Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Automatic Synthesis of Smart Table Constraints
by Abstraction of Table Constraints

Baudouin Le Charlier!, Minh Thanh Khong!, Christophe Lecoutre?, Yves Deville!
! Université catholique de Louvain, Belgium
2 CRIL-CNRS, Université d’ Artois, France
{baudouin.lecharlier, minh.khong, yves.deville } @uclouvain.be, lecoutre @cril.fr

Abstract

The smart table constraint represents a powerful
modeling tool that has been recently introduced.
This constraint allows the user to represent com-
pactly a number of well-known (global) constraints
and more generally any arbitrarily structured con-
straints, especially when disjunction is at stake. In
many problems, some constraints are given under
the basic and simple form of tables explicitly list-
ing the allowed combinations of values. In this pa-
per, we propose an algorithm to convert automati-
cally any (ordinary) table into a compact smart ta-
ble. Its theoretical time complexity is shown to be
quadratic in the size of the input table. Experimen-
tal results demonstrate its compression efficiency
on many constraint cases while showing its rea-
sonable execution time. It is then shown that us-
ing filtering algorithms on the resulting smart table
is more efficient than using state-of-the-art filtering
algorithms on the initial table.

1

Constraint Programming (CP) is a popular paradigm to deal
with combinatorial problems in Artificial Intelligence (AI).
Typically, problems are modeled under the form of Constraint
Networks (CNs) [Montanari, 19741, which are composed of
variables to be assigned subject to constraints that must be
satisfied (with possibly, an objective function to minimize or
maximize). Modeling is a delicate issue, requiring from the
user a certain level of expertise in order to obtain CNs that can
be efficiently handled by solving systems (called constraint
solvers).

Although there exists in the scientific literature a large cata-
log [Beldiceanu et al., 2014] of patterns of constraints, called
global constraints, there are situations where the only pos-
sibility offered to the user is to enumerate the list of allowed
(or disallowed) combinations of values for some specific vari-
ables, hence forming so-called table constraints. Generat-
ing table constraints can also results from the unawareness
of appropriate global constraints by an unexperienced user.
Finally, it is sometimes very useful to combine subsets of re-
lated constraints to form table constraints (a kind of join oper-

Introduction

681

ation) in order to be able to reason more globally, and benefit
from a better filtering of the search space.

For all reasons mentioned above, it is very common to
deal with CNs that embed constraints defined extensionally
by tables that may happen to be very large. Fortunately,
filtering table constraints can be quite efficient as demon-
strated by the recently proposed algorithm called CT [De-
meulenaere et al., 20161, and an independently proposed re-
lated version STRbit [Wang et al., 2016] following a decade
of research effort on this topic [Lhomme and Régin, 2005;
Lecoutre and Szymanek, 2006; Gent et al., 2007; Ullmann,
2007; Lecoutre, 2011; Lecoutre et al., 2012; Mairy et al.,
2012]. However, as efficient as a dedicated filtering algorithm
for table constraints, as CT, can be, the size of the tables is
certainly penalizing when it comes to compare CT with an
algorithm based on the representation of the same constraints
under a more compact form when it exists.

An elegant data structure that sometimes permits a very
compact representation of tables is the Multi-valued Deci-
sion Diagram (MDD) [Srinivasan et al., 1990], which is an
arc-labelled directed acyclic graph (DAG) eliminating prefix
and suffix redundancy. Two notable algorithms using MDDs
as main data structure are mddc [Cheng and Yap, 2010] and
MDD4R [Perez and Régin, 2014]. Other compression-based
approaches keep the structure of tables, but replace ordinary
tuples by compressed tuples [Katsirelos and Walsh, 2007,
Régin, 2011; Xia and Yap, 2013] or short tuples [Nightingale
et al., 2011; Jefferson and Nightingale, 2013]. Compressed
tuples allow us to replace values by sets of values: a com-
pressed tuple thus represents all the ordinary tuples from the
Cartesian product of the sets. Short tuples allow some vari-
ables to be discarded, by introducing the symbol *: actually,
such variables can take any values from their respective do-
mains.

Recently, both compressed and short tuples have been gen-
eralized [Mairy et al., 2015] by smart tuples that authorize the
presence of simple arithmetic constraints. As an illustration,
taken from [Mairy et al., 2015], the following set of (ordi-
nary) tuples {(1’ 27 1)7 (1) 37 1)7 (2) 27 2)7 (2) 37 2)7 (37 27 3)7
(3,3,3)} on variables (x,y, z) that can take their values in
{1,2, 3} can be represented by a smart table containing only
one smart tuple:

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Note that ordinary tables, and even compressed and short
tables, can be exponentially larger than smart tables. Be-
sides, as shown in [Mairy et al., 2015], smart tables can
encode compactly many constraints, including a dozen of
well-known global constraints. Importantly, smart table con-
straints correspond to a disjunction of conjunctions of basic
arithmetic constraints, and can be viewed as a subset of the
logic algebra defined in [Bacchus and Walsh, 2005]. Assum-
ing the acyclicity of (the CN that can be associated with)
each smart tuple, a polynomial filtering algorithm has been
proposed and shown to be effective in practice. The level
of filtering achieved is the property called Generalized Arc
Consistency, and equivalent to that of constructive disjunc-
tion [Carlson and Carlsson, 1995; Hentenryck ef al., 1998;
Lhomme, 2004; 2012; Jefferson et al., 2010].

In this paper, we propose to automatically synthesize smart
table constraints from table constraints. The compression al-
gorithm is inspired by abstract interpretation and incremen-
tally abstracts the tuples in the input table. The algorithm has
a (worst case) time complexity quadratic in the size of the
input table. The compression algorithm has been applied on
several classes of constraints to demonstrate its compression
efficiency and its quasi linear execution time on the consid-
ered benchmarks. The algorithm is also able to restrict the
generated tuples to short tuples, allowing us to use existing
filtering algorithms handling short tuples, such as CT* [Ver-
haeghe et al., 2017]. Finally, different filtering algorithms are
compared on the different classes of constraints: MDD and
CT (filtering using MDD and Compact table on the input ta-
ble); ST (filtering on the resulting smart table); ST* and CT*
(filtering on the resulting table obtained with the short tuples
only option of the compression algorithm). Best results are
generally obtained by ST and CT*, showing the practical in-
terest of the compression algorithm. Moreover, the versatil-
ity of the compression algorithm to generate smart tuples or
short tuples, allows to apply different existing state-of-the-art
filtering algorithm.

2 Smart Table Constraints

A constraint network (CN) N is composed of a set of vari-
ables and a set of constraints. Each variable = has an associ-
ated domain, denoted by dom(x), that contains the finite set
of values that can be assigned to it. The size of the largest do-
main is denoted by d. Each constraint c involves a sequence
of variables, called the scope of ¢ and denoted by scp(c), and
is semantically defined by a relation, denoted by rel(c), that
contains the set of tuples allowed for the variables involved in
c. The arity of a constraint ¢ is |scp(c)|.

Let 7 = (a1, ..., a,) be a tuple of values associated with
a sequence of variables vars(r) = (x1,...,z,). The ith
value of 7 is denoted by 7[i] or 7[z;], and we say that T is
valid iff Vi € 1..n,7[i] € dom(z;). The tuple 7 is a sup-
port on a constraint ¢ such that vars(7) = scp(c) iff 7 is a
valid tuple allowed by c; we also say that 7 satisfies c. If T
is a support on a constraint ¢ involving a variable x such that
T[z] = a, we say that T is a support for (z,a) on c¢. Gen-
eralized Arc Consistency (GAC) is a well-known domain-
filtering property defined as follows: a constraint ¢ is GAC

682

iff Vo € sep(e),Va € dom(x), there exists at least one sup-
port for (z,a) on c. A CN N is GAC iff every constraint of
N is GAC. Enforcing GAC is the task of removing all values
that have no support on some constraint(s). A solution of N
is the assignment of a value to each variable of NV such that all
constraints of N are satisfied; the set of solutions is denoted
by sols(N).

A table constraint c is a constraint such that rel(c) is de-
fined explicitly by listing (in an ordinary table) the ordinary
tuples that are allowed' by c. A smart (table) constraint sc
is defined by a smart table, denoted by table(sc), which con-
tains a set of smart tuples. If scp(sc) is (z1,...,2,), then a
smart tuple o in table(sc) is a sequence (s1, ..., S,) of col-
umn constraints, where a column constraint s; can be either
a unary column constraint of one of the two forms z; = x
and z; <op> a, or a binary column constraint of the form z;
<op> z;, with a being a constant and <op> an operator in
{<.<=#2,>}

Thus, a smart tuple contains exactly n column constraints,
of which the ¢—th involves the variable x;, on the left. This
means that we consider here a slightly simpler form of smart
table constraints than in [Mairy et al., 2015], where the num-
ber of constraints is not fixed, and additional constraints of
the form z; € S, x; € S, and z; <op> z; + a are allowed.
Naturally, any classical tuple (as,...,a,) can be re-written
as the smart tuple (1 = aq, ..., %, = a,). The semantics of
smart table constraints is simple and natural: a (ordinary) tu-
ple 7 is allowed by a smart table constraint sc iff there exists
at least one smart tuple o € table(sc) such that 7 satisfies o.
Here, a column constraint x; = * is always satisfied. In order
to achieve GAC efficiently, the filtering algorithm described
in [Mairy et al., 2015] assumes no cycle in any constraint
graph that can be associated with any smart tuple.

3 The Synthesis Algorithm

The problem of synthesizing an equivalent smart table from
a given table is best viewed as a set covering problem: each
smart tuple is semantically equivalent to a set of (ordinary)
tuples; so we aim at minimizing the number of elements of a
set of smart tuples covering the given table constraint. Since
the set covering problem is NP-hard, we follow a heuristic
approach guided by abstract interpretation principles [Cousot
and Cousot, 1977].

3.1 High-level Description of the Method

Let ct be a concrete, i.e., ordinary, table constraint of arity n.
In this paper, we aim at abstracting ¢t by a smart table at
made of tuples of the form (sy,...,s,), as defined previ-
ously. Moreover, if s; is of the form x; <op> x;, we impose
that j < ¢ for reasons that will become clear shortly. The ba-
sic idea of our method is that we compute a sequence aty, aty,
..., at,, of more and more “abstract” smart tables, such that
ct = aty and at,, = at. Each table at; consists of smart tuples
of the form 70 where 7 is a concrete (ordinary) tuple and o is
an abstract (smart) tuple. We have vars(7) = (z1,...,ZTn_;)

'In this paper, we only consider positive tables, i.e., tables con-
taining allowed tuples.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

while o may involve any variable 1, ... x,. Such a smart tu-
ple abstracts (covers) the set of all concrete tuples 77’ that
satisfy 7o. Thus, we build the smart table “from right to left”
by progressively lengthening the abstract suffixes o: At each
iteration, we abstract the rightmost “concrete” column of the
table.

To compute at;4; from at;, we first compute a new smart
table nat;, the tuples of which are all of the form 7's,,_; 02
where s, _; has the form defined above. These tuples must
be such that for every concrete tuple of the form 7’a 7 that
satisfies 7's,,_; o, there exists a tuple 7’a o belonging to at;.
Then, we obtain at; 1 by choosing a specific subset of at; U
nat;, which covers ct.

The above method can be shown correct by induction on i.
Its accuracy depends on the way we choose the new smart tu-
ples in nat;, and the specific subset of at; U nat;. The way we
make these choices is explained in the next two subsections.

Computing the new abstract tuples

To find out new smart tuples involving unary column con-
straints s,,_;, we consider, for any given prefix 7/ and any
given suffix o, the set S of all values a such that 7’a o belongs
to at;. We are allowed to add, to nat;, any (and all) smart tu-
ple(s) 7’s,_; o such that s,,_; determines a subset of S. For
binary column constraints s,,_;, we consider, for any con-
crete tuples 7/, of length j—1, and 7"/, of length n—i—j —12,
and for any value a, the set S of all values b such that the tuple
7"a1""b o belongs to at;. We are allowed to add, to nat;, any
(and all) smart tuple(s) 7"’a 7"""s,,_; o such that s,, _; is of the
form x,,_; <op> x; and the set {b € dom(z,—;) | b <op>
a} is a subset of S.

Except for very small concrete tables ct, it is too costly to
add all allowed new smart tuples to nat;. For smart tuples
where s, _; is unary, we add a minimal set of smart tuples,
covering the corresponding concrete tuples. For smart tuples
where s,,_; is binary, however, we a priori add all allowed
new smart tuples. The justification for that is twofold: On the
one hand, the number of allowed column constraints is nor-
mally less for binary ones, and, one the other hand, it is diffi-
cult to foresee at this stage which binary column constraint is
the best choice. Good choices are estimated more accurately
when the smart table af,,_; is computed. Typically, when a
column constraint * is chosen, at stage n — j, corresponding
to a column constraint ,,_; <op> z;, at stage 1.

Computing the coverings

Since the table nat; usually is bigger, and sometimes much
bigger, than at;, we have to choose the most “promising”
smart tuples from at; U nat; to build at;,. We use the fol-
lowing heuristic. We currently have smart tuples of the form
7o where the T are concrete (ordinary) and the o are abstract
(smart). We may foresee that minimizing the number of dif-
ferent suffixes o in at;4; will lead to a final smart table with
a small number of smart tuples: At least, we know that the
corresponding suffixes of these final smart tuples are part of
the selected ones. To determine this minimal (or, at least,
small) number of suffixes, we compute, for every suffix ¢ in

*We have vars(t'), vars(t”), and vars(t"’) being respec-

IiVCly <ZII1, Cey xn—i—l), <.’131, .. ,ZE]'_1>, and <1Ej+1, e Tp—i—1)-

683

at; U nat; the number of concrete tuples in ct that satisfies
o. Let us denote this number by card(c). The computation
of card(o) is not costly since we can incrementally maintain
the number of concrete tuples 77’ covered by each abstract
tuple 7o. We enumerate the sequence of smart tuples 7o in
at; U nat;, in decreasing order of card(o), until a covering
of ct is obtained, and we define at;;; as the set of all those
smart tuples. For every selected suffix o, all corresponding
tuples 7o are put into at;; to allow a correct incremental
computation of card(o) at the next iterations.

This method to compute a covering is not intended to com-
pute a minimal (or close to minimal) one but it aims at leaving
the door open to future good choices. The point is not to de-
termine a minimal covering within at;, but only at the end,
within at. Since at = at,,, we proceed differently at the last
step (note that the prefixes 7 are empty, then): Each time an
abstract (final) tuple is selected to be put in az, we recom-
pute the number of concrete tuples covered by the remaining
tuples in at,,_1 U nat,,_1, which are not covered by the ab-
stract tuples already in at,,. Then we continue to select tuples
according to the updated numbers. This method is likely to
produce a smaller covering than the previous one.

An example

As a simple example, the tables ¢t (= aty), aty, ats, atz (=
at) computed by our algorithm for the example of Section
1 are shown below. The tables atq U natg, at; U nat;, and
aty U nats, which are not shown, respectively contain 28, 18,
and 4 tuples. In all of them, there is a single suffix ¢ for which
card(o) is maximal (equal to 6). The table at is different from
but equivalent to the smart table proposed in Section 1.

[(o[[e | [o]] x|
=1|=2] =1 =1|=2|=x
=1|=3] =1 =1|=3|=2

ct | =2 =21 =2 at; | =2 | =2 | =m
=2 | =3] =2 =2 | =3 | =1
=3 =21 =3 =3 =2 |=x
=3 =3]| =3 =3 | =3 |=n
=1 22 =

aty | =2 | >2 | =2, at * >2 | =2
=3 22 =21

3.2 Implementation Issues

Now we explain how the method of Section 3.1 can be imple-
mented efficiently, i.e., how we actually implemented it.

We encode column constraints s; involving z; as integer
values, leaving ¢ implicit, and we use the natural ordering on
integers as a total ordering on column constraints (with the
same 7). The encoding is also such that a column constraint
x; = aisrepresented by the integer a. So a concrete tuple is a
particular case of a smart tuple. Smart tables are represented
by two-dimensional arrays.

To compute new smart tuples to be put in nat;, we have to
determine sets of tuples of two forms: sets of tuples of the
form 7'a o, where 7' and o are fixed, and sets of tuples of the
form 7"a7"'b o where 77, a, 7", and o are fixed (see Section
3.1). To determine these sets we sort the array representing
the smart table at; (let us simply identify them) according to
different lexicographical orderings. As an invariant, we im-
pose that, at the start of every iteration of the algorithm, the

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

table at; is lexicographically sorted on the columns z,, ...,
Tp—itl> L1, --., Tn—i. This implies that all smart tuples with
the same suffix o are consecutive, as well as all smart tuples
of the form 7’a o, where 7’ and o are fixed. Thus, we can
determine all new smart tuples involving unary column con-
straints s,,_; through a single traversal of the array. Moreover,
we can progressively modify the ordering of the array to suc-
cessively compute the smart tuples involving binary column
constraints s,_;: For instance, to compute the smart tuples
of the form ™ a7"s,,_; o where s,,_; is of the form z,,_;
<op> x;, we have to lexicographically sort the array on the
columns Ty, ..., Tp—it1, T1s eoer Tjo1, Tjgls ---» Tp—i—1,
Zj, Tn—i. To compute the next smart tuples (those in which
Sy,—; is of the form z,_; <op> x;_1), we only have to re-
order the array locally on the tuples that share the same suffix
o and, if it makes sense, same prefixes of length 7 — 2. It
is also possible to fill in the table nat; in such a way that it
is lexicographically sorted on the columns z,,, ..., Zp—;, Z1,
..., Tp—i—1 and to progressively reorder at; in the same way.
Therefore, the smart table at; U nat; can be computed by sim-
ply merging at; and nat; in linear time on the size of at; Unat;.

To compute at; 1, i.e., the covering of at; U nat;, we first
build a list of descriptors of the sub-arrays of at; Unat; sharing
the same abstract suffix o’ (of length 7 + 1). This list is sorted
on card(c’) in decreasing order. Then we go through the list
to select sub-arrays until ct is completely covered: For each
selected smart tuple, we generate the set of concrete tuples
represented by the smart tuple, and we “mark™ them. This
can be done in linear time on the size of the set of covered
concrete tuples. The algorithm to compute the final (“mini-
mal”) covering is more sophisticated: We first build, once for
all, for each concrete tuple in ct, a list of all abstract tuples
that cover it (in at; U nat;). When a concrete tuple is marked
“covered”, we traverse this list and, for every abstract tuple
of the list, we decrease, by one, a counter giving the number
of unmarked concrete tuples covered by this abstract tuple.

This method to dynamically recompute the number of
concrete tuples covered by all still unselected abstract tuples
seems to us as efficient as possible. In fact, it is strongly
related to the Galois connections celebrated in abstract
interpretation [Cousot and Cousot, 1977].

3.3 Complexity Analysis

Our method is more efficient when it is accurate: If the table
at is comparatively small with respect to ct, it is synthesized
quicker. Thus, the complexity analysis we provide hereunder
is rather pessimistic. We complement it later, with experi-
mental efficiency results.

Remember that we call an iteration the whole sequence of
processes that are executed to compute at;; from ar;. We
first analyze the time complexity of such an iteration for 4
given. Let us call m; the number of tuples in at;. For any
given abstract suffix o (of length ¢), in at;, we denote the num-
ber of tuples sharing this suffix, by m;,. To build nat;, those
tuples are sorted n — ¢ times. The sorting that is preliminary
to find out constraints of the form z,,_; <op> x; is done in
O((n—i—j)dmis). (We use a kind of radix sort.) Summing
on all suffixes and all values of j, we get a time complexity
equal to O((n — i)?dm;) for all sorting operations. After

684

each sorting operation, m;, tuples are sequentially processed
to add new smart tuples in nat;. This is done (n — ¢) times
in O((n — i) m;,). Globally, in O((n — i)?m,,). The num-
ber of new tuples added to nat; is O((n — i) m;,). They are
then sorted inside nat; in O((n —i)? dm;,). Summing on all
suffixes m;,, we get that nat; is built in O((n —14)%dm;). Af-
terwards, the time needed to compute at; U nat; by merging
at; and nat; is O(i (n — i) m;). Putting together all previ-
ous results, we obtain that at; U nat; is computed from at; in
O((n—1i)2dm; + (n—1i)%2dm; + i(n —1i)m;), which is
equal to O((i + (n —4)d)(n — i)m;).

We now turn to the computation of the covering by which
at;4+1 is computed from at; U nat;. At most m sub-arrays of
at; U nat; are selected to be put in at; 11 and the computation
of the subset of ¢ they each cover is done in O(mmn).
Therefore, the overall computation of the covering is done
in O(m?n). The same figures are obtained for the covering
method used at the last iteration.

Finally, we estimate an upper-bound to compute at from
ct. The main difficulty is due to m,;, which is a number
difficult to predict. Experimentally, we observe that it
increases for small values of 7 and decreases afterwards.
We thus postulate shamelessly that m; is O(m). Then, by
summing the previous results on all values of 7, we get the
complexity formula O(m n?(dn + m)). In many situations,
m dominates dn, since it is O(d™), in general. We thus
obtain O(m?n?), as the final worst case complexity of our
method. Remember that m n is the size of ct. So, we estimate
that our method, as it is implemented, is quadratic in the
size of the input table (time complexity). With the same
hypothesis on m;, the space complexity is O(mn?) for all
phases of the algorithm except for the computation of the last
covering, which is O(mm,,_1). 3

3.4 Additional Remarks

The choice we make to abstract the table ct from right to left
is arbitrary. Nevertheless, it allows us to consider all pairs
of variables x;, x; as candidates for column constraints of
the form x; <op> x;. The restrictive condition 7 < 7 en-
sures that the smart tuples are acyclic but it prevents us to put
two column constraints that share the same variable x; (on
the left hand side) in the same smart tuple. Using another
permutation of the table columns may, in many cases, solve
the problem if we swap the variables in one or both of the
two constraints. But, of course, trying all permutations of the
table columns is computationally unsatisfactory. Even more
sadly, there are smart tables for which no permutation of the
variables may ensure that j < ¢ for every column constraints
x; <op> x;, in the table. In spite of these pessimistic obser-
vations, our method often gives good results in practice, as
shown in Section 4.

The reference algorithm presented in Subsections 3.1
and 3.2 can be improved and/or simplified in several ways.
We only cite two. A simple improvement consists of
replacing column constraints of the form z; <op> z; by
equivalent column constraints involving a single variable,

31f m,,_1 is big, the final smart table probably is uninteresting.
The algorithm may stop without computing it.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

when possible, in the smart tuples of the final table. For
instance, when the smart tuple contains a column constraint
of the form z; = a. A sometimes interesting simplification
consists of collecting only unary column constraints, or even
only *. So the final table only contains compressed or short
tuples and specialized filtering algorithms can be applied to it.

4 Experimental Results

To show the practical interest of the algorithm described in
this paper, we have conducted an experimentation using some
well-known global constraints: lex, element, maximum,
atMostl, notAllEqual, and distinctVectors. We
choose a few global constraints, because their natural smart
forms are already known. Consequently, we can fairly study
the compression efficiency of the proposed algorithm, which
is our main objective. Indeed, we can simply compare the
size of the initial smart tables with the size of the generated
smart tables. The protocol is the following: for a given global
constraint g1b, arity n and maximum domain size d, we gen-
erate a table (constraint) containing all tuples accepted by the
global constraint g1lb-n-d. For example, 1lex-10-4 is the
constraint 1ex whose scope contains 10 variables with 4 val-
ues per domain; the corresponding table constraint contains
524, 800 tuples. We have also generated random smart table
constraints random-n-d with 6 smart tuples for each con-
straint: each smart tuple is composed of column constraints
randomly chosen with the same probability 1/13 for “*”” and
every column constraint of the form x; <op> a or x; <op>
z;. Once a random smart table is generated, we build the
corresponding ordinary table.

Our experimentation includes two phases. In a first phase,
we study the compression capability of our algorithm and
its practical efficiency. In a second phase, we compare the
performance of using automatically synthesized smart con-
straints with respect to state-of-the-art algorithms on ordinary
tables, short tables and MDDs.

Table 1 shows how our synthesis algorithm behaves on the
benchmarks. We apply the algorithm to ten randomly cho-
sen permutations of the columns of each table constraint.
Columns m, mi-ma, mg, respectively indicate the number
of tuples of the ordinary table, the minimum and maximum
number of tuples of the resulting smart table and its average
value. Column cmp is the ratio (m — mi)/m. The algo-
rithm provides optimal results on the tables notAl11Equal,
distinctVectors, and element, which contain few
constraints x; <op> x;, not sharing the same variable, which
allows the algorithm to synthesize an optimal table for any
permutation. For lex, the results are also optimal although
some tuples involve many constraints x; <op> z;. So,
for some bad permutations, the execution time may become
ten times greater than for the good ones. For constraints
atMostl and maximum, the results are not always opti-
mal because optimal smart tables contain many constraints
x; <op> x;; thus, an optimal table such that 7 < 7 for
all constraints does not exist for all permutations. Surpris-
ingly, for some examples and permutations, our algorithm
provides solutions shorter than the original ones, i.e., on most
instances of atMost 1. For the random constraints, the re-

685

ned Size | Cpu | Cplty
m mi-ma Mg, cmp | tor %onat %cc | cp1 cpa
Constraints notAl1Equal-n-d
5-5 3.1K 4-4 40 99.87| 0.04 43.12 5639|031 2
9-3 19K 8-8 8.0 99.95 1.03 44.12 5445|024 5
6-6 46K 5-5 5.0 9998| 0.89 27.76 71.38|0.23 3
7-5 78K 6-6 6.0 99.99| 2.32 30.77 68.34|0.22 4
9-4 262K 8-8 8.0 99.99| 14.71 28.64 70.45|0.19 6
8-5 390K 7-7 7.0 99.99| 19.78 37.98 61.40(0.19 6
Constraints lex—n-d
6-4 2.0K 3-3 3.0 99.85| 0.07 51.86 47.51|047 5
6-5 7.8K 33 3.0 99.96| 0.22 44.94 5447|045 4
8-4 32K 4-4 4.0 99.98 3.15 34.02 65.22(0.62 11
8-5 195K 4-4 4.0 99.99| 39.85 13.95 85.760.56 25
10-4 524K 5-5 5.0 99.99| 62.05 30.16 69.16|0.27 11
8-6 840K 4-4 4.0 99.99|128.61 19.94 78.76(0.39 19
Constraints distinctVectors—n-d
8-3 6.4K 4-4 40 99.93| 023 6893 2944|027 4
8-4 65K 4-4 4.0 99.99 1.66 51.79 46.63|0.21 3
12-3 530K 6-6 6.0 99.99| 41.22 58.09 40.29|0.18 6
10-4 1.04M 5-5 5.0 99.99| 57.23 56.51 42.24|0.17 5
Constraints e lement-n-d
9-7a 15K 7-8 7.1 9995| 0.85 6143 37.16]/047 6
7-6 38K 5-5 50 9998| 0.78 52.60 4633037 2
7-7 84K 5-5 5.0 99.99 1.66 45.02 54.070.33 2
7-8 163K 5-5 5.0 99.99| 3.48 4091 5828|030 3
9-7b 546K 7-7 7.0 99.99| 26.04 42.14 5694|031 5
8-7 705K 6-6 6.0 99.99| 23.19 41.32 57.99|0.27 4
Constraints atMost1-n-d
7-4 8.7K 4-24 10.7 99.95| 0.21 48.54 50.70(0.27 3
8-4 29K 4-48 20.1 99.98| 0.95 4040 58.62|0.26 4
12-3 39K 16-61 33.5 99.95| 10.81 48.79 50.31|0.89 22
9-4 96K 6-62 29.7 99.99| 7.94 35.10 64.15(041 9
14-3 184K 20-77 59.1 99.98|101.47 38.13 61.08 |0.89 39
10-4 314K 8-77 458 99.99| 43.41 35.80 63.61(0.46 13
Constraints maximum-n—d
6-5 3.1K 5-16 9.2 99.84| 0.08 43.73 5590|042 4
6-6 7.7K 5-16 7.3 9993| 0.14 40.89 58.72(0.32 3
10-3 19K 9-16 14.6 99.95 247 2486 7439027 12
8-5 78K 7-45 255 99.99| 7.74 2290 76.59|0.46 12
10-4 262K 9-43 22.5 99.99| 55.39 27.08 72.24(0.53 21
9-5 390K 8-68 35.8 99.99| 64.98 20.35 79.20|0.45 18
Constraints random-n-d
6-10a 86K 55-301 150.9 99.93 3.38 28.63 70.97/0.60 6
6-10b 158K 113-702 350.0 99.92| 10.57 16.55 83.20|0.64 11
6-10c 535K 73-429 199.9 99.98| 80.52 8.97 90.89|0.68 25
8-8a 61K 89-174 1254 99.85 3.61 37.34 62.23]0.57 7
8-8b 124K 22-40 26.7 99.98| 7.53 3271 66.88(0.52 7
8-8¢c 446K 8-304 104.6 99.99| 40.74 19.21 80.55|0.44 11
13-4a 60K 2-17 6.5 99.99| 14.07 40.27 59.09|0.55 17
13-4b 106K 29 5.1 99.99| 30.94 33.25 66.19|0.57 22
13-4c 322K 9-38 18.8 99.99|115.21 27.67 71.61|0.50 27

Table 1: Results of synthesis algorithm obtained on global con-
straints and randomly generated smart table constraints.

sults are less good because the original smart tables contains
too few “*” constraints. Nevertheless, on two constraints
random-13-4, the number of tuples is less than for the
original tables. Columns fot, %nat, %cc give the average ex-
ecution time, in seconds, and the proportion of time spent to
abstract tuples (%nat) and to compute coverings (%cc). We
see that the timings devoted to both tasks are similar on most
examples. Column cp; is the ratio 7;/m, where T; is the
average value of m;, the number of tuples of the table az;. It

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

ned Table Size | Filtering Algorithm

m m? m* | MDD CT ST CT* ST*
Constraints notAl1Equal-n-d
5-5 3.1K 4 80 42 31 20 25 34
9-3 19K 8 48 35 51 17 22 41
6-6 46K 5 150 59 95 20 28 59
7-5 78K 6 120 52 108 20 27 58
9-4 262K 8 96 49 223 17 42 44
8-5 390K 7 140 57 330 21 30 72
Constraints lex—-n—-d
6-4 2.0K 3 110 62 27 25 23 28
6-5 7.8K 3 260 101 47 28 27 59
8-4 32K 4 446 187 73 30 28 84
8-5 195K 4 13K 350 195 30 32 273
10-4 524K 5 17K 548 372 31 28 392
8-6 840K 4 32K 742 845 33 35 1.0K
Constraints distinctVectors—-n-d
8-3 6.4K 4 24 62 32 15 18 18
8-4 65K 4 48 169 94 20 23 21
12-3 530K 6 36 374 300 18 20 18
10-4 1.04M 5 60 533 833 19 23 24
Constraints element—n-d
9-7a 15K 7 21 49 45 29 34 25
7-6 38K 5 30 110 107 37 28 28
7-7 84K 5 35 107 170 36 29 28
7-8 163K 5 40 98 220 44 27 29
9-7b 546K 7 35 126 483 49 25 27
8-7 705K 6 42 120 841 53 35 33
Constraints atMost1-n—-d
7-4 8.7K 4 58K 4 47 35 40 1.6K
8-4 29K 4 20K 52 66 35 68 6.6K
12-3 39K 17 33K 43 69 83 63 8.8K
9-4 96K 6 69K 54 108 54 108 23K
14-3 184K 21 159K 45 133 97 139 38K
10-4 314K 8 236K 50 244 61 229 80K
Constraints maximum-n-d
6-5 3.1K 5 10K 46 31 66 27 202
6-6 7.7K 5 31K 62 52 83 35 990
10-3 19K 9 521 63 47 66 21 90
8-5 78K 7 16K 55 105 79 55 6.0K
10-4 262K 9 19K 58 202 84 59 63K
9-5 390K 8 65K 60 336 90 105 23K
Constraints random-n-d
6-10a 86K 55 61K 325 177 177 155 33K
6-10b 158K 296 38K 308 239 303 143 19K
6-10c 535K 429 32K 311 700 440 122 17K
8-8a 61K 91 25K 169 128 127 96 10K
8-8b 124K 22 79K 223 199 89 182 34K
8-8¢ 446K 190 65K 213 497 177 148 27K
13-4a 60K 3 13K 54 78 33 36 2K
13-4b 106K 4 19K 133 106 53 52 49K
13-4c 322K 11 314K 82 233 53 277 99K

Table 2: Filtering on compressed tables from global constraints and
randomly generated smart table constraints.

supports our “postulate” that m; = O(m). Finally, column
¢po is the ratio ror/(nm), i.e., the execution time divided by
the size of the concrete table, in microseconds. It shows that,
for these benchmarks, the time complexity of our algorithm
is much better than predicted by our worst case study: It is
almost linear.

Table 2 shows the relative performances of various filtering
algorithms on the constraints introduced earlier. For a fair
comparison, we proceeded as follows: for each algorithm,
we iteratively run its execution and randomly removed 10%

686

of the values (until a failure occurs). This way, many dif-
ferent call contexts were simulated. This inner process was
repeated 1,000 times, and we additionally took the average
time over 10 executions. Using the same seed, the different
filtering algorithms are all tested on the same search trees.
In Table 2, columns m, m® and m™* respectively indicate
the sizes of the ordinary, smart and short tables (these last
two being synthesized by our algorithm). The other columns
give the average times (in milliseconds) obtained by MDD4R
[Perez and Régin, 2014] on multi-valued decision diagrams
(built initially before being exploited), state-of-the-art algo-
rithm Compact Table on ordinary (CT) [Demeulenaere ef al.,
2016] and short (CT*) [Verhaeghe et al., 2017] tables, and
finally Smart Table (filtering algorithm depicted in [Mairy et
al., 2015]) on smart (ST) and short (ST*) tables. It is im-
portant to note that we only report filtering execution time
here, so the time required to build MDDs, short and smart ta-
bles is not taken into account. First, we can observe that the
compression capability of our algorithm, when parameterized
to output short tables, is sometimes very good. This is the
case for constraints notAl1Equal, distinctVectors,
and element. Interestingly, even when the compression ra-
tio is not too impressive (from 10% to 90%), it appears that
CT* outperforms CT, sometimes quite largely. This is the
case for constraints maximum and random. However, we
believe that the main result of our experimentation is that
ST applied to the synthesized smart tables is particularly ro-
bust. When ST is the fastest algorithm, on large tables it can
outperform state-of-the-art MDD and CT algorithms by one
or two orders of magnitude; see for example, lex—-8-6 or
distinctVectors—10-4. When ST is not the fastest al-
gorithm, it remains very close to the best competitor.

5 Conclusion

We presented an algorithm that synthesizes smart tables from
table constraints. We demonstrated its accuracy and effi-
ciency when applied to table constraints that can be com-
pactly represented in this form. Benchmarks on global con-
straints show that our algorithm is able to find the best com-
pression in many situations, and come close to the best results
otherwise. Our algorithm is also able to limit its output to
short tuples, allowing state-of-the-art filtering algorithm such
as CT* to be used [Verhaeghe er al., 2017]. We also discussed
its main limitation: the building of smart tables from right to
left may prevent it to find an optimal solution when many col-
umn constraints of the form x; <op> x; are involved in such
a solution. As a future work, we plan to alleviate this lim-
itation by simultaneously exploring several permutations of
the table columns. Note that not all table constraints can be
compactly represented as smart tables. We will use our algo-
rithm to analyze the whole range of existing table constraints
to find out situations where smart tables outperform or are
competitive with other classes of constraint representations.

Acknowledgments

The second author is supported by the FRIA-FNRS (Fonds
pour la Formation a la Recherche dans 1’'Industrie et dans
I’ Agriculture, Belgium).

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Bacchus and Walsh, 2005] Fahiem Bacchus and Toby
Walsh. Propagating logical combinations of constraints.
In Proceedings of IJCAI’05, pages 35-40, 2005.

[Beldiceanu et al., 2014] Nicolas Beldiceanu, Mats Carls-
son, and Jean-Xavier Rampon. Global constraint catalog.
Technical Report T2012:03, TASC-SICS-LINA, 2014.

[Carlson and Carlsson, 1995] Bjorn Carlson and Mats Carls-
son. Compiling and executing disjunctions of finite do-
main constraints. In Proceedings of ICLP’95, pages 117-
131, 1995.

[Cheng and Yap, 2010] Kenil C. K. Cheng and Roland H. C.
Yap. An MDD-based generalized arc consistency algo-
rithm for positive and negative table constraints and some
global constraints. Constraints, 15(2):265-304, 2010.

[Cousot and Cousot, 1977] Patrick Cousot and Radhia
Cousot. Abstract interpretation: a unified lattice for static
analysis of programs by construction of approximation of
fixpoints. In Proceedings of POPL’77, pages 238-252,
1977.

[Demeulenaere et al., 2016] Jordan Demeulenaere, Renaud
Hartert, Christophe Lecoutre, Guillaume Perez, Laurent
Perron, Jean-Charles Régin, and Pierre Schaus. Efficiently
filtering table constraints with reversible sparse bit-sets. In
Proceedings of CP’16, pages 207-223, 2016.

[Gent et al., 2007] Tan P. Gent, Christopher Jefferson, Ian
Miguel, and Peter Nightingale. Data structures for gener-
alised arc consistency for extensional constraints. In Pro-
ceedings of AAAI’07, pages 191-197, 2007.

[Hentenryck et al., 1998] Pascal Van Hentenryck, Vijay A.
Saraswat, and Yves Deville. Design, implementation and
evaluation of the constraint language cc(FD). Journal of
Logic Programming, 37(1-3):139-164, 1998.

[Jefferson and Nightingale, 2013] Christopher Jefferson and
Peter Nightingale. Extending simple tabular reduction
with short supports. In Proceedings of IJCAI'13, pages
573-579, 2013.

[Jefferson et al., 2010] Christopher Jefferson, Neil C. A.
Moore, Peter Nightingale, and Karen E. Petrie. Imple-
menting logical connectives in constraint programming.
Artificial Intelligence, 174(16):1407-1429, 2010.

[Katsirelos and Walsh, 2007] George Katsirelos and Toby
Walsh. A compression algorithm for large arity exten-
sional constraints. In Proceedings of CP’07, pages 379—
393, 2007.

[Lecoutre and Szymanek, 2006] Christophe Lecoutre and
Radoslaw Szymanek. Generalized arc consistency for pos-
itive table constraints. In Proceedings of CP’06, pages
284-298, 2006.

[Lecoutre et al., 2012] Christophe Lecoutre, Chavalit Likit-
vivatanavong, and Roland H. C. Yap. A path-optimal
GAC algorithm for table constraints. In Proceedings of
ECAI’12, pages 510-515, 2012.

687

[Lecoutre, 2011] Christophe Lecoutre. STR2: Optimized
simple tabular reduction for table constraints. Constraints,
16(4):341-371, 2011.

[Lhomme and Régin, 2005] Olivier Lhomme and Jean-
Charles Régin. A fast arc consistency algorithm for n-ary
constraints. In Proceedings of AAAI’0S5, pages 405-410,
2005.

[Lhomme, 2004] Olivier Lhomme. Arc-consistency filtering
algorithms for logical combinations of constraints. In Pro-
ceedings of CPAIOR’04, pages 209-224, 2004.

[Lhomme, 2012] Olivier Lhomme. Practical reformulations
with table constraints. In Proceedings of ECAI’12, pages
911-912, 2012.

[Mairy et al., 2012] Jean-Baptiste Mairy, Pascal Van Hen-
tenryck, and Yves Deville. An optimal filtering algorithm
for table constraints. In Proceedings of CP’12, pages 496—
511, 2012.

[Mairy et al., 2015] Jean-Baptiste Mairy, Yves Deville, and
Christophe Lecoutre. The smart table constraint. In Pro-
ceedings of CPAIOR’15, pages 271-287, 2015.

[Montanari, 1974] Ugo Montanari. Network of constraints
: Fundamental properties and applications to picture pro-
cessing. Information Science, 7:95-132, 1974.

[Nightingale ef al., 2011] Peter Nightingale, lan P. Gent,
Christopher Jefferson, and Ian Miguel. Exploiting short
supports for generalised arc consistency for arbitrary con-
straints. In Proceedings of IJCAI'll, pages 623-628,
2011.

[Perez and Régin, 2014] Guillaume Perez and Jean-Charles
Régin. Improving GAC-4 for Table and MDD constraints.
In Proceedings of CP’14, pages 606-621, 2014.

[Régin, 2011] Jean-Charles Régin. Improving the expres-
siveness of table constraints. In Proceedings of the work-
shop ModRef’11 held with CP’11, 2011.

[Srinivasan et al., 1990] Arvind Srinivasan, Timothy Kam,
Sharad Malik, and Robert K. Brayton. Algorithms for dis-
crete function manipulation. In Proceedings of ICCAD 90,
pages 92-95, 1990.

[Ullmann, 2007] Julian R. Ullmann. Partition search for

non-binary constraint satisfaction. Information Science,
177:3639-3678, 2007.

[Verhaeghe er al., 2017] Hélene Verhaeghe, Christophe
Lecoutre, and Pierre Schaus. Extending compact-table
to negative and short tables. In Proceedings of AAAI'17,
pages 3951-3957, 2017.

[Wang et al., 2016] Ruiwei Wang, Wei Xia, Roland H. C.
Yap, and Zhanshan Li. Optimizing Simple Tabular Re-
duction with a bitwise representation. In Proceedings of
1JCAI’ 16, pages 787-795, 2016.

[Xia and Yap, 2013] Wei Xia and Roland H. C. Yap. Opti-
mizing STR algorithms with tuple compression. In Pro-
ceedings of CP’13, pages 724732, 2013.

