HD) and (RC2), then all pairs
u, v in T (w1)× T (w2) satisfy Constraints (HD) and (RC2).

Proof: The proof is similar to that of Lemma 2. �

4 The Constraint Model
Let (n, d, U) specify an instance of the DNA word problem.
To ease presentation, we introduce the model in three steps.

Step 1: Consider the search for a solution S given in terms
of m base words with respect to a single set of word trans-
formations F1 ⊆ T4. Let M be a m × 2n Boolean matrix.
Each row in M represents an n-letter base word (in 2n bits)
and represents 2|F1| different words. We view a matrix as the
set of its rows. We write w ∈ M to indicate that w is a row
of M . If w,w′ ∈ M we write w <M w′ to indicate that row
w occurs before row w′ in M . We denote by ≺ the lexico-
graphic order on Boolean vectors. The solution S represented
by matrix M is S = ∪{ F1(w) | w ∈M }.

For each base word w ∈ M , each single word u in F1(w)
is required to satisfy constraints P(u) and RC1(u). Moreover,
each pair of distinct words u and v in F1(w) is required to
satisfy constraints HD(u, v) and RC2(u, v). Here, according to
Lemma 1 and 2, it is sufficient to require P and RC1 only for
the base word w, and it is sufficient to require HD and RC2
only for pairs that include w.

∧
w∈M

P(w) ∧ RC1(w) ∧
∧

v∈F1(w)

(HD(w, v) ∧ RC2(w, v))

 (1)

Observe that Constraint (1) implies that for each base word
w, a row in M, the words in F1(w) are pairwise distinct.

The next constraint ensures that words u, v generated from
different base words w,w′ ∈ M satisfy constraints HD(u, v)
and RC2(u, v). Here, according to Lemma 3, it is sufficient to
consider pairs which include w.∧

w,w′∈M
w<Mw′

∧
v∈F1(w′)

(HD(w, v) ∧ RC2(w, v)) (2)

The next constraint in our model is a symmetry breaking
constraint. It ensures that words in M are minimal in the sets
they generate under F1, and that the matrix of base words is
sorted. ∧

w∈M

∧
v∈F1(w)

w ≺ v ∧
m−1∧
i=1

Mi ≺ Mi+1 (3)

Example 8 Consider the instance (12, 8,∅), in which we
seek a solution S that contains 12-letter words over the al-
phabet {A,C,G, T} such that every pair w1, w2 ∈ S has

Hamming distance at least 8. Consider a clustering based
on T4 as in Example 1 where each cluster consists of 16
DNA words. The following 7 base words (translated from
the corresponding 5× 24 Boolean matrix) provide a solution
with 7 × 16 = 112 DNA code words, improving the previ-
ous best known result of 64 due to [Bogdanova et al., 2001].

CCCGTCGTATCG
CCGCCTTAGCAC
CCGAACATGAGA
CCAGGAACTCGC

CCTCCGAGCTGT
CCTTATCAAACT
CCTTTATCGGTG

Step 2: Now, consider an instance (n, d, U) and a pair of
sets of word transformations, F1,F2 ⊆ T4. We seek a solu-
tion S represented by m1 base words with respect to F1 and
m2 base words with respect to F2. We model the solution us-
ing two matrices: M1 with m1 rows, and M2 with m2 rows.
Both with 2n columns to represent n-letter words.

The constraint model includes Constraints (1–3) on each of
the two matrices, and additional constraints on pairs of words
u ∈ F1(w1) and v ∈ F2(w2) where w1 ∈ M1 and w2 ∈ M2

satisfy constraints HD(u, v) and RC2(u, v).∧
w1 ∈M1

w2 ∈M2

∧
u ∈ F1(w1)
v ∈ F2(w2)

(HD(u, v) ∧ RC2(u, v)) (4)

In some cases we can do better as indicated by the follow-
ing generalization of Lemma 3.
Lemma 4 Let T ′ ⊆ T be sets of word transformations and
w1, w2 ∈ Σn. If all pairs (w1, v) with v ∈ T (w2) satisfy
Constraints (HD) and (RC2), then all pairs u, v in T ′(w1)×
T (w2) satisfy Constraints (HD) and (RC2).

So, if F1 ⊆ F2, we can introduce a refined constraint to
the model: ∧

w1 ∈M1

w2 ∈M2

∧
v∈F2(w2)

(HD(w1, v) ∧ RC2(w1, v)) (4′)

Example 9 Consider the setting of Example 8 and a cluster-
ing based on T4 and T3 as in Example 1 where each cluster
consists of 16 or 8 DNA words respectively. The following
base words in M1 and M2 (translated from the corresponding
5× 24 and 2× 24 Boolean matrices) provide a solution with
7×16+2×8 = 128 DNA code words, doubling the previous
best known result of 64 due to [Bogdanova et al., 2001].

CCCGACCTATGC
CCCTCGTCAGCA
CCGTGCGAGTTG
CCAAGTATAAAG
CCATTACATAGA
CCTCGATGTCCG
CCTACTCGCGGT


M1

CCGGAGACCCAT
CGTTTGAGAATT

}
M2

Step 3: The generalization to a solution based on a finite
number of sets, F1, . . . ,Fk of word transformations follows
the same idea as in step 2.
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n d U lit. new clustering #clauses #vars time (sec.)
7 3 {hd,rc,p} 1351 147 (T0, 1), (T1, 3), (T2, 9), (T3, 13) 529,280 122,711 49,852
8 4 {hd,rc,p} 1284 128 (T2, 8), (T3, 12) 394,474 90,398 21
9 5 {hd,rc,p} 671 76 (T1, 2), (T2, 4), (T3, 7) 196,265 44,576 120,728

10 6 {hd,rc,p} 541 63 (T0, 1), (T1, 1), (T2, 4), (T3, 7) 146,270 32,819 512
11 7 {hd,rc,p} 372 56 (T2, 2), (T3, 6) 108,829 24,209 23
12 8 {hd,rc,p} 292 39 (T0, 7), (T2, 8) 180,545 39,763 1,279
14 10 {hd,rc,p} 202 23 (T0, 7), (T3, 2) 94,640 20,415 263
15 10 {hd,rc,p} 372 39 (T0, 1), (T1, 1), (T2, 1), (T3, 4) 119,611 25,574 136,072
9 5 {hd,p} 1342 140 (T2, 3), (T4, 8) 335,895 75,969 339

12 8 {hd} 643 128 (T3, 4), (T4, 6) 184,769 40,501 878
1. [Chee and Ling, 2008] 2. [Montemanni et al., 2014] 3. [Bogdanova et al., 2001] 4. [Tulpan, 2000]
T0 = ∅ T1 = {fc} T2 = {wc, fc} T3 = {wc, fc, hs} T4 = {wc, fc, hs,ms}

Table 1: Computing lower bounds of AU
4 (n, d).

5 Implementing the Constraint Model
The computations reported in this paper are performed us-
ing the finite-domain constraint compiler BEE [Metodi et al.,
2013] which compiles constraints to a CNF, and solves it ap-
plying an underlying SAT solver. In the configuration for this
paper we use CryptoMiniSAT v2.5.1 as the underlying SAT
solver. All computations were performed on a cluster of Intel
E8400 cores, each clocked at 2 GHz. Each of the cores in
the cluster has computational power comparable to a core on
a standard desktop computer. Each SAT instance is run on a
single thread.

A solution is a tuple of matrices M1, . . . ,Mk as described
in step 3 of Section 4, representing m1, . . . ,mk base words
respectively. These are then applied to generate a set S of
corresponding DNA words which are a solution to the DNA
word design problem.

Several optimizations are applied in the implementation.
Constraint (3), introduced above, is a first symmetry break.
Base words are selected to be the minimal words in the cor-
responding clusters of words generated by F1, . . . ,Fk, and
the rows of the matrices M1, . . . ,Mk are constrained to be
sorted. Columns in the matrices cannot be arbitrarily re-
ordered. However there is a symmetry that allows to swap
the letters at positions i and n + 1 − i in the n-letter base
words and we have introduced this symmetry break.

For experimentation, an instance takes the form (n, d, U)
together with a tuple of pairs 〈(m1,F1), . . . , (mk,Fk)〉
where F1, . . . ,Fk ⊆ T4 are sets of word transformations and
we seek a solution with m1 base words with respect to F1

and m2 base words with respect to F2 etc.
Table 1 summarizes our experimentation and details the

best lower bounds for AU
4 (n, d) that we have found using

our approach. The first three columns detail the instance
(n, d, U). The forth column (“lit”) details the best previous
result that we found in the literature together with a refer-
ence indicating where this result can be found in literature as
detailed in the legend of Table 1. The fifth column (“new”)
details our result. The sixth column (“clustering”) details the
word transformations that were used and the number of base
words per set of transformations (e.g, 〈(T4, 4), (T0, 3)〉means
that 4 base words were found for the word transformations in

T3 T2 T1 T0 total time
13 0 0 0 104 1
14 0 0 0 112 21
15 0 0 0 120 t.o.
14 6 0 0 136 255
13 9 0 0 140 3,229
14 7 0 0 140 651
14 7 2 0 144 712
13 9 2 1 145 1,057
14 7 2 2 146 1,697
13 9 2 2 146 3,423
13 9 3 1 147 49,852

Table 2: Some results in the search for a solution for instance
(7, 3, {hd, rc, p}). Time is in seconds (24 hr. timeout).

T4 and 3 base words were found for the word transformations
in T0, summing up to a total of 4×16+3×1 = 67 DNA code
words). The last three columns describe the CNF encoding
(number of clauses and variables) and the SAT solving time
required to find the corresponding DNA code.

In Table 1 results are for a given type of clustering. We
have not addressed in this paper the issue of how to find a suit-
able type of clustering. For each instance of the DNA word
problem we have experimented with a wide range of possi-
ble choices applying a mixture of intuition and brute force
search. We only present here the instances for which we have
improved on the best previous result, with the exception of
instance (8, 4, {hd, rc, p}) for which we obtained a solution
with 128 words, equal in size to the result by Tulpan [Tulpan,
2000]. In this case, we report the result as it is obtained in
less than 30 seconds of computation, as opposed to the result
by Tulpan which takes orders of magnitude longer.

Tables 2, and 3 illustrate some of the results in the search
process for a solution for the instances (7, 3, {hd, rc, p}) and
(9, 5, {hd, rc, p}). For these instances, there is no solution
that contains a cluster of type T4. The first four columns de-
tail the number of clusters of type T3, T2, T1 and T0. The
fifth column details the total number of words represented by
the corresponding clustering. The final column indicates the
time (in seconds) to find a solution with the corresponding
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T3 T2 T1 T0 total time
8 0 0 0 64 47
7 3 0 0 68 238
8 1 1 0 70 452
8 1 2 0 72 1,790
7 4 0 0 72 2,833
9 0 0 0 72 t.o.
7 4 1 0 74 7,451
7 4 1 1 75 75,817

Table 3: Some results in the search for a solution for instance
(9, 5, {hd, rc, p}). Time is in seconds (24 hr. timeout).

T4 T3 T2 T1 T0 total time
6 0 0 0 0 96 180
7 0 0 0 0 112 142
6 3 0 0 0 120 91
7 1 0 0 0 120 89
6 4 0 0 0 128 878
7 2 0 0 0 128 1,182
8 0 0 0 0 128 t.o.

Table 4: Some results in the search for a solution for instance
(12, 8, {hd}). Time is in seconds (24 hr. timeout).

clustering. Here we assumed a timeout of 24 hours. Table 4
illustrates the search for the instance (12, 8, {hd}). Here so-
lutions include also clusters of type T4.

6 Bottom Line and Discussion
We have improved on several lower bounds AU

4 (n, d) in the
context of error-correcting codes for DNA word problems.
Our approach is constraint based and expressed in terms of
a partition of the class of all n-letter words into clusters of
words as determined by subsets of a set T of word transfor-
mations. Each cluster is required to satisfy the constraints of
the word problem. A pair of clusters that contain conflicting
words cannot both be in a solution.

To evaluate the quality of our proposed clus-
tering of DNA words let us consider the instance
(8, 4, {(P),(HD),(RC)}) with a clustering based on
T3. There are 48 = 65,536 DNA words (of length eight).
From these, there are only 17,440 words which satisfy
constraints (P) and (RC1) and hence can appear in a solution
to the DNA word design problem. These 17,440 words
partition into a total of 2262 clusters when applying T3.
From these 2262 clusters only 1544 satisfy constraints (HD)
and (RC2). From these 1544, 1424 are clusters of size eight,
and 120 are of size four. The 1544 clusters that could appear
in a solution comprise 11,872 DNA words. This is 68% of
the 17,440 that could appear in a solution. We also note that
there are 2262− 1544 = 718 clusters that satisfy constraints
(P) and (RC1) but does not satisfy constraints (HD) or (RC2).
We observe that these “bad” clusters, are not so due to a
single contradicting pair of words: by applying Lemma 2
it happens that every word in a “bad” cluster is in conflict
with at least one other word in that cluster. In clusters of size
four there is an average of 2 contradicting pairs. In clusters

of size eight there is an average of 6.06 contradicting pairs.
Furthermore, when a pair of “good” clusters (from the 1544)
does not satisfy either (HD) or (RC), then this is on average
because of 8.68 contradicting pairs. Indeed, by applying
Lemma 3 it is obtained that in this case every word from one
cluster is in conflict with at least one word from the other
cluster.

As can be seen in Table 1, most of the new codes obtained
applying our technique are found in under 10 minutes of com-
putation time. Several of the codes require considerable more
time. All of the codes are available on request from the au-
thors and will be made publicly available,

Finally, we note that our approach is incomplete. There
may be (larger) solutions which cannot be found using our
approach as they cannot be expressed in terms of the specific
clusters we have selected.
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