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Abstract
Counter-Example-Guided Abstraction Refinement
(CEGAR) has been very successful in model check-
ing. Since then, it has been applied to many dif-
ferent problems. It is especially proved to be a
highly successful practical approach for solving
the PSPACE complete QBF problem. In this pa-
per, we propose a new CEGAR-like approach for
tackling PSPACE complete problems that we call
RECAR (Recursive Explore and Check Abstraction
Refinement). We show that this generic approach
is sound and complete. Then we propose a specific
implementation of the RECAR approach to solve
the modal logic K satisfiability problem. We im-
plemented both CEGAR and RECAR approaches for
the modal logic K satisfiability problem within
the solver MoSaiC. We compared experimentally
those approaches to the state-of-the-art solvers for
that problem. The RECAR approach outperforms the
CEGAR one for that problem and also compares fa-
vorably against the state-of-the-art on the bench-
marks considered.

1 Introduction
SAT technology has proven to be a very successful practical
approach to solve some NP-complete problems [Biere et al.,
2009]. One of the main issues is to find the “right” encoding
for the problem, i.e. to find a polynomial reduction from the
original problem into a propositional formula in Conjunctive
Normal Form (CNF, a set of clauses) which can be efficiently
solved by a SAT solver [Prestwich, 2009]. The SAT solver
is a generic problem solving engine, whose input is a satisfi-
ability equivalent CNF representing the original problem. It
often happens that either the SAT solver can solve efficiently
the CNF or not at all (see e.g. the results of the SAT com-
petitions [Järvisalo et al., 2012]). A particular case is when
the resulting CNF is very large: the time for generating and
reading the input is greater than the time to solve it. This is
due to the limited available main memory allocated to the ap-
proach and not the SAT solver itself. We address one of such
particular cases in this paper.

For huge CNF encodings, specific approaches have been
designed in the past, where a SAT solver is used as an or-

acle in a more complex procedure. One such procedure
is called Counter-Example-Guided Abstraction Refinement
(CEGAR) [Clarke et al., 2003]. The SAT solver is fed with
an abstraction of the original problem allowing more models
(which we will call under-approximation). If the abstraction
is unsatisfiable, then the original problem is also unsatisfiable
(UNSAT shortcut). Else the procedure is able to verify if the
model found for that abstraction is a correct solution for the
original problem. In this case, we have an additional SAT
shortcut to decide the satisfiability of the formula. If it is not
the case, new constraints are added to prevent the solver from
finding such spurious examples (refinement step) and the pro-
cess repeats. Eventually, a complete satisfiability equivalent
propositional formula is provided, and the SAT solver can de-
cide the problem. One of the reasons for using CEGAR is that
the complete formula is in practice too large to even be gener-
ated, so the only hope to solve the original problem is to “get
lucky” (satisfiable shortcut) or to be able to take into account
a specific structure of the problem (unsatisfiable shortcut).

This framework is elegant and has been applied to many
areas: Satisfiability Modulo Theory [Brummayer and Biere,
2009], Planning [Seipp and Helmert, 2013] and more recently
QBF [Janota et al., 2016]. The latter is especially inspiring,
because it appears to be the best practical solution overall to
solve QBF formulas according to the latest QBF competition
[Pulina, 2016]. The aim in this work is to follow these steps
on another PSPACE complete problem, which is the satisfia-
bility of modal logic K formulas. Several previous SAT-based
approaches have already been proposed in the field of Modal
Logic [Sebastiani and Tacchella, 2009], one could even ar-
gue that *SAT [Giunchiglia et al., 2002] is already a CEGAR
approach for the modal logic K.

In this paper, we introduce an extension of the CEGAR ap-
proach which includes a recursive step to introduce a new
shortcut in the original CEGAR procedure. In our context, the
main CEGAR loop contains a SAT shortcut (Esat), while the re-
cursive step allows the procedure to provide an UNSAT short-
cut (Eunsat). We call this extension “Recursive Explore and
Check Abstraction Refinement” (RECAR). The idea of mixing
SAT and UNSAT shortcuts in a CEGAR procedure is not new:
it has been already used for SMT [Brummayer and Biere,
2009] and for bug detection [Wang et al., 2007]. Here the
novelty is that we use an abstraction of the original problem
in the loop, made possible by a recursive call to the main pro-
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cedure. The RECAR procedure is generic, i.e. it is not bounded
to a specific domain. In this paper, we present the conditions
required on the abstractions used, and the correctness of the
approach. Then, we instantiate our framework for the satisfia-
bility of modal logic K, by providing abstraction functions for
this problem and experimental results of the approach against
the state-of-the-art provers. We believe that the good practical
results we obtained by using RECAR on that particular domain
are promising for other areas. This paper presents, in that re-
spect, a generic procedure with a successful use case. The re-
mainder of the paper is organized as follows: we first present
the CEGAR approach; then we propose our new framework
called RECAR and show its soundness and completeness; we
provide an implementation of the RECAR approach for modal
logic K; we finally compare the efficiency of the RECAR ap-
proach against the state-of-the-art modal logic K solvers.

2 CEGAR Preliminaries
Counter-Example-Guided Abstraction Refinement, CEGAR, is
an incremental way to decide the satisfiability of formulas
in classical propositional logic (CPL). It has been originally
designed for model checking [Clarke et al., 2003], i.e. to an-
swer questions such as “Does S |= P hold?” or, equivalently,
“Is S ∧ ¬P unsatisfiable?”, where S describes a system and
P a property. In such highly structured problems, it is of-
ten the case that only a small part of the formula is needed
to answer the question. The idea behind CEGAR is to replace
φ = S ∧ ¬P by an approximation φ′, where φ′ is easier to
solve in practice than φ. There are two kinds of approxima-
tions: (1) an over-approximation of φ is a formula φ̂ such that
φ̂ |= φ holds: φ̂ has at most as many models as φ; (2) an under-
approximation of φ is a formula φ̌ such that φ |= φ̌ holds: φ̌
has at least as many models as φ. Usually, φ is in CNF. Then,
a classical way to under-approximate φ is to “forget” some
clauses, i.e. φ̌ is a subset of the clauses in φ. A model of
φ̌ also may by chance satisfy φ. Moreover, if φ̌ is found to
be unsatisfiable, then so is φ. This double possibility to con-
clude earlier makes under-approximation based CEGAR very
popular. A classical way to over-approximate is to bound the
generation of the formula φ to a given n smaller than the one
needed to reach equi-satisfiability to the original problem (as
in bounded model checking [Clarke et al., 2003] or planning
[Seipp and Helmert, 2013]). As such a model of φ̂ can be ex-
tended to a model of φ but the unsatisfiability of φ means that
the bound n has to be increased and the process is repeated.

An example of a CEGAR using over-approximations is given
on Fig. 1. It receives a formula φ as input and computes an
over-approximation ψ. Then it uses a SAT solver to check
whether ψ is satisfiable. If so it concludes that φ is satisfiable.
Otherwise, ψ is refined, i.e. it gets closer to φ, until it is sat-
isfiable, or until the refined over-approximation is detected to
be equi-satisfiable to φ, denoted ψ ≡sat φ, (i.e. ∃M,M |=1 ψ
iff ∃M′,M′ |=2 φ)1, where it concludes that φ is unsatisfi-
able. In the following, φ ≡?

sat ψ means an incomplete efficient
equi-satisfiability test which returns yes or unknown. Recent

1|=1 and |=2 denote possibly different consequence relations (for
propositional logic and modal logic K for instance).

cegar(φ) ψ ← φ̂

check(ψ)SAT ψ ≡?
sat φ UNSAT

ψ ← refine(ψ)

Esat
unsat yes

unk.

Figure 1: The CEGAR framework with over-approximation

SAT solvers are able to check satisfiability “under assump-
tion” [Eén and Sörensson, 2003], i.e. given the satisfiability
of a set of literals called assumptions, and to provide in case
of unsatisfiability a “reason” in terms of those literals for the
unsatisfiability of a formula.

Definition 1 (Unsatisfiable core with assumptions). Let φ a
CNF and A a consistent set of literals from φ. Let φ be sat-
isfiable and (φ ∧

∧
a∈A a) be unsatisfiable. L ⊆ A is an un-

satisfiable core of φ if and only if (φ∧
∧

l∈L l) is unsatisfiable.

Therefore, a SAT oracle for φ, given A, can be seen as a
procedure providing a pair (d, ψ) with d ∈ {SAT,UNSAT}
and ψ is a model of φ if d = SAT or an unsatisfiable core of
φ if d = UNSAT. Modern SAT-based procedures are able to
take into account ψ in both cases. Unsatisfiable cores have
been used for instance in a CEGAR approach for deciding the
satisfiability of the propositional fragment of first-order logic
[Khasidashvili et al., 2015].

3 Recursive Explore and Check Abstraction
Refinement

A classic CEGAR approach with over-approximation and a
SAT shortcut performs well when the input is satisfiable. But
generally, it does not perform well in problems which are un-
satisfiable. The reason is that it may have to keep refining un-
til it reaches equi-satisfiability with the original problem. One
way to address this issue is to mix SAT and UNSAT shortcuts,
as in [Brummayer and Biere, 2009] and [Wang et al., 2007].
In these approaches, the methods alternate between over and
under approximations.

The RECAR approach, depicted in Fig. 2 and Fun. 1, in-
terleaves both kinds of approximations: each abstraction is
performed with the information retrieved from solving the
previous one. The UNSAT shortcut is implemented using
a recursive call to the main procedure when a strict under-
approximation φ̌ can be built. One should also note that the
proposed approach permits abstractions on two different lev-
els: one is used to simplify the problem at the domain level
(recursive call), while the other one is used to approximate
the problem at the oracle level. In order to apply RECAR, the
under-approximation φ̌ and the over-approximation φ̂ must
satisfy some properties. In the following, isSAT(φ) means
that φ is satisfiable (6|=1 ¬φ) and isUNSAT(φ) means (|=2 ¬φ),
but on possibly different consequence relations. RC(φ, φ̌) de-
notes a Boolean function deciding if a Recursive Call should
occur.
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recar(φ) ψ ← φ̂

check(ψ)SAT ψ ← refine(ψ)

ψ ≡?
sat φ UNSAT

RC(φ, φ̌)

recar(φ̌) no

Esat

unsat

yes

unk.

yes

Eunsat

sat

Figure 2: The RECAR framework

RECAR assumptions:
1. Function ‘check’ is a sound and complete implementa-

tion of ‘isSAT’ which terminates.
2. isSAT(φ̂) implies isSAT(refine(φ̂)).
3. There exists n ∈ N such that refinen(φ̂) ≡?

sat φ.

4. isUNSAT(φ̌) implies isUNSAT(φ).
5. Let under(φ) = φ̌. There exists n ∈ N such that

RC(undern(φ), undern+1(φ)) evaluates to false.

Note that we have isSAT(φ̂) implies φ is satisfiable by
Assumptions 2 and 3 together. In the following, we show
that, under these assumptions, RECAR is sound, complete and
terminates. To do so, we present the algorithm recar(φ) in
Fun. 1.

Function 1: recar(φ)

1 ψ← φ̂

2 while ψ ≡?
sat φ returns “unknown” do

3 if check(ψ) = SAT then return SAT ;
4 if RC(φ, φ̌) then
5 if recar(φ̌) = UNSAT then return UNSAT ;
6 ψ← refine(ψ) ;
7 return check(ψ)

Theorem 1 (Soundness). If recar(φ) returns SAT then φ is
satisfiable.

Proof. Assume that recar(φ) returns SAT. This happens only
if check(ψ) returns SAT, either from line 3 or from line 7.
Thus, we know that isSAT(ψ) holds (by Assump. 1). But ψ
equals to φ̂ or equals to refinen(φ) for some n ∈ N. Then φ is
satisfiable (by Assump. 2 and 3). �

The intuition behind the proof of Th. 2 is that there are
two ways to conclude that φ is UNSAT. In the first case, φ̂

is refined a finite number of times until it is detected equi-
satisfiable to φ and check returns UNSAT. Then φ is unsatis-
fiable. In the second case, one of the under-approximations is
shown UNSAT, then φ is UNSAT (by Assump. 4).

Theorem 2 (Completeness). If recar(φ) returns UNSAT then
isUNSAT(φ).

Proof. By induction on the number k of recursive calls to
recar (Line 5). Assume recar(φ) returns UNSAT after k re-
cursive calls. In the induction base k = 0 (no recursive
call). Then we must have exited the loop (ψ ≡?

sat φ) and
check(ψ) returns UNSAT. This means that ψ is unsatisfi-
able (by Assump. 1) and therefore isUNSAT(φ) holds (be-
cause of equi-satisfiability). The induction hypothesis is: for
all k ≤ n, if recar(φ) returns UNSAT after k recursive calls
then isUNSAT(φ). In the induction step k = n + 1. Then the
conditions of lines 4 and 5 of the algorithm are true. This
means that recar(φ̌) returns UNSAT after k recursive calls to
recar. Then isUNSAT(φ̌) (by I.H.). Then isUNSAT(φ) (by
Assump. 4). �

The intuition behind the proof of Th. 3 is that the func-
tion performs a finite number of recursive calls (Assump. 5).
Moreover, each of these calls will have a finite number of re-
finements before terminating (Assump. 3).

Theorem 3 (Termination). RECAR terminates for any input φ.

Proof. We have that (1) For all φ, there exists n ∈ N such
that RC(undern(φ), undern+1(φ)) evaluates to false (by As-
sump. 5) and (2) For each i ≤ n there is mi ∈ N such that
refinemi (φ̂) ≡?

sat φ (by Assump. 3). Then, for any input φ,
the recursive call of line 5 of the algorithm will be executed
at most n times before the condition of line 4 becomes false.
For each one of these recursive calls, the while-loop of the
algorithm will be executed at most mi times before the con-
dition of line 2 becomes false. Therefore, for any input, recar
halts after at most n + Σn

i=0(mi) recursive calls. �

4 Solving K-SAT with RECAR
In this section, we show how RECAR is applied to solve the
satisfiability problem for modal logic K, which is a PSPACE
complete problem [Ladner, 1977; Halpern and Moses, 1992].

4.1 Modal Logic K
Before showing how we applied the RECAR approach, let us
define formally what the modal logic K is.

Let a finite non-empty set of propositional variables P =
{p1, p2, . . . } and a set of m unary modal operators M =
{�1, . . . ,�m} be given. The language of K (noted L) is the
set of formulas containing P, closed under the set of propo-
sitional connectives {¬,∧} and the set of modal operators in
M. We also use the standard abbreviations for >, ⊥, ∨ and ^.
For instance ^aφ = ¬�a¬φ.

Definition 2 (Model). A Kripke model is a triplet M =
〈W, {Ra | �a ∈ M},V〉, where: W is a non-empty set of possi-
ble worlds; Each Ra ⊆ W×W is a binary accessibility relation
on W; V : P → 2W is a valuation function which associates,
to each p ∈ P, the set of possible worlds from W where p is

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

676



true. A pointed Kripke model is a pair 〈M,w〉, where M is
a Kripke model and w is a possible world in W. Thereafter,
whenever we use the term ‘model’ we refer to ‘pointed Kripke
model’.

In the following, the size of a model 〈M,w〉, which is the
number of elements in W, is denoted by |M|.
Definition 3 (Satisfaction relation). The relation |= between
models and formulas is recursively defined as follows:
〈M,w〉 |= p iff w ∈ V(p)
〈M,w〉 |= ¬φ iff 〈M,w〉 6|= φ

〈M,w〉 |= φ1 ∧ φ2 iff 〈M,w〉 |= φ1 and 〈M,w〉 |= φ2

〈M,w〉 |= �aφ iff (w,w′) ∈ Ra implies 〈M,w′〉 |= φ

Definition 4 (Validity). As usual, a formula φ ∈ L is valid
(noted |= φ) if and only if it is satisfied by all models 〈M,w〉.
A formula φ ∈ L is satisfiable in K (noted isKSAT(φ)) if and
only if 6|= ¬φ. We also use isKUNSAT(φ) to mean |= ¬φ.

In the sequel, we define a translation from modal logic K
to classical propositional logic.
Definition 5 (Translation).

tr(φ, n) = tr′(nnf(φ), 0, n)
tr′(p, i, n) = pi

tr′(¬p, i, n) = ¬pi

tr′(φ ∧ ψ, i, n) = tr′(φ, i, n) ∧ tr′(ψ, i, n)
tr′(φ ∨ ψ), i, n) = tr′(φ, i, n) ∨ tr′(ψ, i, n)

tr′(�aφ, i, n) =

n∧
j=0

(ra
i, j → tr′(φ, j, n))

tr′(^aφ, i, n) =

n∨
j=0

(ra
i, j ∧ tr′(φ, j, n))

The translation adds fresh variables pi and ra
i, j to the for-

mula: pi denotes that variable p is true in the world wi
whereas ra

i, j corresponds to w j being accessible from wi by
the relation a. We have the following as an immediate result
(where nm(φ) is the number of modal operators in φ) based
on §25.2.2 [Sebastiani and Tacchella, 2009].
Theorem 4. isKSAT(φ) if and only if isSAT(tr(φ, nm(φ)+1)).

Therefore, in order to decide the satisfiability of a formula
φ ∈ L, one can simply feed a SAT solver with tr(φ, nm(φ)+1).
In fact, this is the approach proposed in Km2SAT [Sebastiani
and Vescovi, 2009]. The main issue is that the translation may
generate an exponentially larger formula. In this paper, we try
to circumvent this problem by using RECAR. For simplicity,
from now on we use tr(φ) instead of tr(φ, nm(φ) + 1).

In [Caridroit et al., 2017], the authors also use this transla-
tion from modal logic S5 to classical propositional logic, but
replacing nm(φ) by the diamond degree dd(φ), which is gen-
erally smaller. Unfortunately, this cannot be used for K. The
counter-example below shows why.
Counter-Example 1. Let φ = (p1 ∧ p2 ∧ p3)∧ (^a(p1 ∧ p2 ∧

¬p3∧�a(p1∧¬p2∧p3)))∧(^a(p1∧¬p2∧¬p3∧�a(¬p1∧¬p2∧

p3)))∧ (�a^a p3), with dd(φ) = 3. This formula is satisfied by
the model in Fig. 3. However, it is easy to see that there is no
model satisfying φ with less than 5 possible worlds.

p1, p2,

p3

p1, p2,

¬p3

p1,¬p2,

¬p3

p1,¬p2,

p3

¬p1,

¬p2, p3

a
a

a
a

Figure 3: M |= φ

4.2 Over-approximation
Now, in order to apply the RECAR approach, we first need to
find an over-approximation which respects the assumptions
presented in Sec. 3.

Definition 6 (Over-approximation). Let φ ∈ L. The over-
approximation of φ, denoted φ̂, is the formula tr(φ, 1).

Definition 7 (Refinement). Let 1 ≤ n ≤ nm(φ)+1. The refine-
ment of tr(φ, n), noted refine(tr(φ, n)) is the formula tr(φ, n+1).

Theorem 5. If isSAT(tr(φ, n)) then isSAT(tr(φ, n + 1)), for all
1 < n ≤ nm(φ) + 1. (RECAR Assump. 2)

Proof Sketch. The idea is that if φ is satisfied by a model M
with n worlds, then we can find a model M′ with n + 1 worlds
satisfying φ. The additional world is just not accessible from
the ones already in M. �

The latter result allows us to use this over-approximation
and refinement in the RECAR approach. It is easy to see that
RECAR assumptions 2 and 3 are satisfied.

4.3 Under-approximation
To understand the intuition behind the under-approximation
we use an example. Let φ = (^p∧�¬p∧ χ) for some χ ∈ L,
where nm(χ) is huge. This is clearly unsatisfiable because
(^p∧�¬p) is unsatisfiable. One can see that right away with-
out even knowing what χ looks like. However, a CEGAR ap-
proach using the over-approximation and refinement defined
earlier will take a long time before finally conclude it. The
reason is that each refinement tr(φ, n + 1) of the original for-
mula will be shown unsatisfiable and it will not stop until the
huge number nm(φ) + 1 is reached.

∧

∨

¬s1 ^

p

∨

¬s2 �

¬p

∨

¬s3 χ

Figure 4: How selectors are applied to φ = (^p ∧ �¬p ∧ χ)

To avoid these pathological cases, the RECAR approach also
performs under-approximations. To see how it works, let us
take that formula φ again. First, we add to each conjunct in
φ a fresh variable si (a selector) that will be assumed to be
true by the SAT solver, as done in Fig. 4. Then, we make the
first over-approximation tr(φ, 1) and give it to a modern SAT
solver. The solver will return UNSAT with an unsatisfiable
core. From this core, we extract a set of selectors core. Let
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us assume, in our example, that core = {s1, s2}. This means
that the formula φ̌ = (^p ∧ �¬p), which is the one labelled
by the selectors, is enough to prove the unsatisfiability of φ
with only 1 possible world. Proving the unsatisfiability of φ̌
will imply that φ is unsatisfiable. Note that, in this specific
case, nm(φ̌) is much smaller than nm(φ). Thus the CEGAR
approach applied to φ̌ will succeed much earlier, while it may
have failed for the entire formula φ. Formally, we have the
following.

Definition 8 (Under-Approximation).

under(p, core) = p
under(¬p, core) = ¬p
under(�aφ, core) = �a(under(φ, core))
under(^aφ, core) = ^a(under(φ, core))
under((φ ∧ ψ), core) = under(φ, core) ∧ under(ψ, core)

under((ψ ∨ χ), core) =


under(χ, core) if ψ = ¬si, si ∈ core
> if ψ = ¬si, si < core
(under(ψ, core)
∨ under(χ, core)) otherwise

Theorem 6. isKUNSAT(under(φ, core)) implies
isKUNSAT(φ).

The intuition of the proof is that each selector si enables
an operand in a conjunction of the formula. Each time func-
tion ‘under’ is called with a non-empty core, operands not
enabled with a selector from the core will be removed from
the formula.

Proof. Let φ be in NNF. We show that isKSAT(φ) implies
isKSAT(under(φ, core)) by induction on the structure of φ.
Assume isKSAT(φ). Then ∃ M,w s.t. 〈M,w〉 |= φ. There are
two cases in the induction base: (1) φ = p and (2) φ = ¬p. In
both of them under(φ, core) = φ. There are four cases in the
induction step:
(1) φ = ^a(ψ). ∃ M,w s.t. 〈M,w〉 |= ^a(ψ). Then ∃ M,w′ s.t.
(w,w′) ∈ R, 〈M,w′〉 |= ψ. Then 〈M,w′〉 |= under(ψ, core) by
induction hypothesis. Thus 〈M,w〉 |= under(φ, core);
(2) φ = �a(ψ). This case is analogous to (1).
(3) φ = (ψ ∧ χ). ∃ 〈M,w〉 |= (ψ ∧ χ). Then 〈M,w〉 |=
ψ and 〈M,w〉 |= χ. Then 〈M,w〉 |= under(ψ, core) and
〈M,w〉 |= under(χ, core) by induction hypothesis. Thus
〈M,w〉 |= under(φ, core);
(4) φ = (ψ ∨ χ). We consider the three cases:
(4.a) ψ = ¬si and si ∈ core. Then ∃ 〈M,w〉 |= (¬si ∨ χ) but
si ∈ V(w), then 〈M,w〉 |= χ. Then 〈M,w〉 |= under(χ, core)
by induction hypothesis. Thus 〈M,w〉 |= under(φ, core);
(4.b) ψ = ¬si and si < core. ∃ 〈M,w〉 |= (¬si ∨ χ). but we
always have 〈M,w〉 |= >. Thus 〈M,w〉 |= under(φ, core).
(4.c) This case is analogous to (3). �

Theo. 6 shows that function ‘under’ satisfies RECAR As-
sump. 4. To see that it also satisfies Assump. 5, note that
the length of undern+1(φ, core) is smaller or equal to that of
undern(φ, core′) (even though the sets core and core′ usually
differ).

MoSaiC(φ) l ← 1 ψ ← tr(φ, l)

Glucose(ψ)SAT ψ ← tr(φ, l)

l > nm(φ) UNSAT

φ̌ ← under(φ, core) φ̌ = φ l ← l + 1

|

MoSaiC(φ̌)

l ← max(|M|, l + 1)

Esat

unsat

yes

no

yes

no

Eunsat

sat

Figure 5: MoSaiC : RECAR for modal logic K

5 MoSaiC : RECAR for K-SAT
We implemented the RECAR approach for modal logic K sat-
isfiability problem within the solver MoSaiC, using the over
and under approximations defined in the previous section.
MoSaiC combines several features found in state-of-the-art
solvers. As in Km2SAT [Sebastiani and Vescovi, 2009], it op-
timises the input by performing the rules: Box Lifting, Flat-
tening, and Truth Propagation through modal and Boolean
operators (see [Sebastiani and Vescovi, 2009] for more de-
tails). MoSaiC also uses the SAT solver Glucose in incremen-
tal mode [Eén and Sörensson, 2003; Audemard et al., 2013]
to decide the satisfiability of each ψ.

Note that some implementation details differ a bit from
Fig. 5. For instance, we do not call Glucose on ψ but on an
updated ψ′ with selectors on conjuncts under the assumption
that these selectors are satisfied; we do not need to generate
the under approximation φ̌ to test the condition φ̌ = φ: we
just need to know the number of selectors involved in the un-
satisfiability of the formula. We also return a Kripke model
in the main procedure, not just SAT/UNSAT. We take advan-
tage of such information to provide a new bound for l. And
finally, note that in our case max(|M|, l+1) always returns |M|
because it is not possible to find a model smaller than M by
construction of φ̌. The CEGAR solver presented in Sec. 6 uses
a similar schema, but without the recursive RECAR step.

6 Experiments
We compared our approach against existing solvers consid-
ered state-of-the-art in [Nalon et al., 2016], namely KS P
0.1 [Nalon et al., 2016], BDDTab 1.0 [Goré et al., 2014],
FaCT++ 1.6.4 [Tsarkov and Horrocks, 2006], InKreSAT 1.0
[Kaminski and Tebbi, 2013], *SAT 1.3 [Giunchiglia et al.,
2002], Km2SAT 1.0 [Sebastiani and Vescovi, 2009] com-
bined with the same Glucose SAT solver we use in MoSaiC,
Spartacus 1.0 [Götzmann et al., 2010] and a combination of
the optimized functional translation [Horrocks et al., 2007]
with Vampire 4.0 [Kovács and Voronkov, 2013]. MoSaiC
was configured as a standard CEGAR approach or with the pro-
posed RECAR approach. We chose to execute these solvers on
the following benchmarks: the complete set of TANCS-2000

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

678



Figure 6: Scatter-plot CEGAR vs RECAR

modalised random QBF (MQBF) formulae [Massacci and
Donini, 2000] complemented by the additional MQBF for-
mulae provided by [Kaminski and Tebbi, 2013], 1016 formu-
lae, 617 satisfiable, 399 unsatisfiable; LWB basic modal logic
benchmark formulae [Balsiger et al., 2000], with 56 formulae
chosen from each of the 18 parametrized classes, generated
from the script given by the authors of [Nalon et al., 2016],
1008 formulae, 504 satisfiable, 504 unsatisfiable; randomly
generated 3CNFKS P formulae [Patel-Schneider and Sebas-
tiani, 2011] of depth 1 or 2, 1000 formulae, 457 satisfiable,
464 unsatisfiable. Few of the considered solvers could deal
with multiple modalities like MoSaiC, however to the best
of our knowledge, there is no standard benchmark for modal
logic K containing multiple modalities. We used a memory
limit of 32GB and a runtime limit of 900 seconds per solver
per benchmark. Note that due to lack of space, the results
presented here are global2. The behavior of the solvers vary
a lot with the benchmark families. We believe however that
they provide an interesting insight of the capabilities of the
proposed approach.

RECAR vs CEGAR We can see on Fig. 6 that for most
benchmarks, the RECAR approach outperforms the CEGAR one.
The under approximation often provides a formula with a
much smaller nm value, which produces a CNF of reasonable
size to be handed in to the SAT solver. Note that in this plot,
memory out for the CEGAR approach is denoted by a timeout,
i.e. a point at 900s. This is mainly due to improvements in
solving unsatisfiable benchmarks (1118/1367) for RECAR vs
(155/1367) for CEGAR. For satisfiable benchmarks, the bound
update resulting from the recursive call helps to reach faster
a satisfiable formula. 1446 for RECAR vs 1053 for CEGAR.

Comparison with state-of-the-art We can see on Fig. 7
that our over-approximation CEGAR approach is the worst
solver whereas our RECAR approach outperforms the other
solvers. Km2S AT performs specific reasoning to detect ear-
lier some UNSAT benchmarks without generating the CNF,
which explains why it performs much better than our CEGAR
approach. *SAT interleaves SAT reasoning and domain rea-

2Additional results can be found on http://www.cril.
univ-artois.fr/˜montmirail/mosaic

Figure 7: Runtime distribution on all the benchmarks

soning, and can be considered as an under-approximation
CEGAR approach. It shows good results, despite being tied
with the old SAT solver SATO3. Our best competitor, Sparta-
cus, is based on a tableaux method, not on SAT: SAT based-
techniques were not the best way to tackle such problems up
to now. Spartacus reaches the timeout on unsolved bench-
marks while we exhaust the available memory: the solvers
behave quite differently and have different limits.

7 Conclusion
We proposed here a new approach to solve decision prob-
lems using a recursive abstraction refinement approach. We
showed it is sound and complete and we instantiated it for the
modal logic K satisfiability problem. We compared our ap-
proach against solvers representing, to the best of our knowl-
edge, the state-of-the-art for practical K-SAT solving, on a
wide range of classical modal logic benchmarks. A basic
over-approximation based CEGAR approach is not competitive
at all, because many of the available benchmarks are UNSAT.
Our RECAR approach, mixing SAT and UNSAT shortcuts, out-
performed the other solvers on the benchmarks considered.
Those promising results are a first step toward more efficient
modal logic solvers: MoSaiC can be extended to other modal
logics such as KT, S4, S5 and KD45, by adapting the current
translation into CNF. We also believe that RECAR is an ap-
pealing framework for tackling decision problems above NP
in the polynomial hierarchy. It is not clear yet for us if exist-
ing CEGAR related approaches for QBF such as [Janota et al.,
2016] could fit in such framework. This is an exciting future
work.
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