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Abstract

Stochastic Boolean Satisfiability (SSAT) is a pow-
erful formalism to represent computational prob-
lems with uncertainty, such as belief network in-
ference and propositional probabilistic planning.
Solving SSAT formulas lies in the PSPACE-
complete complexity class same as solving Quan-
tified Boolean Formulas (QBFs). While many en-
deavors have been made to enhance QBF solving
in recent years, SSAT has drawn relatively less at-
tention. This paper focuses on random-exist quan-
tified SSAT formulas, and proposes an algorithm
combining modern satisfiability (SAT) techniques
and model counting to improve computational ef-
ficiency. Unlike prior exact SSAT algorithms, the
proposed method can be easily modified to solve
approximate SSAT by deriving upper and lower
bounds of satisfying probability. Experimental re-
sults show that our method outperforms the state-
of-the-art algorithm on random k-CNF and AI-
related formulas in both runtime and memory us-
age, and has effective application to approximate
SSAT on VLSI circuit benchmarks.

1 Introduction
First formulated in [Papadimitriou, 1985], stochastic Boolean
satisfiability (SSAT) was described as a game against nature.
Probabilistic factors are introduced into the world of Boolean
logic through the creation of the randomized quantifier. A
Boolean variable randomly quantified with probability p has
a probability p of evaluating to TRUE. Exploiting random-
ized quantifiers, SSAT is capable of modeling a variety of
computational problems inherent with uncertainty [Hnich et
al., 2011], such as propositional probabilistic planning, belief
network inference, and trust management [Majercik, 2009].
Recently, it has also been applied to the formal verification of
probabilistic circuits [Lee and Jiang, 2014]. From computa-
tional complexity point of view, SSAT lies in the PSPACE-
complete complexity class, same as quantified Boolean satis-
fiability (QSAT). Therefore, developing good algorithms for
SSAT not only brings practical benefits for real-world appli-
cations, but also is of theoretical interest.

Among the prior efforts made to approach SSAT, most
of them are based on Davis-Putnam-Logemann-Loveland
(DPLL) search [Davis et al., 1962]. MAXPLAN [Majercik
and Littman, 1998] improves DPLL-based search by consid-
ering pure literal, unit propagation, and subproblem mem-
orization. ZANDER [Majercik and Littman, 2003] incorpo-
rates several threshold pruning heuristics to reduce the search
space. DC-SSAT [Majercik and Boots, 2005] divides the
SSAT formulas into many subproblems and conquer them
separately. The solution of the original formula is then con-
structed on top of the solutions of subproblems. Approximate
SSAT solving, which derives upper or lower bounds of sat-
isfying probability of an SSAT formula instead of solving it
exactly, was investigated in [Majercik, 2007]. Resolution for
SSAT has also been addressed in [Teige and Fränzle, 2010].

Model counting algorithms are under active development
in recent years. In addition to exact model counting [Sang et
al., 2004; 2005a], approximate model counting [Gomes et al.,
2006; 2007; Chakraborty et al., 2016] has been addressed to
improve scalability by relaxing exactness. In this work, ex-
act or approximate model counting is exploited as an ingre-
dient for SSAT solving. On the other hand, projected model
counting [Aziz et al., 2015], which computes the numbers of
satisfying assignments projected on a subset of original vari-
ables, is subsumed by random-exist quantified SSAT. There-
fore, our proposed method can be applied to solve projected
model counting.

In contrast to the prior DPLL-based SSAT algorithms
with pruning heuristics and subproblem memorization, our
goal is to take advantage of modern SAT solvers [Eén and
Sörensson, 2003a; 2003b] and model counters as a black-
box engine for solving SSAT. To the best of our knowledge,
this work is the first attempt to directly use a SAT solver as
a plug-in engine for SSAT solving. In this paper, we focus
on the random-exist quantified SSAT formula of the form
Φ =

R

X∃Y.φ, which is the counterpart of the forall-exist
quantified QBF formula. The random-exist quantified SSAT
has applications in belief network inference [Cooper, 1990;
Bacchus et al., 2003], probabilistic planning, and probabilis-
tic circuit verification [Lee and Jiang, 2014]. In addition
to SAT solving, we incorporate weighted model counting,
which has been widely used in probabilistic inference [Sang
et al., 2005b; Chavira and Darwiche, 2008], in the proposed
algorithm to tackle randomized quantifiers. The proposed al-
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gorithm uses the SAT solver and model counter in a stand-
alone manner, leaving the internal structures of these solvers
intact. Due to the stand-alone usage of these solvers, the pro-
posed algorithm may directly benefit from the advancement
of the solvers without any modification. Moreover, unlike
previous DPLL-based methods, the proposed algorithm can
be easily modified to solve approximate SSAT by deriving
upper and lower bounds of satisfying probability.

To evaluate the proposed algorithm, a prototype program
was implemented and experimented with random k-CNF
formulas, strategic companies [Cadoli et al., 1997] for-
mulas arising from the artificial intelligence (AI) domain,
and benchmarks from analysis of very-large-scale integration
(VLSI) circuits. Our method outperforms the state-of-the-art
algorithm on random k-CNF and strategic companies formu-
las in both runtime and memory consumption, and is capable
of solving approximate SSAT on circuit benchmarks while
the state-of-the-art method fails to compute the exact satisfy-
ing probability.

2 Preliminaries
Let B = {>,⊥}, where > and ⊥ denote logic TRUE and
FALSE. A literal is a Boolean variable or its negation. A
clause (resp. cube) is a disjunction (resp. conjunction) of lit-
erals. A conjunctive normal form (CNF) formula is a con-
junction of clauses. A Boolean formula φ over variables
X = {x1, . . . , xn} induces a Boolean function mapping from
Bn to B. The set of Boolean variables appearing in a Boolean
formula φ is denoted as vars(φ). An assignment τ on vari-
ables X ⊆ vars(φ) of formula φ is a mapping from X to B.
An assignment τ is called a complete assignment on vars(φ)
if X = vars(φ); otherwise, it is called a partial assignment
on vars(φ). The formula of φ induced under the assignment
τ on X ⊆ vars(φ) is obtained by substituting every appear-
ance of x ∈ X in φ by τ(x), and is denoted as φ|τ . A com-
plete assignment τ is called a satisfying (resp. an unsatisfy-
ing) (complete) assignment for φ if φ|τ = > (resp. φ|τ = ⊥).
Similarly, a partial assignment τ+ on X ⊂ vars(φ) for φ is
called a satisfying (resp. an unsatisfying) (partial) assign-
ment on vars(φ) if for some (resp. every) assignment µ on
vars(φ) \ X , φ valuates to > (resp. ⊥) under the complete
assignment obtained by combining τ and µ. In the sequel,
we alternatively represent an assignment τ for φ as a cube.
A cube is called a minterm when it corresponds to a com-
plete assignment with respect to a specified set of variables.
A Boolean formula φ is called satisfiable if there exists a sat-
isfying complete assignment for φ. We write SAT(φ) = > to
denote φ is satisfiable. A satisfying assignment of φ is also
called a model of φ, denoted by φ.model. On the other hand,
if φ has no satisfying assignment, it is unsatisfiable and writ-
ten as SAT(φ) = ⊥.

2.1 Generalization of SAT or UNSAT Assignments
Consider a CNF formula φ(X,Y ), where X and Y are two
disjoint sets of Boolean variables. Given an assignment τ on
X , if φ(X,Y )|τ is satisfiable (resp. unsatisfiable), τ is called
a SAT (resp. an UNSAT) minterm of φ on X . The gener-
alization process of a SAT or an UNSAT minterm τ aims at

expanding it to a cube τ+, while maintaining the satisfiability
of φ(X,Y )|τ+ the same as φ(X,Y )|τ .
Example 1 Consider formula φ(x1, x2, y1, y2) = x1 ∧
(¬x2 ∨ y1 ∨ y2). The assignment τ = x1x2 on X , i.e.,
τ(x1) = >, τ(x2) = >, is a satisfying assignment, or a
SAT minterm, of φ on X as φ|τ is satisfiable by assign-
ment µ = y1y2. On the other hand, the partial assignment
τ+ = ¬x1, i.e., τ+(x1) = ⊥, is an unsatisfying partial as-
signment, or an UNSAT cube, of φ as φ|τ+ is unsatisfiable.

Minimum Satisfying Assignment
For a CNF formula φ(X,Y ), let τ be a SAT minterm on X
and let µ be a satisfying assignment for φ(X,Y )|τ on Y . To
generalize τ into a cube, one can find a subset of literals from
τ and µ that are able to satisfy all clauses in φ while the num-
ber of literals taken from τ is as few as possible. If some liter-
als in τ are irrelevant to the satisfiability, they can be dropped
from τ , thus expanding τ to a SAT cube τ+. If in the SAT
cube τ+, the number of literals taking from τ is minimized,
τ+ is called the minimum satisfying assignment. The process
of finding the minimum satisfying assignment is also known
as finding the minimum hitting set.

Minimum Conflicting Assignment
Given an UNSAT minterm τ of a CNF formula φ, modern
SAT solvers, such as Minisat [Eén and Sörensson, 2003a;
2003b], are able to analyze the reason of unsatisfiability,
which is represented as a conjunction of literals in τ caus-
ing the conflict. If some literals in τ are irrelevant to the con-
flict, they are dropped from τ , thus expanding τ to an UNSAT
cube τ+. If the number of literals in the UNSAT cube τ+ is
minimized, τ+ is called the minimum conflicting assignment.
The process of finding the minimum conflicting assignment
is also known as finding the minimum UNSAT core.

2.2 Model Counting
Given a CNF formula φ, the model counting problem finds
the number of satisfying assignments of φ. In its weighted
version, a weight function ω maps each Boolean variable
x ∈ vars(φ) to a weight ω(x) ∈ [0, 1], which represents
Pr[x = >]. The weight of a negative literal ¬x is defined to
be 1 − ω(x). The weight of an assignment equals the prod-
uct of the weights of its individual literals. The weight of
a Boolean formula equals the summation of weights of its
satisfying assignments. There are two categories of model
counting algorithms: Exact model counting computes the pre-
cise number of satisfying assignments of a formula; approxi-
mate model counting computes the upper or lower bounds of
the number of satisfying assignments of a formula with some
confidence level.

2.3 Stochastic Boolean Satisfiability
A stochastic Boolean satisfiability (SSAT) formula is of the
form

Φ = Q1x1 . . . Qnxn.φ,

where Qi ∈ {∃,

Rpi} and φ is a quantifier-free Boolean for-
mula. In addition to the existential quantifier ∃, the random-
ized quantifier

Rpi on xi assigns a probability pi ∈ [0, 1] for
xi to be true. The quantifier part is called the prefix, and the
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Boolean formula is called the matrix. Given an SSAT formula
Φ, let v be the outermost variable in the prefix. The satisfying
probability of Φ can be computed by the following rules.

a) Pr[>] = 1,
b) Pr[⊥] = 0,
c) Pr[Φ] = max{Pr[Φ|¬v],Pr[Φ|v]}, if v is existentially

quantified,
d) Pr[Φ] = (1 − p)Pr[Φ|¬v] + pPr[Φ|v], if v is randomly

quantified by

Rp,
where Φ|¬v and Φ|v denote the SSAT formulas derived by
eliminating the outermost quantifier of v by substituting the
value of v in the matrix with ⊥ and >, respectively. In
this paper, we aims at solving the random-exist quantified
SSAT formula of the form Φ =

R

X∃Y.φ(X,Y ), where
X = {x1, . . . , xn} and Y = {y1, . . . , ym} are two disjoint
sets of Boolean variables.

3 Solving Random-Exist SSAT
Consider a random-exist quantified SSAT formula Φ =R

X∃Y.φ(X,Y ). The satisfying probability of Φ equals the
summation of weight of all SAT minterms on X , or, equiv-
alently, 1 minus the summation of weight of all UNSAT
minterms on X . To identify an assignment τ on X as a
SAT or an UNSAT minterm, it suffices to check whether
φ(X,Y )|τ is satisfiable or not. A naive solution to computing
the satisfying probability of Φ exhaustively examines all as-
signments onX , classifies them as SAT or UNSAT minterms,
and aggregates the weight of collected minterms.

The above naive solution can be improved by exploiting the
minterm-generalization techniques discussed in Section 2.1.
For instance, in Example 1, τ = x1x2¬x3 is a SAT minterm
for φ(x1, x2, x3) = x1∧(x2∨x3). Observe that φ(x1, x2, x3)
is satisfiable under the partial assignment τ+ = x1x2. In
other words, the SAT minterm τ can be generalized into the
SAT cube τ+, which contains two minterms. Through the
generalization analysis, more than one minterm can be col-
lected in a single SAT solving run, enhancing the efficiency
of the enumeration of all possible assignments on X . As will
be shown in Section 4, the minterm-generalization techniques
are essential to the efficiency of the proposed method. How-
ever, the weight of each collected cubes cannot be summed
up directly due to the potential non-disjointness between the
generalized cubes. This difficulty can be overcome by ap-
plying weighted model counting to evaluate the weight of the
collected cubes.

The above idea gives rise to the proposed algorithm, for-
malized in Figure 1, to evaluate Φ =

R

X∃Y.φ(X,Y ). The
proposed algorithm works as follows. First assume the run-
time limit TO to be infinity, while the effect of imposing a run-
time limit on SolveRESSAT will be explained in Section 3.4.
Two SAT solvers are used in SolveRESSAT. In addition to the
SAT solver holding the matrix CNF φ(X,Y ), the other SAT
solver ψ(X), called the selector in the sequel, is initialized
with any empty set of clauses. The selector ψ(X) is in charge
of selecting an assignment τ onX . After τ is chosen, the ma-
trix solver φ(X,Y ) will check whether or not φ(X,Y )|τ is
satisfiable. Depending on the satisfiability of φ(X,Y )|τ , the

SolveRESSAT
input: Φ =

R

X∃Y.φ(X,Y ) and a runtime limit TO
output: Upper and lower bounds (PU , PL) of satisfying prob.
begin
01 ψ(X) := >;
02 C> := ∅;
03 C⊥ := ∅;
04 while SAT(ψ) = > ∧ runtime < TO
05 τ := ψ.model;
06 if SAT(φ|τ ) = >
07 τ+ := MinimalSatisfying(φ, τ );
08 C> := C> ∪ {τ+};
09 else //SAT(φ|τ ) = ⊥
10 τ+ := MinimalConflicting(φ, τ );
11 C⊥ := C⊥ ∪ {τ+};
12 ψ := ψ ∧ ¬τ+;
13 return (1−ComputeWeight(C⊥), ComputeWeight(C>));

end

Figure 1: Algorithm: Solving random-exist quantified SSAT.

minterm τ is generalized into a cube by the subroutine Min-
imalSatisfying or MinimalConflicting. Instead of finding the
minimum satisfying or conflicting assignment, which is com-
putationally expansive, we resort to finding a minimal satis-
fying or conflicting assignment, i.e., an assignment having no
literals removable without affecting the (un)satisfiability, to
leverage the efficiency of UNSAT core computation for effec-
tive generalization. After τ is generalized to τ+ and enlisted
in C⊥ or C>, the negation of τ+, which is a blocking clause,
will be conjoined with ψ to prune the assignments contained
by τ+. The above process is repeated until ψ becomes unsat-
isfiable, which signifies the Boolean space spanned by X has
been exhaustively searched. The subroutine ComputeWeight
is then invoked to evaluate the weight of the collected cubes.
The subroutines MinimalConflicting, MinimalSatisfying, and
ComputeWeight are detailed below.

3.1 Minimal Satisfying Assignment
Given a SAT minterm τ on X for φ(X,Y ), let µ be the sat-
isfying assignment on Y for φ(X,Y ). The subroutine Mini-
malSatisfying generalizes τ to τ+ via the following steps.

a) Remove every clauseC in φ(X,Y )|τ that contains some
true literal in µ.

b) For each literal l in τ , drop l and examine whether the
rest of clauses remain satisfied by scanning these clauses
and checking if each of them still contains some true
literal. If the rest of clauses are all satisfied, discard l;
otherwise, put l in τ+.

After the above steps, the SAT minterm τ is generalized into
a minimal satisfying assignment τ+.

3.2 Minimal Conflicting Assignment
Let τ be an UNSAT minterm on X for φ(X,Y ). The analy-
sis of unsatisfiability can be done with a modern SAT solver
(e.g., using analyzeFinal() in Minisat) to find a con-
junction of literals from τ responsible for the conflict. How-
ever, in general this conjunction of literals might not be min-
imal, meaning that some of the literals can be dropped. The
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subroutine MinimalConflicting takes the conjunction of liter-
als responsible for the conflict computed by a SAT solver and
makes it minimal as follows. For each literal l in the conjunc-
tion, drop l and examine whether φ(X,Y ) remains unsatis-
fiable by invoking a SAT call. If it is unsatisfiable, discard
l; otherwise, put l in τ+. After the above steps, the UNSAT
minterm τ is generalized into a minimal conflicting assign-
ment τ+.

3.3 Weight Computation
The subroutine ComputeWeight aggregates the weight of col-
lected cubes by invoking a weighted model counter. Because
the weighted model counter takes CNF formulas as input,
ComputeWeight first negates each collected cube to turn it
into a clause, and conjoins the resulting clauses into a CNF
formula. As the CNF formula is the negation of the disjunc-
tion of the cubes, the weight of the cubes equals one minus the
weight of the CNF formula, which is computed by a weighted
model counter.

3.4 Modification for Approximate SSAT
The proposed algorithm can be easily modified to solve ap-
proximate SSAT, where upper and lower bounds of the sat-
isfying probability of an SSAT formula are computed. Sup-
pose SolveRESSAT is forced to terminate before the selector
ψ becomes unsatisfiable. The weights of the collected SAT
and UNSAT cubes are still valid and can be aggregated by
ComputeWeight, and the resulted weights reflect the lower
and upper bounds of the satisfying probability, respectively.
The early termination can be triggered by imposing a runtime
limit for SolveRESSAT. Compared to previous DPLL-based
methods that branch on a single variable, the proposed al-
gorithm considers all randomly quantified variables together
and exploits the concept of SAT and UNSAT cubes over
the Boolean space spanned by randomly quantified variables,
making the intermediate collected SAT and UNSAT cubes
convey useful information about the upper and lower bounds
of the exact satisfying probability. As will be seen in our ex-
periments over formulas arising from VLSI circuit analysis,
the proposed algorithm is able to find tight bounds even with
a short time limit. Compared to the DPLL-based state-of-the-
art methods, which cannot be easily modified for approximate
SSAT, the proposed method enjoys the flexibility of solving
SSAT approximately or exactly, depending on the imposed
runtime constraint.

We note that the proposed algorithm is more efficient
in memory consumption than previous DPLL-based algo-
rithms. Prior DPLL-based algorithms mostly apply subprob-
lem memorization to avoid repeated computation on the same
subproblem. However, without special treatment, such mem-
orization may result in rapid growth in memory usage. On
the other hand, in the proposed algorithm, the numbers of
collected cubes are greatly reduced by the aforementioned
minterm generalization, which gives rise to the memory effi-
ciency. In our empirical evaluation, the proposed algorithm
consumed two orders of magnitude less memory than the
state-of-the-art DPLL-based algorithm.

The following example illustrates how SolveRESSAT
solves a random-exist quantified SSAT formula.

Example 2 Consider the random-exist quantified SSAT for-
mula Φ =

R0.5r1r2r3∃e1e2e3.φ, with φ consisting of clauses
C1 : (r1 ∨ r2 ∨ e1)

C2 : (r1 ∨ ¬r3 ∨ e2)

C3 : (r2 ∨ ¬r3 ∨ ¬e1 ∨ ¬e2)

C4 : (r3 ∨ e3)

C5 : (r3 ∨ ¬e3)

At the beginning, the selector ψ(r1, r2, r3) is initialized to
an empty set of clauses, and the sets C> and C⊥ for col-
lecting SAT and UNSAT cubes are empty. Suppose ψ first
selects the assignment τ0 = ¬r1¬r2¬r3. Since φ|τ0 is un-
satisfiable (due to the conflict between C4 and C5), the sub-
routine MinimalConflicting returns τ+0 = ¬r3, which is the
minimal conflicting assignment responsible for this conflict.
Note that this minimal conflicting assignment τ+0 reflects an
upper bound of 0.5 for the satisfying probability of Φ. The
selector ψ is then strengthened through conjunction with the
negation of τ+0 to block the searched subspace. Next, sup-
pose τ1 = ¬r1¬r2r3 is selected. Under τ1, formula φ|τ1
is unsatisfiable due to the conflict among clauses C1, C2,
and C3, and the minimal conflicting assignment τ+1 equals
τ1. After conjoining ψ with ¬τ+1 , suppose τ2 = ¬r1r2r3 is
chosen. Formula φ|τ2 is satisfiable through the assignment
µ0 = ¬e1e2¬e3. The subroutine MinimalSatisfying is in-
voked to generalize τ2 to τ+2 = r2r3, which reflects a lower
bound of 0.25 for the satisfying probability of Φ. Similarly,
the negation of τ+2 is conjoined with ψ. Next, let the assign-
ment chosen by ψ be τ3 = r1¬r2r3. Since φ|τ3 is satisfi-
able through the assignment µ1 = ¬e1¬e2¬e3, assignment
τ3 is generalized to τ+3 = r1r3 by MinimalSatisfying. After
conjoined with ¬τ+3 , formula ψ becomes unsatisfiable, which
indicates the Boolean space over {r1, r2, r3} has been ex-
plored exhaustively. At the end, we have C⊥ = {τ+0 , τ

+
1 } =

{¬r3,¬r1¬r2r3} and C> = {τ+2 , τ
+
3 } = {r2r3, r1r3}.

The subroutine ComputeWeight is finally invoked and returns
0.375 as the satisfying probability of Φ.

4 Experimental Results
Our solver, named reSSAT, was implemented in the C++
language. The experiments were conducted on a Linux ma-
chine with Intel Xeon 2.1 GHz CPU and 126 GB RAM.
We compared the proposed approach with the state-of-the-
art DPLL-based SSAT solver DC-SSAT. The SAT solver
Minisat-2.2 and model counter Cachet were used in
our program as underlying computational engines. (We tried
approximate model counter ApproxMC [Chakraborty et al.,
2013] and observed that ApproxMC outperformed Cachet
mainly on difficult instances while Cachet tended to per-
form better on other instances. As our benchmarks favored
Cachet, it was used in our experiments.) Three sets of for-
mulas, including random k-CNF, strategic companies, and
probabilistic equivalence checking formulas, were used to
evaluate our solver against DC-SSAT, abbreviated as Dc in
the sequel. A basic version of reSSAT without minterm gen-
eralization is denoted as reSSAT-b. A runtime limit of 1000
seconds was imposed on each formula. No memory limit was
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Figure 2: Results of selected random SSAT formulas.

imposed, but peak memory usage during execution was ex-
amined.

4.1 Random k-CNF Formulas
The random k-CNF formulas are generated using the
cnfgen command [Lauria, 2012]. Let k be the number of
literals in a clause, n be the number of variables, and m be
the number of clauses. A collection of 700 CNF formulas is
generated with the following parameter settings. Let k range
from 3 to 9, n equal 10, 20, 30, 40, 50, and the clauses-
to-variables ratio m

n range from k − 1 to k + 2. For each
combination of parameters, five formulas were generated. To
convert the generated CNF formulas into random-exist quan-
tified SSAT formulas, half of the variables in a CNF formula
are randomly quantified with probability 0.5, and the rest of
the variables are existentially quantified. (Note that a random-
exist SSAT formula with randomized quantifiers of arbitrary
probabilities can be converted to one with only randomized
quantifiers of probability 0.5 through rewriting using auxil-
iary variables [Lee and Jiang, 2014].) Out of the 700 gener-
ated formulas, we selected 300 formulas with their satisfying
probabilities evenly distributed in [0, 1] for evaluation.

The results are shown in Figure 2. Without minterm gen-
eralization, reSSAT-b only solved 229 formulas within the
runtime limit of 1000 seconds, while Dc solved 266 formu-
las. On the other hand, reSSAT solved all 300 formulas,
showing that the minterm-generalization technique is essen-
tial to the efficiency of reSSAT. Specifically, the number of
collected cubes with minterm generalization is on average 8
times smaller than that without the generalization, and the
runtime is reduced by an order of magnitude. Compared to
Dc, reSSAT achieved an average runtime improvement by 5
times, and a maximum peak memory reduction by 2 orders of
magnitude.

4.2 Planning Formulas
Many planning problems can be formulated in terms of
forall-exist quantified QBFs, i.e., QBFs of the form Φ =
∀X∃Y.φ(X,Y ). By changing universal quantifiers to ran-
domized ones, random-exist SSAT formulas can be obtained.
In essence, under the game interpretation of QBFs, the satis-
fying probability of these SSAT formulas corresponds to the
likelihood for the existential player to win the QBF game

Figure 3: Results of strategic companies SSAT formulas.

when the universal player plays her/his moves at random.
We take the strategic companies problem, which was defined
in [Cadoli et al., 1997], as an example to evaluate the perfor-
mance of SSAT algorithms on planning applications.

The strategic companies problem can be briefly described
as follows. Suppose a businessman owns n companies that
produce m kinds of products. A company is strategic if it is
in a minimal set of companies that together produce all kinds
of products. The information of whether a company is strate-
gic is valuable to the businessman. Suppose the businessman
encounters a crisis and considers to sell out some companies,
but hopes to keep producing every kind of products. As a re-
sult, he may prefer to sell out a non-strategic company. The
problem is more complicated by taking the controlling rela-
tions into account. If a company is controlled by other com-
panies, it means that the company can be sold out only if
some of its controlling companies is also sold out. The prob-
lem to decide whether a company is strategic or not can be en-
coded as forall-exist quantified QBFs [Faber and Ricca, 2005;
Leone et al., 2006].

We modify the QBFs of the strategic companies problem,
taken from QBFLIB [Giunchiglia et al., 2005], to their SSAT
variants by changing the universal quantifiers in the original
QBFs to randomized ones with probabilities 0.5. The sat-
isfying probability reflects the likelihood for a company to
be strategic. The QBFs we experimented with describe the
strategic companies problems under the following setting of
parameters: n equals 5, 10, 15, . . . , 75, m = 3n, and the
number of controlling relations equals 4, 9, 14, 19.

The results of the 60 formulas are plotted in Figure 3.
While reSSAT-b only solved 12 formulas, Dc solved 30
formulas. Enabling the minterm-generalization technique
makes reSSAT solve all 60 formulas. The results show that
the technique worked well not only on random formulas, but
also on structured instances from AI applications. Compared
to Dc, reSSAT achieved an average runtime improvement
by 2 orders of magnitude, and a maximum peak memory re-
duction by 2 orders of magnitude as well.

4.3 Probabilistic Equivalence Checking Formulas
Another SSAT application, formulated in [Lee and Jiang,
2014], is formal verification of probabilistic circuits. As
probabilistic errors are becoming more common in advanced
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Table 1: Results of solving SSAT formulas from probabilistic equivalence checking.

formula statistics reSSAT (TO=60s) reSSAT (TO=1000s) Dc (TO=1000s)
circuit #Var #Cla #Ran Ans. runtime (s) UB LB runtime (s) UB LB runtime (s) Prob.
c432 330 879 37 1.03E-02 TO 1.07E-02 4.30E-05 TO 1.05E-02 8.50E-05 TO TO
c499 217 522 42 1.56E-13 0.32 1.56E-13 1.56E-13 0.13 1.56E-13 1.56E-13 0.00 1.56E-13
c880 451 1167 62 4.18E-02 TO 9.78E-02 3.00E-06 TO 8.18E-02 3.00E-06 TO TO
c1355 771 2181 44 6.41E-02 TO 3.20E-01 0.00E+00 TO 3.08E-01 0.00E+00 TO TO
c1908 270 705 35 7.38E-04 TO 8.83E-04 4.00E-05 TO 7.38E-04 7.90E-05 210.86 7.38E-04
c3540 321 807 52 1.71E-03 TO 1.17E-02 5.03E-04 TO 1.17E-02 1.61E-03 217.42 1.71E-03
c5315 918 2190 188 4.64E-01 TO 6.28E-01 0.00E+00 TO 6.28E-01 0.00E+00 TO TO
c7552 648 1308 212 2.34E-01 TO 2.35E-01 7.32E-03 TO 2.35E-01 7.32E-03 TO TO

maximum memory usage (MB) 164 718 42466

nanometer technology, the probabilistic equivalence check-
ing (PEC) problem asks to compute the probability for a prob-
abilistic circuit to produce different outputs from its faultless
specification. PEC was encoded into a random-exist quanti-
fied SSAT formula in [Lee and Jiang, 2014].

The SSAT formulas for probabilistic equivalence checking
(PEC) are created as follows. The circuit with probabilistic
errors is generated by assigning some gates in the original
faultless circuit to be erroneous randomly. Two parameters
are specified to control the generation of probabilistic circuits.
The erroneous rate ε controls the probability of the happening
of an error at a logic gate, and the defective rate δ controls the
ratio of the number of erroneous gates to the total number of
gates in the whole circuit. In our experiments, we use circuits
from ISCAS benchmark suits and set ε = 0.125, δ = 0.01.

Table 1 shows the experimental results on PEC formulas.
Columns 2, 3, and 4 show the numbers of variables, clauses,
and randomly quantified variables in the formulas. Column 5
shows the exact satisfying probability of the formulas, com-
puted by the signal probability method based on binary deci-
sion diagram (BDD) [Lee and Jiang, 2014]. Since reSSAT
has the capability of solving approximate SSAT, we set a
relatively short timeout of 60 seconds to evaluate its ability
to derive upper and lower bounds for satisfying probability
under a strict time constraint. Columns 6, 7, and 8 (resp.
Columns 9, 10, and 11) show the runtime, upper bounds, and
lower bounds of reSSAT with the timeout set to 60 (resp.
1000) seconds. Columns 12 and 13 show the runtime and
satisfying probability of Dc with a 1000-second timeout.

While both methods failed to compute the exact answers
on most of the cases, reSSAT derived tight bounds on some
of the benchmarks. For example, for formulas c432 and
c7552, the upper bounds derived by reSSAT with a 60-
second timeout are very close to the exact satisfying prob-
abilities, while Dc could not finish the computation on these
two benchmarks even after 1000 seconds. On the other hand,
notice that the derived bounds were not refined much after 60
seconds. The reason for the bounds not getting tight might lie
in that in early search period, large cubes might have been
collected and blocked huge search space. In other words,
even if the runtime limit is increased, the additional small
cubes collected do not contribute to a large fraction of the es-
timated probability. However, such a phenomenon does not
hinder the application of reSSAT when the upper or lower
bound of satisfying probability converges rapidly. The inex-

act estimation can be valuable when the exact computation is
unavailable, such as c432 and c7552 in the experiment.

The above empirical results on the three benchmark fami-
lies suggested that
• reSSAT outperforms Dc in terms of both runtime and

memory consumption on random and strategic compa-
nies formulas, and
• reSSAT gives reasonable bounds on satisfying proba-

bility within 60 seconds, while Dc timed out on some of
the PEC formulas.

5 Conclusions
In this paper, we focused on solving random-exist quantified
SSAT formulas. In contrast to the previous DPLL-based al-
gorithms, we proposed a novel algorithm using SAT solver
and weighted model counter as underlying engines to im-
prove computational efficiency. Leveraging the great success
of modern SAT solving techniques, the proposed algorithm
outperforms the state-of-the-art method in the experiment on
random k-CNF and strategic companies formulas. Moreover,
unlike previous exact SSAT methods, the proposed algorithm
can be easily modified to solve approximate SSAT by deriv-
ing upper and lower bounds of satisfying probability. We
demonstrated the applicability of our SSAT solver to VLSI
circuit analysis. While the state-of-the-art solver fails to com-
pute the exact satisfying probability, the proposed method
succeeded in finding bounds of the formulas. In several cases,
the derived bounds are very close to, or even match the exact
satisfying probability. This approximation flexibility of our
method can be helpful when SSAT is applied to real-world
applications. For future work, we intend to extend the pro-
posed algorithm to arbitrary quantified SSAT formulas.
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extensible SAT-solver. In Proc. SAT, pages 502–518,
2003.
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