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Abstract
We propose a new abstraction refinement proce-
dure based on machine learning to improve the
performance of nonlinear constraint solving algo-
rithms on large-scale problems. The proposed ap-
proach decomposes the original set of constraints
into smaller subsets, and uses learning algorithms
to propose sequences of abstractions that take the
form of conjunctions of classifiers. The core pro-
cedure is a refinement loop that keeps improv-
ing the learned results based on counterexamples
that are obtained from partial constraints that are
easy to solve. Experiments show that the proposed
techniques significantly improve the performance
of state-of-the-art constraint solvers on many chal-
lenging benchmarks. The mechanism is capable of
producing intermediate symbolic abstractions that
are also important for many applications and for
understanding the internal structures of hard con-
straint solving problems.

1 Introduction
Constraint satisfaction problems play a key role in diverse
applications, ranging from planning and scheduling for AI
systems to program analysis. However, the constraints that
arise for real-world systems are often nonconvex, nonlinear,
and lack structure that can be exploited, making these prob-
lems prohibitively computationally expensive. For instance,
if the constraints contain only polynomial arithmetic, then the
constraint-solving problem is decidable [Tarski, 1998], but
the algorithms are doubly exponential [Brown and Daven-
port, 2007]. If the constraints contain transcendental func-
tions, such as trigonometrics or exponentials, then the con-
straint solving problem is undecidable. A relaxed version of
the problem that admits approximate solutions, however, is
NP-complete [Gao et al., 2013].

Several approaches have been proposed to improve per-
formance for discrete constraint satisfiability problems using
decompositions, including [Darwiche, 2001; Bacchus et al.,
2009]. Recent work in this direction is [Friesen and Domin-
gos, 2015] which proposes problem-decomposition approach

∗sdathath@caltech.edu

where the original nonconvex optimization problem is de-
composed into subproblems that are approximately indepen-
dent. In contrast, our approach first decomposes the problem
and then uses a learning procedure to find simpler abstrac-
tions of the problem that are more tractable to solve. The
main problem with finding these interpolants—which serve
as simplifications through syntactic manipulations [Albargh-
outhi and McMillan, 2013; Drews and Albarghouthi, 2016]—
is that they are typically slower and difficult to scale.

However, a concern with using learning-based approaches
for constraint solving problems is finding provable relax-
ations or restrictions of the original problem. Our approach
decomposes a set of nonlinear arithmetic constraints into sub-
sets and learns simpler relaxations and restrictions for them.
To learn these simplifications, we begin by computing a large
number of satisfying and falsifying instances for each subset
of constraints using a sampling procedure. For a given set of
samples, we use a semi-soft support vector machine (SVM)
to learn asymmetric classifiers as candidate antecedents and
consequents. The semi-soft SVM is embedded into a refine-
ment loop where a reduced constraint problem is solved to
ensure that the candidate antecedent and consequent are in-
deed a provable antecedent and a provable consequent. The
simpler learned antecedents can be used to find a satisfying
instance, and the learned consequents can be used to demon-
strate that no satisfying instance exists. Other potential appli-
cations of the abstraction learning framework proposed here
could be in finding Craig interpolants and reachability analy-
sis for dynamical systems.

Other attempts at using learning to find interpolants in do-
mains such as program analysis and safety-analysis for hybrid
systems [Sharma et al., 2012; Aréchiga et al., 2015] do not
address the problem of scalability, which is the main focus of
our work.

We show that our techniques significantly improve the per-
formance of constraint solving on various challenging bench-
marks, including model-predictive control of Dubins car,
finding valid encoder expressions for FPGA design, and geo-
metric reasoning in high-dimensional spaces.

The paper is structured as follows. First, we provide an
overview of the problem statement and terminology used in
the paper. Next, we describe our asymmetric non-strict classi-
fier, which is used to learn abstractions of sets of constraints.
Subsequently, we describe the heuristics that we use to de-
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compose the constraints into subsets for abstraction. Lastly,
we describe our results from experiments and conclude.

2 Background
Constraint solving over real numbers. Suppose a set of
constraints A(x) = {A1(x) . . . , Am(x)} is given, where x
represents a vector of variables. The real-valued constraint
solving problem, also called satisfiability modulo theory of
the reals, is to compute a real-valued vector x̂ that simultane-
ously satisfies all of the constraints in A or to prove that no
such vector exists. If a satisfying instance x̂ is found, then
we say that the constraint set is satisfiable. If no such sat-
isfying instance exists, then we say that the constraint set is
unsatisfiable.

Antecedents and consequents. Let A(x) be a logical for-
mula with a vector of free variables x. A logical formula α(x)
is an antecedent ofA(x) if ∀x . α(x) =⇒ A(x). This means
that the values of x that satisfy α are a subset of the values of
x that satisfy A, so we will also call α(x) an underapproxi-
mator of A(x). Conversely, a formula γ(x) is a consequent
of A(x) if ∀x . A(x) =⇒ γ(x). In this case, all values
of x that satisfy A(x) also satisfy γ(x), so we refer to γ(x)
as an overapproximator of A(x). If {A1, . . . , Ak} is a set of
constraints, we say that α(x) is an antecedent for the set of
constraints if it is an antecedent for the conjunction, i.e.

∀x . α(x) =⇒ A1 ∧ · · · ∧ Ak. (1)

The consequent of a set of constraints is similarly defined to
be a logical consequence of the conjunction of the constraints.

3 Faster Solving With Abstractions
Our approach is to decompose the original set of constraints
A = {A1, . . . , Am} into subsets A1, . . . ,Ak, and then learn
antecedents and consequents for each subset. We then use
these antecedents and consequents to solve the original con-
straint satisfaction problem. The details of our learning pro-
cedure will be described in Section 4, but for now we sim-
ply note that it relies on obtaining satisfying and falsify-
ing instances and learning classifiers from them that are an-
tecedents or consequents.

Let αj be the learned antecedent for the subset Aj , and let
γj be its consequent. Then, we solve the sets of constraints
α = {α1, . . . , αj} and γ = {γ1, . . . , γj}. If the antecedents
α are satisfiable by some instance x̂, then x̂ satisfies the orig-
inal constraint set, by definition of antecedence. Conversely,
if the consequents γ are unsatisfiable, then the original set A
is also unsatisfiable. For if A were satisfiable, then each Aj

would be satisfiable, and so would each γj , by the definition
of consequence.

Alternatively, if α is unsatisfiable and γ is satisfiable, then
we cannot conclude anything about A. We must refine our
antecedents and consequents and try again.

Our technique provides performance improvements under
the following premises:

1. The subsets of constraints Aj are simple enough that
they can be solved quickly and repeatedly to obtain sat-
isfying and falsifying instances.

2. The learned antecedents and consequents are simple
enough that checking the properties of antecedence and
consequence is fast.

3. The learned antecedents and consequents are accurate
enough to establish the existence or non-existence of a
solution.

The above requirements are inherently conflicting. Greater
simplification is obtained by considering larger subsets Aj ,
but these larger subsets are harder to solve quickly to obtain
samples. Similarly, simpler antecedents and consequents will
be easier to check, but will provide poorer approximations to
solve the original problem.

To illustrate the proposed approach, consider the problem
of solving the constraint setsA andB shown in Figure 1. The
region arising from constraint set A is underapproximated by
the region A′. The constraint set A′ is now solved in con-
junction with B to find a solution satisfying A and B. The
learned constraint set A′ has a simpler form, enabling faster
computation.

4 Learning Abstractions
This section describes an approach for conservative learning
of constraints with SVMs [Cortes and Vapnik, 1995]. First,
we use a sampling procedure to generate satisfying and falsi-
fying instances for the set of constraints. The proposed sam-
pling procedure (Algorithm 1, described in Section 4.2) uses
an existing constraint solver, and is able to generate samples
while keeping the constraint queries small.

Next, we use a semi-soft SVM with boosting to generate
a constraint that serves as either a candidate antecedent or
consequent. This classifier is refined using an abstraction re-
finement loop until the SMT solver is able to verify that the
candidate constraint is a true antecedent or consequent. This
constraint is a conjunction of classifiers, and the procedure is
described in Algorithm 2.

First we present the formulation of the semi-soft SVM fol-
lowed by the approach for boosting, where the approximation
is learned as a conjunction of classifiers.

Figure 1: Illustration of the approach
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Algorithm 1: Sampling Procedure
Input : Set of constraints A(x), k, l,m,R1, R2, . . . , Rn

Output: Sets of points X+ satisfying A(x)
1 X+ = ∅, X̄+ = ∅ ;
2 for j=1:m do
3 Sample p ` A(x) s.t. ∀s ∈ X̄+.d(p, s) > ri+1 ;
4 X̄+ = X̄+∪ p ;
5 end
6 for i=1:l-1 do
7 X+ = ∅ ;
8 for q ∈ X̄+ do
9 X+ = ∅ ;

10 for j=1:m do
11 Sample p ` A(x) s.t. d(p, q) < ri and

d(p, s) > ri+1.∀s ∈ X+;
12 X+ = X+∪ p ;
13 end
14 X+ = X+ ∪X+ ;
15 end
16 X̄+ = X+ ;
17 end
18 X+ = X+ ;
19 return X+ ;

Algorithm 2: Algorithm to learn abstractions for sets of
nonlinear arithmetic constraints

Input : Set of constraints A(x), parameters m, k
Output: g(x) such that A(x) =⇒ g(x) > 0

1 Sample set of points X+ with A(x) as input to
Algorithm 1 ;

2 Sample set of points X− with ¬A(x) as input to
Algorithm 1 ;

3 Initialize g0(x) = TRUE , iter = 0;
4 Set X = X+ ∪X− ;
5 Map the X to a higher-dimension feature space ;
6 Cluster points in X− into N clusters ;
7 Learn a classifier separating each cluster in X− from
X+ using the semi-soft SVM;

8 Set g(x) = g0(x) ∧ conjunction of the N classifiers ;
9 if A(x) =⇒ g(x) > 0 ∧ iter ≤ k ;

10 then
11 return g(x);
12 else if iter ≤ k then
13 iter=iter+1;
14 else
15 g0 = g(x) ;
16 iter=0;
17 Sample a set of points X∗ with ¬(A(x) =⇒ g(x) > 0)

as input to Algorithm 1;
18 X+ = X+ ∪X∗ ;
19 go to 4 ;

4.1 Semi-Soft SVM
As a supervised learning approach, SVMs have been known
to perform effectively in learning classifiers. Two types of
SVM are commonly employed: hard margin and soft mar-
gin. Hard-margin SVM approaches do not allow for any mis-
classification, but may be infeasible if the data points are not
linearly separable. On the other hand, soft-margin SVM ap-
proaches allow for misclassification of some points, but they
do not serve our purpose. Since in general an antecedent will
need to exclude all falsifying instances and a consequent will
need to include satisfying instances, soft-margin SVMs are
not suitable for our purposes.

Instead, we use a semi-soft margin SVM, where we al-
low only samples of one type to be misclassified. When
searching for an antecedent (underapproximation of satisfy-
ing instances), we allow some positive examples to be mis-
classified. Similarly when searching for a consequent, we al-
low some negative examples to be misclassified, resulting in
an overapproximation of the satisfying instances. Asymmet-
ric SVMs have been of interest to minimize cases of false-
negatives (or false-positives) in certain applications. Some
efforts directed at asymmetric learning [Wu et al., 2008;
Wu et al., 2013] aim to minimize the false-negatives but for
learning consequents we seek to eliminate false-negatives.

Use of a semi-soft SVM yields a quadratic program. To
abstract the constraints Aj , we label its satisfying instances
as +1 and its falsifying instances as −1. To compute a con-
sequent, we set up the optimization problem to necessarily
yield positive labels for the positive instances, while simply
making a best effort attempt to provide negative labels for the
negative instances.

Let X+ be the set of satisfying instances of the subset of
constraints Aj(x) and X− the set of falsifying instances of
Aj(x). X+ and X− are obtained by the sampling procedure
described in Section 4.2. We will search for a consequent by
the following optimization problem, which learns the classi-
fier g(x) = sgn(w0 + wTx):

min
w,w0,eb

1

2

w2
0 + wTw + λ

N−∑
n=1

eb


s.t y−

(
wo + wTx−b

)
≥ 1− eb,

y+
(
wo + wTx+

)
≥ 1,

eb ≥ 0,

∀x+ ∈ X+,

{x−1 , x
−
2 , . . . , x

−
N−} = X−,

b = 1, 2, . . . , N−,

(2)

where N− = |X−| and N = |X+ ∪ X−|. Here eb are the
slack variables allowing for misclassification of the points in
X−. Notice that this deviates from the standard soft-margin
SVM in the sense that only one type of data-points are as-
signed slack-variables. The labels y+ = +1 and y− = −1
correspond to points in X+ and X− respectively. Note that
this optimization problem provides hard constraints for clas-
sifying positive points, but soft constraints for classifying
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negative points.
Proposition 1 For any given sets of points X+ and X−, the
semi-soft SVM as formulated in (2) finds a hyperplane w0 +
wTx = 0 such that ∀x+ ∈ X+, w0 + wTx+ > 0.

Proof For x+ ∈ X+, by the constraint, y+ (wo + w+x+) ≥
1, we have w0 + wTx+ ≥ 1 > 0.

The minimization problem in equation (2) is a quadratic
program (QP). A solution to the constraints of the QP is
w0 = 1, w = 0 and eb = 2, implying that the QP has a
non-empty feasible set. Therefore, equation (2) always re-
turns a hyperplane that has the above property of correctly
classifying the points in X+.

The case for computing an antecedent can be derived in
a straightforward manner, by requiring that the classifier cor-
rectly provide negative labels for the negative instances, while
simply making a best effort attempt to provide positive labels
for the positive instances.

4.2 Sampling for Learning
A key aspect of this problem is sampling points that reason-
ably cover both the regions satisfying the constraints and the
regions that do not satisfy the constraints to learn meaningful
classifiers. One such sampling strategy follows.

We will use a distance metric d(·, ·) to enforce spacing be-
tween samples. For the experiments in this paper, the distance
function is the `2-norm. We begin by choosing a large radius
R0, and sample a set of points C = {c1, . . . , ck} that are sep-
arated by a distance of at least R0. These samples will serve
as centers for circles that we will sample from at the next it-
eration.

Now, consider a smaller radius R1(< R0). Define cir-
cles with radius R0 around each of the sampled points Ωi =
{x|d(x, ci) ≤ R0}. In each Ωi, sample points that are at least
R1 apart. In this manner we can iterate through a sequence
of decreasing radii R2, R3 . . . Rl by defining circles around
the sampled points with radius Ri and sampling points from
these circles that are at least Ri+1 apart and so on.

The radii Rk are chosen so that the points sampled in a
particular layer are distributed around the feasible region (the
intersection of the feasible region for the problem and the cir-
cles defined by us) for that layer. Given a fixed number of
samples m to be sampled in a layer, the optimal radius for
that layer can be determined by a bisection search to find ap-
proximately the largest radius that gives m samples per layer.
This implies that there exists no other point in the feasible
region that can be sampled that is at a distance greater than
rk from the other sampled m points. Further increasing the
radius would imply that we cannot find m such points and if
we can find more than m points, we increase the radius un-
til only m are found. This approach provides good coverage
in our experiments. However, even if the initial samples are
poorly distributed, the CEGAR loop described in Section 4.3
iteratively searches for antecedents and consequents, and only
terminates once provable abstractions are found. As a result,
the quality of the initial samples only has an effect on perfor-
mance, but does not compromise soundness. The approach is
more formally described in Algorithm 1. The term ‘Sample’
in Algorithm 1 refers to a query to the constraint solver to

find a feasible point satisfying the constraints. Though Algo-
rithm 1 provides no formal guarantees aboutm samples being
found during each iteration, the learning can be performed
with fewer than m samples. When the constraints have no
solution and no sample can be found, the classifier learned is
false.

Besides good coverage, an advantage of this approach is
that it prevents the explosive growth of the formula used to
sample using an SMT solver. Once the first set of samples are
generated, the procedure is parallelized to generate samples
in the balls around each of these points since the sampling in
the individual balls is independent of that in the others.

4.3 Counterexample Guided Abstraction
Refinement(CEGAR)

Counterexample-guided abstraction refinement (CEGAR)
was first proposed in [Clarke et al., 2000] for refining ab-
stractions of control structures in programs. We develop our
algorithm in the paradigm of CEGAR.

Once the classifier g(x) has been learned by the semi-
soft SVM, it still remains to be validated that the classifier
learned is an overapproximation (underapproximation) of the
constraint-set we seek to abstract. Let Ai be the conjunction
of the constraints in Ai. To verify that the classifier learned is
indeed a consequent (antecedent) of the constraint-set Ai(x),
we need to check the consequence condition Ai(x) =⇒
g(x) > 0 (for showing antecedence g(x) > 0 =⇒ Ai(x)).
If the negation of this formula is not satisfiable, i.e there is no
assignment to x over which the formula interprets to false,
we have learned a consequent γi(x) ≡ (g(x) > 0) (respec-
tively, antecedent αi(x) ≡ (g(x) > 0)). Otherwise, we sam-
ple points that violate the formula as proposed in Algorithm 1,
add them to the training set, and learn a new classifier. This
procedure is iteratively repeated until we have learned a con-
sequent (antecedent). Note that although Algorithm 2 may
fail to terminate, it will terminate only if it has found a con-
sequent for Ai(x).

4.4 Boosting
In some problems, the CEGAR procedure might fail to con-
verge after a large number of iterations or learn poor approx-
imations of the original problem. This can occur if the con-
straints to be approximated represent regions in space that
cannot be approximated by a single classifier. This section
describes how to sequentially learn classifiers that in conjunc-
tion form a better relaxation.

As a first step, the falsifying points are partitioned into
clusters using a clustering algorithm (K-means for all exam-
ples presented in this paper). A classifier is learned from each
cluster separating it from all the feasible points. These clas-
sifiers in conjunction form a first approximation of the con-
straints. Next, a few iterations of CEGAR are run where this
approximation is refined. Subsequently, collect the misclassi-
fied falsifying points and learn a new classifier using the mis-
classified points and the satisfying points in a similar manner.
Note that none of the feasible points are misclassified by the
construction of the semi-soft SVM.

During the CEGAR step that learns the new classifier, the
condition Ai(x) =⇒ γi(x) is checked where now γi(x) is
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overapproximated

Learned
Overapproximation

Figure 2: Quadratic Overapproximation of the infeasible region.

the conjunction of the most recent classifier learned and the
previous classifiers. The classifier learned at the end of these
CEGAR iterations is the conjunction of the two classifiers
(which in turn are a conjunction of classifiers).

This differs from conventional boosting [Ting and Zhu,
2009], where the classifier learned is a weighted sum of an en-
semble of classifiers, and cascade SVMs [Graf et al., 2004],
where the classifiers are learned in parallel and then combined
into a single one.

4.5 Example
To demonstrate the approach described above consider the
following constraint

A =x2 + y3 ≤ 4 ∧ x ≥ −4

∧ x2 + y3 + 30y ≤ −20

∧ x5 + 3xy − 2x ≤ 5.

(3)

Suppose we want to find a point that lies outside A but satis-
fies a constraint C i.e we are trying to solve ¬A ∧ C.

We first seek to learn an underapproximation of the feasible
region (¬A) or an overapproximation of the infeasible region
(A) with quadratic classifiers, since a collection of quadratic
constraints is easier to solve than a collection of higher order
polynomial constraints. Recall that by negating the overap-
proximation of A, we can obtain an underapproximation of
¬A.

For constraint A we obtain satisfying and falsifying in-
stances using Algorithm 1. Next, the sampled instances are
transformed to a higher dimensional space by a feature map
[Boser et al., 1992], which lets us learn quadratic classifiers
in the higher dimensional space by the semi-soft SVM pro-
cedure described in Section 4.1. An antecedent for ¬A is
learned as described in Algorithm 2. Recall that the an-
tecedence is verified using an SMT solver in Algorithm 2.

Here, the number of clusters is set at 2 and we repeat CE-
GAR until it converges. We learn an abstraction that is a con-
junction of two quadratic classifiers. The abstraction is A′ =
0.109xy − 0.788x+ 0.915x2 + 0.935y + 0.135y2 ≥ 1.03 ∧

5.077−0.338xy+6.001x+1.36x2+0.887y+0.257y2 ≥ 0.
A′ underapproximates¬A. To solve¬A∧C, we solveA′∧C.
Figure 2 shows the original set of constraints (red). The infea-
sible region (A) is shaded. The classifiers learned are shown
in the graph (blue). The feasible area is underapproximated
by the intersection of the regions outside each of the clas-
sifiers. The solution space for the problem is restricted to
x ∈ [−2π, 2π] and y ∈ [−2π, 2π].

5 Decomposition Methods
This section describes the heuristics that we use to select
which constraints should be considered together to learn an
abstraction. The first level of decomposition is based on the
Hamming distance.

Hamming decomposition This heuristic groups together
constraints that have many common variables—i.e., those
constraints whose sets of variables, treated as vectors, have
a small Hamming distance. Let FV (·) be the function that
takes a clause and returns the set of free variables of that
clause. Then, the Hamming distance between constraints cm
and cn can be computed as

H(cm, cn) = | (FV (cm) \ FV (cn)) ∪ (FV (cn) \ FV (cm)) |.

We assume that a maximum distance bound θ is given,
such that any two constraints with a Hamming distance less
than or equal to θ will be grouped together for abstraction.
Our implementation loops over the constraints; starting with
the first constraints c0, it chooses all constraints ck such that
H(c0, ck) ≤ θ. After the first pass, it chooses the next con-
straint that was not grouped and loops over the remaining
constraints.

If we group the constraints into a few classes with many
constraints each, then sampling each class to generate ab-
stractions will be computationally difficult. In the limit case,
if all constraints are grouped into a single class, then choosing
a single satisfying instance corresponds to solving the origi-
nal satisfiability problem.

Bounded-size decomposition In some cases, it may be the
case that the earlier decomposition did not produce classes
that are sufficiently small to ensure that sampling can be per-
formed quickly. In this case, we set a bound n, and divide the
large classes into smaller subsets with ≤ n constraints each.

6 Experiments
This section details the results of experiments on various
benchmark sets on a 32-core AMD Opteron machine at 2.3
GHz, with 96 GB of RAM 1. A timeout of 200 seconds is set
for abstracting each subset, if the abstraction procedure fails
to finish in this period the constraints are used as is.

1Benchmark problem instances can be found at https://
github.com/dathath/IJCAI_2017_SD
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Model-predictive control for Dubins car The model pre-
dictive control problem is to find a sequence of control inputs
so that a car can reach a specific position. We use a Dubins
car dynamics model with additional nonlinear terms:

at + c1(at + xt/yt) ≥ at+1,

yt + c2
(
cos (at)− y2t

)
≥ yt+1,

xt + c3
(
sin (at)− x2t

)
≥ xt+1.

(4)

The constraints encode the problem of starting from an initial
point and the objective is to determine if a target polytope can
be reached i.e (xfinal, yfinal) ∈ ([a, b]× [c, d]).

The benchmark comes from practical problems in mobile
robotics, and its scale can be varied by changing the number
of time steps. All the problem instances are satisfiable. Fig-
ure 3a shows a plot of the run-times for dReal, our abstraction
approach, and the time required to check abstractions alone.
We cannot compare with un-abstracted performance of z3,
because z3 does not support solving over sines and cosines.
For this same reason, the sampling and abstraction checking
are carried out with dReal, though we solve the simplified

problem with z3, because in this example the resulting ab-
stractions are conjunctions of linear constraints, and z3 typ-
ically performs better than dReal at linear constraints. The
classifier learned for this example is a conjunction of several
linear classifiers, one linear classifier learned during each step
of CEGAR. The Hamming distance threshold here was set to
4, which results in subsets with 3 constraints each. Since sam-
pling these constraints is fast, further decomposition is not
required. The abstracted constraints are always solved faster
that solving the constraints directly, which could be useful in
an application scenario in which abstractions can be cached
and re-used. For large problems, the abstraction-based ap-
proach (including the time for abstraction) performs consid-
erably better than solving directly with dReal.

Energy-efficient FPGA design The constraint sets here
correspond to the search for valid probabilistic encoder ex-
pressions in a value-deviation-bounded serial encoding tech-
nique [Stanley-Marbell et al., 2016]. The search problem is
to find assignments of probabilities for a set of Bernoulli ran-
dom variables such that they satisfy the constraints for valid
encoder family formulations. The hamming distance thresh-
old is set to 3 and n is set at 5. The number of clusters was
set to 2. The classifiers learned were of the form:

g(x) =

(∑
i

(
aix

2
i + bixi

)
+ c0 > 0

)
∧(∑

i

(
dix

2
i + eixi

)
+ f0 > 0

)
.

Sphere packing in high-dimensions In this set of bench-
marks, we solve for a point in the intersection of the exterior
of a set of randomized high-dimensional spheres of the form∑

j∈I
(xj − aj)2 ≤ 30 (5)
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Solver No. Of Average Time Avg. Number Avg. Degree
Benchmarks for Benchmarks of Constraints of Constraints

Solved Fully Input Input
Abstracted (ms) Per Instance to Solver

z3 29 1793.4 ∼32 ∼5.93

dReal 28 1788.8 ∼32 ∼ 5.93
Post-Abstraction

(with dReal) 20 133.3 ∼11.5 ∼ 2.06

Table 1: Comparison on benchmarks for which the abstraction pro-
cedure completes

and cubes bounding the search region (|xk| ≤ 30). For each
sphere, the parameters aj : ∀j ∈ I are randomly chosen
in the range [−50, 50] and the set of variables xj : j ∈
I in each constraint are chosen at random uniformly from
{1, 2, . . . , 15}. Figure 3b shows a plot of the different run-
times for varying number of constraints. The time for solv-
ing the abstracted constraints is significantly smaller than the
time for solving directly with dReal and z3 and the time for
abstraction scales almost linearly since the time for abstract-
ing each subset is independent of the total number of con-
straints. The parameters for the learning procedure are the
same as those from the FPGA design problem.

Hong family. These sets of benchmarks correspond to the
Hong family of benchmarks [Jovanović and de Moura, 2013].
We restrict the solution space to the positive quadrant. The
problem instances are always unsat by construction.

A parameterized generalization of the problem is:
n∏

i=1

xi > 1,

n∑
i=1

x2i < 1.

(6)

To facilitate learning abstractions, we rewrite the problem by
replacing the quadratic constraint with constraints of the form
x2i + x2i⊕1 ≤ zj and

∑
jzj ≤ 2. This makes the sampling

process easier because each of these constraints have to be
sampled only in three dimensions. The Hamming threshold
is set to 3 and bounded-size decomposition is not used here.
The classifiers learned are a conjunction of linear classifiers
as in the car benchmark. Figure 4 shows the runtimes. z3 does
not scale beyond low dimensions, while dReal almost scales
linearly. The abstraction-based scheme does reasonably well
at low dimensions but at higher dimensions the relaxations
computed slow down dReal.

7 Complexity and Discussion
Since the benchmarks contain trigonometric and highly non-
linear functions, even the relaxed versions of the problem that
admit solutions are NP-complete [Gao et al., 2013]. Exist-
ing solvers run into scalability issues when dealing with large
constraint solving instances as in [Gorcitz et al., 2015].

In our approach, the number of samples grows exponen-
tially with the number of variables in the constraints. But by

restricting to small subsets of the original set of constraints,
this exponential growth can be capped. Lloyd’s algorithm
[Lloyd, 2006] for K-means clustering is a linear-time algo-
rithm and the semi-soft SVM results in a QP that is solvable in
polynomial time. Verifying that the classifier learned from a
small subset of constraints is a consequent (or an antecedent)
is a reduced problem whose complexity is much smaller than
solving the entire large set of constraints, since the complex-
ity of constraint solving scales exponentially. We use a se-
quence of polynomial time algorithms to learn an approxi-
mate simpler instance of the constraint satisfaction problem.

From the experiments, we observe that though the abstrac-
tion procedure is not complete it can improve the handling of
large sets of complex constraints abstracting certain subsets
of the constraints. The experiments demonstrate the potential
of the learning based abstraction approach in improving the
scalability of constraint solvers.

8 Future Work
A future direction of work is to develop more sophisticated
heuristics for deciding which constraints are to be abstracted
together. Certain decompositions could result in regions that
are easier to abstract with a low-complexity, high-fidelity ab-
straction. Additionally, our current implementation samples
points that satisfy and falsify a logical formula in the learning
process, without considering the other logical constraints. In
future work, we would like to address the scenario of proving
a sequent, and leveraging knowledge about the consequent to
guide the search of abstractions for portions of the antecedent.

Another immediate direction is to restrict the variables in
the classifiers for a subset to be abstracted to those that the
subset shares with the remaining constraints. A subset im-
poses restrictions on the other constraints only through the
shared variables and learning constraints on the shared vari-
ables should suffice.
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