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Abstract

Different optimization problems defined on graphs
find application in complex network analysis. Ex-
isting propositional encodings render impractical
the use of propositional satisfiability (SAT) and
maximum satisfiability (MaxSAT) solvers for solv-
ing a variety of these problems on large graphs.
This paper has two main contributions. First, the
paper identifies sources of inefficiency in existing
encodings for different optimization problems in
graphs. Second, for the concrete case of the max-
imum clique problem, the paper develops a novel
encoding which is shown to be far more compact
than existing encodings for large sparse graphs.
More importantly, the experimental results show
that the proposed encoding enables existing SAT
solvers to compute a maximum clique for large
sparse networks, often more efficiently than the
state of the art.

1

Different graph optimization problems are of interest for net-
work analysis [Newman, 2004; Palla et al., 2005; Berger-
Wolf and Saia, 2006; Whang et al., 2016]. This includes
maximum clique, maximum independent set, and minimum
vertex cover among others. All these problems are well-
known to be NP-hard [Garey and Johnson, 1979]. Propo-
sitional Satisfiability (SAT) solving and maximum satisfia-
bility (MaxSAT) are in general not directly applied to solv-
ing optimization problems in the analysis of large networks.
Nevertheless, the importance of the topic motivated a large
body of recent work [Johnson and Trick, 1993; Pardalos
and Xue, 1994; Ostergérd, 2002; Fahle, 2002; Régin, 2003;
Tomita and Kameda, 2007; Gelder, 2008; Li and Quan,
2010b; Li and Quan, 2010a; Prosser, 2012; Li et al., 2013;
Pattabiraman et al., 2013; Zhou et al., 2014; Fang et al., 2014;
McCreesh and Prosser, 2014; Pattabiraman et al., 2015;
Rossi et al., 2015; Gouveia and Martins, 2015; Li et al., 2015;
Jiang et al., 2016; San Segundo et al., 2016; Fang et al., 2016;
San Segundo et al., 2017]'. For the concrete case of the
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'Due to space restrictions, relevant earlier references to the large
body of work on solving graph optimization problems are omitted.
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maximum clique problem (MaxClique), the most efficient ap-
proaches implement highly optimized forms of branch-and-
bound search.

Identification of maximal and maximum size cliques finds
application in the analysis of complex networks, which in
most settings correspond to large, but very sparse, graphs.
Unfortunately, existing SAT and MaxSAT encodings of Max-
Clique grow quadratically with the number of vertices, espe-
cially if the graph is sparse. For example, for a sparse net-
work G = (V, E) for which the number of edges |E| grows
with the number of vertices |V|, the number of edges of the
complement graph grows with |V |2. For a network with tens
to hundreds of thousands of nodes, representing the edges of
the complement graph is far beyond the reach of SAT and
MaxSAT solvers, but also of most compute clusters. As a
result, in the recent past, SAT solvers have not been directly
applied to solving optimization problems in large sparse net-
works. Nevertheless, SAT and MaxSAT techniques have been
used as preprocessing steps for solving specific graph op-
timization problems [Li and Quan, 2010b; Li ef al., 2013;
Li et al., 2015; Jiang et al., 2016; Fang ef al., 2016].

This paper represents a first step towards applying SAT and
MaxSAT solvers in solving large scale optimization problems
in graphs. The paper has two main contributions. First, the
paper shows that in many existing encodings of different opti-
mization problems on graphs, there exist hidden encodings of
cardinality constraints, namely AtMostl constraints, and that
the (quadratic) pairwise encoding is used by default. Sec-
ond, the paper develops a novel encoding for the MaxClique
problem, that exploits cardinality constraints. Whereas ear-
lier propositional encodings were based on the complement
graph, making them impractical for large sparse graphs, the
novel encoding only uses the vertices and the edge informa-
tion of the original graph. The experimental results show
that, not only SAT solvers can be used for solving optimiza-
tion problems in large sparse graphs, but for specific kinds of
complex networks, SAT solvers yield one of the most efficient
solution approaches.

The paper is organized as follows. Section 2 introduces the
definitions and notation used throughout the paper. Section 3
analyzes one common source of inefficiency in the propo-
sitional encoding of graph optimization problems. After-
wards, Section 4 develops a new propositional encoding for
the MaxClique problem, which is shown to produce signifi-
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Figure 1: Example graph

cantly tighter encodings for sparse graphs. Section 5 presents
results of the encodings proposed in the paper. Section 6 an-
alyzes related work and Section 7 concludes the paper.

2 Preliminaries

Standard definitions used in propositional satisfiability (SAT)
solving are assumed [Biere er al., 2009], including proposi-
tional encodings [Biere et al., 2009, Chapter 2], and also max-
imum satisfiability (MaxSAT) definitions [Biere er al., 2009,
Chapter 19].

2.1 Optimization Problems in Undirected Graphs

The paper considers different optimization problems defined
on undirected graphs. An undirected graph is defined as a
tupple, G = (V, E), where V is a finite set of vertices and the
set of edges F C A, with A = {{u,v}|u,v € V Au # v}
denoting the set of all distinct pairs of vertices. For simplicity
(u,v) will be used to denote each edge of E. Also, the com-
plement graph G¢ = (V, E) of G is such that E© = A\ E.

Definition 1 (Minimum Vertex Cover, MinVC) Given an
undirected graph G = (V, E), a vertex cover T C V is such
that for each (u,v) € E, {u,v} N T # 0. A minimum vertex
cover is a vertex cover of minimum size.

Definition 2 (Maximum Independent Set, MaxIS) Given
an undirected graph G = (V, E), an independent set [ C'V
is such that for each (u,v) € E either w ¢ T orv ¢ I. A
maximum independent set is an independent set of maximum
size.

Definition 3 (Maximum Clique, MaxClique) Given an
undirected graph G (V,E), a clique (or complete
subgraph) C C V is such that for every pair {u,v} C C,
(u,v) € E. A maximum clique is a clique of maximum size.

Proposition 1 T C V is a vertex cover for G iff V' \ T is an
independent set for G iff V' \ T is a clique for G€.

Definition 4 (Minimum Coloring, MinCol) Given an undi-
rected graph G = (V, E) and a set of colors C = {1,...,C},
pick a mapping  : V. — C such that for each (u,v) € FE,
k(u) # k(v). Mapping k is called a coloring of graph G. A
minimum coloring uses a minimum number of colors.

It is well-known that all of the above optimization prob-
lems are NP-hard [Garey and Johnson, 1979]. Moreover, a
wealth of other problems can be encoded to these problems,
including set packing or combinatorial auctions [Heras er al.,
2008], among many others.
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Example 1 Figure 1 shows an example undirected graph
that will be used throughout the paper. For this graph: (i) the
minimum number of colors to color the graph is 5; (ii) there
is a maximum clique of size 5, namely {u1, us, us, ug, us};
(iii) there is a maximum independent set of size 3, namely
{u1, ug, ur}; and (iv) there is a minimum vertex cover of size
4, namely {ua, us, uq, us }.

2.2 Propositional Encodings

There exists a large body of work on solving the graph op-
timization problems introduced in the previous section with
constraint programming, including propositional satisfiabil-
ity. The paper focuses on propositional encodings for these
problems, and revisits in this section what can be viewed
as standard propositional encodings [Heras et al., 2008;
Gelder, 2008; Biere et al., 2009; Li and Quan, 2010b].

Given a graph G = (V, E), a propositional variable x,, is
associated with each vertex v € V, such that z,, = 1 iff u
is picked (or selected). For the graph coloring problem, the
propositional variables used are instead of the form z,, j, such
that x,, , = 1 iff u is assigned color k.

Encoding MaxClique. For any (u,v) € E“, add a hard
clause (-, V -, ). For each v € V, add a soft clause (z,,).

Although this encoding is commonly used when translating
MaxClique to SAT, for large sparse networks it may result in
impractical formulas.

Example 2 The network ca-db1p—-2012 from the Network
Repository* [Rossi and Ahmed, 2015] contains 317080 ver-
tices and 1049867 edges. As a result, the complement net-
work contains 50.26970466 x 10° — 1.049867 x 10° =
50.268654793 x 10° edges. This will be the number of hard
binary clauses in the propositional encoding of MaxClique.
Clearly, this number of clauses is well beyond the reach of
current SAT and MaxSAT solvers, and would be problematic
even to represent in most computing servers. This paper pro-
poses in Section 4 a much tighter propositional encoding for
the MaxClique problem for this and similar problems.

Encoding MinVC. For any (u,v) € F, add a hard clause
(xy V xy). For each v € V, add a soft clause (—x,,). For
the remainder of the paper, it will be convenient to consider
using instead variables y,, £ —z,,. Thus, the hard constraints
become (—y,, V =y, ), and the soft constraints become (y,,).

Encoding MaxIS. By noting the relationship between ver-
tex covers and independent sets, we can adapt the previous
encoding. For any (u,v) € E, add a hard clause (-2, V—2y).
For each u € V, add a soft clause (z,,).

Encoding MinCol. Let C be the target number of colors.
Each vertex must be assigned a color, and so for eachu € V'
encode the hard constraint ), -~ Ty, = 1. (It is well-
known that, because it is a minimization problem, it suffices
to require ) o, -, - Ty, > 1 [Walsh, 2000].) Moreover, ad-
jacent vertices must be assigned different colors. Thus, for
each (u,v) € E and for each color k, add the hard clause
(= V Ty ). Observe the minimum-size graph coloring
problem is not formulated as a natural optimization problem,

“http://networkrepository.com.
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Figure 2: Example edge cover by cliques

but as a decision problem instead. To find a minimum size
color, one simply reduces the target value of C' until the for-
mula becomes unsatisfied; the smallest C' for which the for-
mula is satisfiable is the minimum number of colors.

3 Hidden Pairwise Encodings

Given a graph G = (V, E), let us consider a clique T C V
of G and a clique U € V of GC. Given that a binary clause
is added for each edge in the clique 7', for the encodings pro-
posed in the previous section for MinVC, MaxIS and Min-
Col, the number of hard clauses grows quadratically with the
size of T'. For graph coloring, for each color the number of
added clauses also grows quadratically with the size of T', for
the same reason. Similarly, for MaxClique, the number of
hard clauses grows quadratically with the size of U, in G€.
In general, it can be observed that the hard clauses used in
these propositional encodings are essentially capturing one
AtMost1 constraint, one for each clique, with a pairwise en-
coding [Biere et al., 2009, Chapter 2]. We refer to the set of
clauses associated with each clique in G or G¢ as a hidden
pairwise encoding.

Example 3 Consider the problem of computing a Maximum
Independent Set for the graph in Figure 1. The standard en-
coding creates a MaxSAT formula with 7 variables and 7 soft
clauses. Additionally, the MaxSAT formula contains 14 hard
clauses, that is, one binary hard clause per edge containing
the negative literals associated to the vertices of the edge.

The set of hard clauses/edges can be partitioned, such
that, each partition contains the edges belonging to a
maximal clique as shown in Figure 2 (the edges con-
tained within the dashed circle/elipses). The clauses in
the partitions are hidden pairwise encodings, and rep-
resent the AtMostl cardinality constraints (using the
Pairwise  Cardinality  encoding)  AtMost1(Xyy, Tyg),
AtMost1(Ty, , Tugy Tugy Tugs Tug )y AtMostl(Tyg, Tu, ),
AtMostl(zyy, Ty, ), AtMostl(xy, Ty, ), and where x,,, is
the literal associated with vertice u;.

Clearly, for graphs that include large cliques (or that have
complement graphs with large cliques), these hidden pairwise
encodings may result in unnecessarily large encodings for ex-
isting SAT and MaxSAT solvers.

We propose an alternative encoding based on finding an
edge-cover by cliques (ECC) of G (or of G©).

Definition 5 (Edge Cover by Cliques) Given an undirected
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Function FINDMXCLQ (V, FE)

Begin

maclg + ()

while £ # () do
u <~ MAXDEGREE(V, E)
maxclg <+ maclg U {u}
V < ADJACENT(E, u)
E < SUBGRAPH(E,V)

if V £ () then maclq + maclqU {V[0]}
| return mxclq

Algorithm 1: Algorithm for finding a Maximal Clique

graph G = (V, E), an edge cover by cliques is a set of cliques
{C1,Cs, ..., CK}, such that Ui <i< i (uvyec, {(u,v)} = E.

Finding a minimal edge cover by cliques is well-known to
be NP-hard [Kou et al., 1978]. However, we can compute a
heuristic edge cover by cliques as follows. Let ¢ = 1 and
G’ = G. Tteratively compute a maximal clique C; from G,
report C;, extract the edges induced by C; from G’, increase
i and repeat if E # (). In addition, there are well-known
polynomial time algorithms for computing a (subset-) max-
imal clique, e.g. see Algorithm 1. Moreover, for the ECC
algorithm outlined above, at each step at least one edge is
removed. As a result, a heuristic edge cover by (maximal)
cliques can be computed in polynomial time.

Given that we can compute an edge cover by cliques in
polynomial time, for each computed clique, we add one At-
Most1 constraint to the propositional encoding. Different en-
codings of AtMostl constraints can be considered [Bailleux
and Boufkhad, 2003; Sinz, 2005; Eén and Sorensson, 2006;
Biere et al., 2009; Asin er al., 2011; Ogawa er al., 2013]
(among others).

The proposed propositional encoding thus consists of list-
ing the cliques that cover the edges in the graph, and in cre-
ating one AtMost1 constraint for each clique, ensuring that a
tight encoding of an AtMostl constraint is used.

Depending on the selected cardinality encoding, the use of
the edge cover by cliques technique can reduce the encod-
ing size from quadratic to linear. For example, in the case
the original graph is a clique, there will be a single AtMostl
constraint, which can be encoded with a linear number of
clauses [Sinz, 2005; Asin et al., 2011] by adding additional
variables. In contrast, a result by Erdos et al. [Erdos et al.,
1966] gives an upper bound of |V|?/4 on the size of the edge
cover by cliques. This bound is tight. Consider a complete
bipartite graph with IV1/2 vertices on each side of the biparte
graph (and |V'| even). Then, such a graph will have an edge
cover by cliques of size |V|?/a. Thus, the use of AtMostl
constraints for each clique will also yield an upper bound of
O(|V|?) on the encoding size.

4 Cardinality Encoding for MaxClique

As shown in the previous section, propositional encodings
for a number of graph optimization problems naturally rep-
resent (hidden) pairwise encodings of AtMostl constraints,
concretely due to the existence of cliques in graphs. This ob-
servation is also true for the MaxClique problem, but for the
complement graph. However, for the MaxClique problem the
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situation can be far more acute, since the encoding consid-
ers the edges in the complement graph. As a result, for large
sparse graphs (including those exhibiting community struc-
ture), the complement graphs will have large cliques, which
cause propositional encodings of MaxClique not to scale in
practice. Although the technique of finding a (disjoint) edge
cover by cliques is in general effective at reducing the encod-
ing size, for the concrete case of the MaxClique problem, the
main issue is the need to analyze the complement graph (or
at least the non-edges of ). This section proposes an alter-
native encoding for the MaxClique problem, that solves this
issue, by ensuring the encoding size grows linearly with the
size of the graph (and not of its complement). The encoding
assumes a large sparse graph GG, where V' can be very large,
but where |E| = O(]V|). As shown below, under this work-
ing hypothesis, the encoding size is in O(|V| x y(|V], K)),
where K is the target clique size, and v(|V|, K) is some func-
tion over |V] and K. (Clearly, v must be chosen such that the
encoding size is not quadratic on |V].)

The novel encoding for the MaxClique problem can be
summarized as follows. Let the goal be to decide whether
there exists a clique of exactly size K in G. Clearly, if this is
the case, then we must satisfy the following cardinality con-

straint:
> =K

i.e. exactly K vertices must be included in the selected clique.
In addition, if some vertex u is picked to be included in the
clique, then of its adjacent vertices, exactly X' — 1 must be
picked as well:

ey

Ty — Z T, =K—1
vEAdj(u)
It should be noted that, to simplify the encoding, one can re-
place = with > in (2). Moreover, observe that the total num-
ber of cardinality constraints used is |V'|+1, in the worst-case.
As can be concluded, the proposed model encodes a deci-
sion problem and not an optimization problem. In principle,
one could modify the problem formulation to represent an
optimization problem. Instead, we propose to solve the Max-
Clique problem using an iterative SAT solving approach, by
solving the decision problem formulation at each step. One
approach is to start from some pre-computed lower bound on
the value of the maximum clique, and iteratively check the
existence of cliques of larger size. Moreover, we will also be
interested in pre-computing an upper bound on the size of the
maximum clique, e.g. to use binary search instead of linear
search or to search over unsatisfiable instances.

@)

Correctness. As can be observed, the proposed problem
formulation essentially captures the definition of a maximum
size clique. Correctness can be argued as follows.

Proposition 2 An undirected graph G = (V, E) has a clique
of size K iff there exists a selection of vertices such that (1)
and (2) are simultaneously satisfied.

Proof. [Sketch] Suppose there exists a clique of size K.
Simply pick the K vertices, i.e. for each u set x,, = 1 and for
the others set x,, = 0. This will satisfy (1) and (2).
Conversely, suppose there is an assignment that satisfies (1)
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and (2). For each picked vertex, there are exactly K — 1
adjacent vertices that are also picked. In total, exactly K
vertices are picked. Thus, for any picked vertex u, and the
picked K — 1 adjacents they must represent the same set of
vertices; otherwise the number of selected vertices would
be larger than K. Thus, the K picked vertices represent a
clique. (|

Encoding Size. Each cardinality constraint on n variables
and right-hard side (rhs) £ can be encoded with O(n x
~(n,k)) clauses, where ~y(n,k) can be n [Bailleux and
Boufkhad, 20031, k [Sinz, 20051, v/n [Ogawa et al., 2013],
log? n [Eén and Sérensson, 20061, and log® k [Asin et al.,
2011]. Moreover, the encoding size depends on the aver-
age degree of each vertex in G. If the encoding used is the
same for all constraints, each cardinality constraint for ver-
tex u sums over Deg(u) vertices. In total, |E| vertices are
summed over. Since, by hypothesis |E| = ©(|V|), then the
overall encoding size becomes O(|V| x v(|V], K)), with the
asymptotically tightest being O(|V| x log? K) [Asin et al.,
2011]. (Observe that it is implicit that K = o(|V|).)

Practical Optimizations & Implementation. There are
several optimizations that can be used to simplify the prob-
lem formulation, but also to simplify the SAT instances to
solve.

Any (maximal) clique represents a lower bound on the size
of the maximum clique. As a result, we compute a num-
ber of maximal cliques, e.g. using randomization, and pick
the largest computed maximal clique. This will represent the
lower bound (L) where the algorithm starts from. Moreover,
to estimate where to stop, a simple upper bound can be com-
puted as follows. Pick the largest value U for which there are
U vertices in V, each of which with a degree of size U — 1.

Given some target clique size K, the generation of the CNF
formula for checking the existence of a clique of size K or
greater can be simplified. Let Deg(u) denote the number of
edges for vertex u, i.e. the degree of u. Then, if the Deg(u) <
K — 1itis guaranteed that u cannot be included in a clique
of size K. Thus, the propositional encoding can be optimized
as follows. For any vertex u € V, with Deg(u) < K —1, add
a unit clause (—z,); these nodes are referred to as filtered.
For any other vertex u € V, with Deg(u) > K — 1 (i.e.
non-filtered vertices), encode the constraint:

Ty — T, =K —1
vEAdj(u)ADeg(v)>K—1
Finally, add the modified constraint over (some of) the ver-

tices in V: Z

u€V ADeg(u)>K—1
The above optimization can be further improved by consider-
ing the effective degree of each vertex, i.e. the adjacent ver-
tices not yet assigned value 0. The effective degree can also
be used to refine the upper bound U.

The concept of filtering can be extended to edges. For any
edge (u,v) € E, if |Adj(u) N Adj(v)] < K — 2, then it is
guaranteed that (u, v) cannot be included in a size K clique.
Thus, the edge is declared filtered and the degree information

3)

z, =K “)
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for both u and v is updated.

Although for large graphs it is infeasible to find maximal
cliques in the complement graph, G, the following heuristic
can be used in practice. Sort vertices by decreasing degree.
For each vertex u € V, pick the first J vertices of higher
degree that are not adjacent to u. (Observe that only Deg(u)+
J vertices need to be checked. Thus, the heuristic runs in
linear time on |V| if J is constant.) For each picked vertex
v € V, add clause (—x, V ).

Moreover, the iterative SAT solving approach can exploit
standard techniques commonly used in SAT-based problem
solving. One concrete example is to exploit the incremental
SAT solving features of modern SAT solvers, which enable
reusing learned clauses.

Finally, it should be noted that the encoding proposed in
this section can be used with decision procedures other than
SAT, including constraint programming (CP), integer linear
programming (ILP), satisfiability modulo theories (SMT),
and answer set programming (ASP), among others. The same
applies for the optimizations outlined earlier in this section.

5 Experimental Results

This section investigates the application of the new encod-
ings, for the concrete case of the MaxIS and MaxClique
problems, to large sparse graphs. These graphs represent
large networks exhibiting community structure. The net-
works considered were obtained from two sources. First,
a well-known benchmark generator of networks with com-
munity structure [Lancichinetti er al., 2008]. Second, a se-
lection of examples from comprehensive collections of net-
works [Leskovec and Krevl, 2014; Rossi and Ahmed, 2015].

5.1 Problem Instances & MaxIS

Most of the benchmarks, namely the collaboration networks
(ca-*), interaction networks (ia-*), retweet networks (rt-
x), social networks (soc-x), technological networks (tech-
%), and web graphs (web-x), were selected from the well-
known publicly available sources of large real networks
SNAP [Leskovec and Krevl, 2014] and Network Reposi-
tory [Rossi and Ahmed, 2015]. When selecting benchmark
instances, we were mostly interested in fairly large networks
(with 10000-500000 nodes) that are sparse, contain both
large and small communities and have a large maximum
clique. The motivation for this was to obtain challenging in-
stances whose maximum cliques are hard to compute. The
easiest to solve instances were excluded from the evaluation.

We also considered 2 sparse networks having 1000 and
10000 nodes generated randomly with the use of the Bench-
mark tool [Lancichinetti et al., 2008] and also exhibiting
community structure (in Table 1 these are named comm-
nl1000 and comm-n10000, respectively). Additionally and in
order to get to the limits of what the state-of-the-art Max-
Clique solvers can deal with, we decided to construct some
relatively small crafted networks with the desired properties
described above following the known reduction of SAT to
MaxClique [Karp, 1972]. For this, we considered a family
of unsatisfiable CNF formulas, which are proved to be hard
to refute by resolution-based reasoning, namely pigeon-hole
principle formulas PHP,,. More precisely, we considered
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small formulas for n € {5,6} having 20/30 variables and
45/81 clauses, respectively. These formulas are known to be
minimally unsatisfiable, i.e. removing a clause makes it sat-
isfiable. Therefore, the corresponding graphs are known to
have 45 and 81 maximum cliques of size 44 and 80, respec-
tively. The graphs were then “sparsified” by introducing 5000
additional vertices and randomly generated sparse edges. In
some cases, we also added to the result 10 cliques of size 20
and again sparsified the graphs by introducing connections
between the components. Note that by doing this we enforce
community structure in the resulting networks, i.e. they have
at least 10 communities of size > 20, a larger community
containing the maximum cliques and all of them are sparsely
connected by randomly generated edges. The P H P, -based
instances are called p?sparse?-+> in Table 1.

Encoding Maximum Independent Set. We have tested the
encoding of edge cover by cliques as previously described.
For the instances tested, we noticed a reduction on the num-
ber of clauses that ranges from 10% up to around 70% with
respect to the initial value. For example, for the web-arabic-
2005 instance, the number of hard clauses of the standard
propositional encoding is 1747269 whereas the edge cover
by cliques encoding contains 475891 hard clauses; a reduc-
tion on the number of clauses of 70%.

5.2 Maximum Clique

The approach to the MaxClique problem proposed in Sec-
tion 4 was implemented in a prototype as a Python script in-
strumenting calls to the Glucose 3.0 SAT solver [Audemard
et al., 2013]. The prototype is referred to as SATClq. Car-
dinality encoding used in SATClIq is a variant of modulo to-
talizer [Ogawa et al., 2013; Morgado et al., 2015]. Lower
bounding the maximum cliques in SATClq is implemented by
enumerating a few maximal cliques and choosing the largest
among them. The upper bounds are computed as described
in Section 4. Computing lower and upper bounds are linear
time procedures, whose contribution to the total running time
is negligible if carefully implemented in a low-level program-
ming language. However, in our Python prototype this can be
time consuming for some of the largest networks. Therefore,
in order to evaluate the efficiency of the approach, we only
account for the SAT solving time, which is the most time con-
suming part of the proposed approach.

The considered competition represents the state of the art
in branch-and-bound MaxClique solving and comprises the
following known reference solvers: Cliquer 1.21 [Ostergard,
2002], FMC [Pattabiraman et al., 2013; Pattabiraman et al.,
2015], IncMaxCLQ [Li et al., 2013], and LMC [Jiang et al.,
2016].* The experiments were performed in Ubuntu Linux
on an Intel Xeon E5-2630 2.60GHz processor with 64GByte
of memory. The time limit was set to 3600s and the memory
limit to 10GByte for each process to run.

Table 1 shows the running time for each solver for the con-

3Prefixes p5 and p6 represent formulas PH Ps and PH Ps, re-
spectively. Infixes sparsel, sparse2, sparse3 denote different values
of the density parameter.

“BBMCSP [San Segundo et al., 2016] was not assessed since
this tool is no longer accessible from the reported download link.
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Table 1: Running time (in seconds) per solver for the considered set
of benchmarks. The new SAT-based approach (SATCIq) is repre-
sented by SATC here while IncMaxCLQ is denoted by IMC.

Instance SATC  Cliquer FMC IMC LMC
comm-n1000 0.19 0.02 0.05 0.11 0.5
comm-n10000 — 0.99 — 12.33 0.93
ca-AstroPh 0 101.17 0.43 — 0.69
ca-citeseer 0 354.46 0.92 — 1.03
ca-coauthors-dblp 0 — 29.65 — 9.42
ca-CondMat 0 71 0.13 — 0.55
ca-dblp-2010 0 353.85 0.87 — 0.92
ca-dblp-2012 0 — 1.39 — 1.07
ca-HepPh 0 44.61 0.57 — 0.6
ca-HepTh 0 27.84 0.06 — 0.49
ca-MathSciNet 0 — 1.27 — 1.07
ia-email-EU 2.47 7.15 0.08 — 0.49
ia-reality-call 0 3.98 0.03 — 0.44
ia-retweet-pol 1.76 2.35 0.16 — 0.49
ia-wiki-Talk — 60.48 4.21 — 0.73
rt-pol 1.7 2.39 0.19 — 0.49
rt_barackobama 0 0.46 0.45 6.63 0.46
soc-advogato 0.15 0.25 0.11 4.91 0.49
soc-epinions — 101.67 0.21 — 0.82
soc-gplus 0.01 2.82 0.45 — 0.47
tech-as-caida2007 0.01 5.26 0.09 — 0.48
tech-internet-as 0.02 12.23 0.45 — 0.52
tech-pgp 3.05 0.71 0.07 — 0.45
tech-WHOIS — 10.13 — 6.31 0.49
web-arabic-2005 0 151.31 2.43 — 1.57
web-baidu-baike-related 0.94 — — — 2.54
web-it-2004 0 — 25.32 — 4.87
web-NotreDame 0 — 3.76 — 1.37
web-sk-2005 0 97.44 0.34 — 0.64
pSsparsel 2.88 1031.15 — 12.17 0.48
pSsparse2+10clq20 1.9 24.42 — — 0.54
pSsparse3+10clq20 3.62 150.15 — — 0.58
pbsparsel 48.34 — — — 0.53
pbsparse2+10clq20 42.65 — — — 0.64
pbsparse3+10clq20 50.88 — — — 0.7
sidered benchmark set. As one can observe, IncMaxCLQ

fails to solve most of the considered instances. As indicated
by the author, the reason is that IncMaxCLQ makes use of
a static adjacency matrix for at most 11000 vertices and it
is not designed for larger graphs (as a result, in our eval-
uation it reports a segmentation fault for most of the prob-
lem instances). Also, as expected, the state-of-the-art solver
LMC is able to solve all the considered instances within at-
most 10 seconds. Another observation that can be made is
that the SAT solving time of SATClq is negligible for all the
collaboration networks (see ca-* instances). However, these
instances are harder to FMC and most of all Cliquer. The
same holds for the considered web graphs (web-x).

On the other hand, there are instances from other families,
e.g. ia-wiki-Talk, soc-epinions, tech-WHOIS, that are hard for
SATClIq but at the same time are relatively easy for Cliquer
and FMC. The largest of the generated instances with com-
munity structure (comm-nl0000) is also hard for SATCIq but
not for Cliquer and IncMaxCLQ. A possible explanation for
this could be that these instances possibly have symmetries
that deteriorate SAT solver’s performance, which suggests
that applying modern symmetry breaking techniques [Biere
et al., 2009] should further improve the performance of the
proposed approach.

Regarding the PH P,,-based instances, SATClq demon-
strates the best performance solving all of them. Cliquer suc-
ceeds to solve a half of them while FMC cannot solve any.
This is unexpected because these instances are quite small
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and sparse (up to 22000 nodes and 360000 edges).

Overall, the number of instances solved by SATClq is 31
out of the considered 35 benchmarks (the number of SAT or-
acle calls varies from 1 to 83; on average, it is 13) while LMC
solves 35, Cliquer and FMC solve 26 instances each, and In-
cMaxCLQ can solve 6. Nevertheless, these results should not
be misconstrued. LMC, Cliquer and FMC (but also IncMax-
CLQ) are highly optimized tools, all with several years of
development and continuous improvement. In contrast, SAT-
Clq is an initial prototype. For other classes of instances, the
performance of SATClq may well lag behind LMC, FMC,
Cliquer or IncMaxCLQ. On the other hand, and to the best
of our knowledge, the instances in Table 1 would be well be-
yond the reach of earlier SAT encodings of MaxClique [Heras
et al., 2008; Li and Quan, 2010b]; we believe this is the main
contribution of SATClq.

6 Related Work

The problems of MinVC, MaxIS, MaxClique, MinCol have
been studied in a wide range of settings (see Section 1 for a
non-comprehensive list of references). Although these prob-
lems find natural reductions to SAT [Heras et al., 2008;
Gelder, 2008; Biere et al., 2009; Li and Quan, 2010b;
Li and Quan, 2010a] (and of course from SAT [Karp, 1972]),
it is also the case that the most efficient practical solutions
are not SAT-based. Different approaches for compact rep-
resentations were investigated elsewhere [Rintanen, 2006].
For MaxClique, the most efficient approaches are based on
branch-and-bound search (references in Section 1), with an
ongoing effort on integrating branch and bound search with
SAT and MaxSAT reasoning techniques [Li and Quan, 2010b;
Zhou et al., 2014; Fang et al., 2014; Li et al., 2015; Jiang
et al., 2016; Fang et al., 2016]. The practical applications
in network science, where one often needs to analyze large
sparse graphs, motivate the recent interest in efficient algo-
rithms for solving these problems. The problem of edge-
cover by cliques (ECC) finds different applications, and has
been investigated in recent work [Conte et al., 2016].

7 Conclusions

Despite the success of SAT solvers, and SAT-based problem
solvers, SAT has not been applied in solving graph optimiza-
tion problems in practical settings, with analysis of complex
networks being a concrete example. This paper identifies one
source of inefficiency in propositional encodings of a number
of graph optimization problems, that include minimum vertex
cover, maximum independent set, maximum clique, and min-
imum graph coloring. More importantly, the paper develops
a novel encoding for the maximum clique problem, which
eliminates the need to analyze the complement graph (or at
least the non-edges of a graph). This novel encoding enables
the successful application of SAT to computing the maximum
clique of large sparse graphs, to our best knowledge for the
first time.

A number of optimizations can be envisioned, including
the breaking of symmetries. This is the subject of future
work.
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