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Abstract

Constraint Games are a recent framework proposed
to model and solve static games where Constraint
Programming is used to express players prefer-
ences. In this paper, we rethink their solving tech-
nique in terms of constraint propagation by consid-
ering players preferences as global constraints. It
yields not only a more elegant but also a more effi-
cient framework. Our new complete solver is faster
than previous state-of-the-art and is able to find
all pure Nash equilibria for some problems with
200 players. We also show that performances can
greatly be improved for graphical games, allowing
some games with 2000 players to be solved.

1

Game theory [Fudenberg and Tirole, 1991] is a highly suc-
cessful paradigm for modeling interactions and decision in
presence of multiple agents. In the classical model [Von Neu-
mann and Morgenstern, 1944; Nash, 1951], all agents, called
players, play an action simultaneously and are given a reward,
or utility, which depends also on the actions of the other play-
ers. The decision problem consists in finding which action
each agent should play. Since each agent is able to control
his action, he would rather choose the one which gives him a
maximal reward knowing the actions taken by the other play-
ers. Whenever all players are unable to improve unilaterally
their reward by changing their own action, the situation is
called a Nash equilibrium, which is the best known solution
concept for this decision problem.

This model with actions and utility is classically repre-
sented by an utility matrix for each player. Unfortunately, the
size of these matrices grows exponentially with the number
of players, which makes the representation tractable only for
small games. This has motivated the introduction of com-
pact representations like Graphical Games [Kearns er al.,
2001], Boolean Games [Harrenstein et al., 2001], Action-
Graph Games [Jiang et al., 2011] or the more recent Con-
straint Games [Nguyen et al., 2013; Nguyen and Lallouet,
2014] where action space and utilities are described using
Constraint Programming. A related scheme is the one of
Asynchronous DCOP [Grinshpoun et al., 2013; Wahbi and
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Brown, 2016] in which all players share the same constraints
but with different costs.

In Constraint Games, user preferences are represented by
a Constraint Satisfaction Problem (CSP) or a Constraint Op-
timization Problem (COP) whose respective satisfaction and
maximization define preferred situations. Constraint Games
are able to model easily a wide variety of games, from clas-
sical games of the Gamut suite [Nudelman er al., 2004] to
games in more specialized fields like network or scheduling
games [Nguyen and Lallouet, 2014]. An algorithm called
Conga (and hereinafter called Conga 1.0) based on tree-
search is used to explore the space of joint players actions and
proposes two improvements over naive search. The first one
is a memoization of previously encountered best responses in
order to eliminate duplicate computations. The second one
is a lazy pruning of inconsistent solutions obtained by com-
paring the theoretical and actual counting of deviations in a
node’s subspace and backtracking when all deviations have
been evaluated. It improves over the previous state-of-the-art
solver Gambit [McKelvey et al., 2016]. However, although
effective and theoretically sound, this pruning only works
well in practice at the very last levels of the search tree (level
n or sometimes n — 1 if n is the number of variables), opening
the way to further improvements.

In this paper, we propose to consider the player’s prefer-
ence as a global constraint and we provide a complete un-
derstanding of its filtering. We prove first that the complete
filtering up to arc-consistency is intractable and we further
propose for it an approximation scheme. This new vision
no longer relies on an ad-hoc algorithm but instead allows
to fully reuse the framework of Constraint Programming. We
have implemented a new solver called Conga 2.0 to demon-
strate the efficiency of this improved filtering, showing a great
improvements over Conga on a selection of games.

In addition, the handling of graphical games in our new
framework is straightforward. By giving the dependency
graph, we are able to limit the scope of the global preference
constraints to the variables it actually depends on. It allows to
handle games with a high number of players very efficiently.
Since the global constraint is triggered by the player’s objec-
tive, the solver is also able to take advantage of some hidden
dynamic dependencies. It happens in particular in disjunc-
tive cases when we are in a situation where a subset of the
dependencies are enough to assign the objective.
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2 Background

For a family of sets £ = (E;);c; and a subset J C I of
indices, we denote by E|; = (E}),c the projection of E on
J and by E” the Cartesian product [] jes Ej-

2.1 Game Theory

In this paper, we are only interested in static games of com-
plete and perfect information.

Definition 1 (Game).
A game is a 3-tuple G = (P, A, u) where:

o P is a finite set of players.

o A = (A)icp where A; # 0 is the set of actions that
can be played by player i. We call strategy the choice
of an action by Player i and strategy profile a tuple s =
(8i)icp where s; € A;. The set of strategy profiles is
denoted by AP .

o u = (u;)iep where u; : AP — R is the utility function
of player 1.

We denote by s_; a strategy profile for all players but ¢,
and by (s;, s—;) = s the strategy profile obtained by concate-
nation of s; and s_;. It is implicitely assumed that all players
want to maximize their own utility. The standard represen-
tation of the utility function of a player is a n-dimensional
matrix representing the value associated to each strategy pro-
files of the game.

Example 1 (Wolf, Lamb and Cabbage Game (WLC)).

Three agents, Wolf (W), Lamb (L) and Cabbage (C) receive
an invitation for a party. Each of them has the choice to
come or not at this event. Each agent has his own prefer-
ences about meeting the others participants. Wolf would be
happy to see Lamb but is indifferent about Cabbage’s pres-
ence. Lamb would like to see Cabbage but only if Wolf is
not coming. And Cabbage is a plant and is indifferent to ev-
erything. This can be translated in numerical preferences as
depicted in Figure 1. The action of P coming to the party
corresponds to p and the reverse to p. For instance w, | and
c represent respectively the action of coming for Wolf, Lamb
and Cabbage. The complete representation of the game re-
quires 3 x 23 = 24 integers.

The basic solution concept for a static game is called Nash
equilibrium and corresponds to a state where each player has
no incentive to change his strategy assuming the other players

le | l,e | l,e| e
w 1 1 0 0 Wolf’s payoff
w |0 0 0 0
w,c| w,¢c| w,c| w,c
l 0 0 1 0 Lamb’s payoff
l 1 |1 Jo |o
w,l | wl| wl| @l
c 0 0 0 0 Cabbage’s payoff
C 0 0 0 0

Figure 1: WLC game in normal form
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do not change theirs. Note that various other solution con-
cepts have been proposed in the litterature, among them the
mixed Nash equilibrium [Nash, 1951] is one of the most pop-
ular. A best response for Player ¢ corresponds to the situation
where the player play his best option according to the others
players (who have already fixed their strategies).

Definition 2 (Best Response).
A strategy profile s is a best response for player i if and only
ifvs; € Ay, ui(s) > ui((s),8-4)).

Definition 3 (Pure Nash Equilibrium).
A strategy profile s is a Pure Nash Equilibrium (or PNE) if
and only if s is a best response for all players.

We call NE(G) the set of pure Nash equilibria of a game G.

Example 2 (Example 1 continued).

The WLC game has 3 PNE. The first one happens when all
players choose not to come to the party (wlc). The two others
happens when Wolf chooses to come and Lamb to skip (wlc

and wlc). In this case, Lamb is indifferent to the venue of
Cabbage.

2.2 Constraint Games

Constraint Programming is a way to naturally represent and
solve combinatorial problems. Let V be a set of variables
having D = (D,),ev as domains. A constraint ¢ = (W, T)
is defined over a subset W C V by a relation given by a
table T C DW. A Constraint Satisfaction Problem (CSP) is
atriple (V, D, C') where C is a set of constraints. Its solutions
sol(C) are the tuples which satisfy all the constraints, i.e.
sol(C) = {t € DV |Y(W,T) € C,tlw € T}. Preferred
solutions can be chosen by giving an optimization condition
min(z) or max(z) where z € V.

Constraint Games [Nguyen and Lallouet, 2014] are a way
to give games a compact representation by using Constraint
Programming to represent utility functions. In a Constraint
Game, the strategy of a player is represented by the joint val-
ues of the variables he owns, and utility by an optimization
condition.

Definition 4 (Constraint Game).

A Constraint Satisfaction Game (or CSG) is a 4-tuple
(P,V,D,G) where P is a finite set of players, V' is a finite
set of variables composed of a family of disjoint sets (V;);cp
for each player and a set Vi of existential variables disjoint
of all the players variables, D is defined as for CSP, and
G = (Gy)iep is a family of CSP on V representing the goal
of each player.

Note that [Nguyen and Lallouet, 2014] has introduced
satisfaction and optimization variants of Constraint Games.
A Constraint Optimization Game (COG) is a variant
(P,V,D, G, opt) where opt = (opt;);cp and Vi € P, opt; €
V is the variable whose value defines the utility function u; of
Player ¢. All players want to maximize their utility. Without
further information, we simply call COGs Constraint Games.
In addition, Constraint Games are able to represent easily
hard constraints that define situations which are globally pos-
sible or forbidden [Rosen, 1965]. PNE and best responses can
only be seeked in the satisfiable part of the hard constraints.
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It is easy to prove that they provide a large increase in expres-
sivity since it is impossible to find a matrix representation for
a game with hard constraints by giving unsatisfiable profiles
any numerical value for utility. However, they also change
the set of equilibria: some of them may be forbidden by the
hard constraints and new ones may appear if the best response
that would have occured without the hard constraints is actu-
ally unsatisfiable. In this paper, we will only consider games
without hard constraints.

A variable = € V; is said to be controlled by player 7. The
meaning of a Constraint Game (P, V, D, G, opt) is a game
(P, A,u) in which the set of actions of a player 7 is de-
fined by the different assignments of his controlled variables:
A; = DVi. In full generality, the handling of existential vari-
ables is related to a precise definition with the ceteris paribus
principle [Bienvenu et al., 2010]. For the purpose of this pa-
per, we consider that they are all functionnally determined by
the assignment of controlled variables and thus any problem
state is fully defined by such an assignment (in particular, the
variables opt; are assigned). A more general treatment of this
problem is left for future work. We denote by Vo = V\Vg
the set of controlled variables and by A_; = DV\V: the set
of states of all players but .. When a profile s satisfy the goal
G, of Player i, the utility u; of this player is given by the
value of the variable to be maximized: w;(s) = opt;. If a
profile s does not satisfy the goal G, then this profile is never
preferred by Player 7. In this case, it is equivalent to consider
that its associated utility is assigned to u;(s) = —oo.

Example 3 (Example 1 continued).

We can express the WLC game by a Constraint Satisfaction
Game. First we can remark that each player has only two
strategies and dichotomic preferences, thus making this prob-
lem expressible with boolean games [Harrenstein et al., 2001 ;
Bonzon et al., 2006]. We name xvy , x 1, and x¢ the respective
optimization variables of Wolf, Lamb and Cabbage. Then
we can state using boolean algebra notations: T wl,
zr = wlec+ wland xc = 0.

In a Constraint Game, the notion of best response and PNE
are the same as in matrix games. We recall from [Nguyen and
Lallouet, 2014] that determining whether a game has a PNE
in a Constraint Satisfaction Game is X1’ -complete.

2.3 Game Solving

Not many algorithms have been proposed to find PNE. The
Gambit solver [McKelvey et al., 2016] proposes an enumer-
ation procedure for finding PNE called enumpure. It simply
checks all strategy profiles for being a PNE as shown in pro-
cedure Enum of Algorithm 2.1. The Enum procedure calls for
each strategy profile a function isNash which checks for each
player with the function Deviation whether the current strat-
egy is a best response or not for this player. The main interest
of this algorithm is that it provides a complete search which
outputs all equilibria. This naive algorithm has not been im-
proved until recently by the Conga 1.0 algorithm [Nguyen
and Lallouet, 2014] for Constraint Games. Conga 1.0 is a
tree-search algorithm which memorizes the best responses al-
ready found and uses a counter for pruning some actions that
are never best responses.
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Algorithm 2.1 Enum

: procedure ENUM(game: G = (P, A, u))
for all s € A” do

if isNash(s) then

print(s)

: function ISNASH(strategy profile: s): boolean
for alli € P do

if Deviation(s, ¢) then return false
return true
: function DEVIATION(strategy profile: s, player: i): boolean

VR AN AR

10: for all s, € A;, s; # s; do
11: if u;(s;,s;) > u;(s) then return true
12: return false

3 Preferences as Global Constraints

Although more efficient than the Enum algorithm used in
Gambit, the Conga 1.0 algorithm can be still improved by
using constraint propagation instead of an ad-hoc pruning
algorithm. We propose a new solver for Constraint Games
also based on a tree search where a player can own multiple
variables which are instanciated separately by a regular Con-
straint Programming solver. Note that there is a main search
tree which defines the region of the search space where an
equilibrium is seeked. Like in Constraint Programming, a
search state S'is defined by giving each variable a current do-
main: S = (S;)zev with S, C D,. We use the notations
S; = S|y, and S_; = S|y, \v;. Search consists in a series of
domain reductions with an alternation of deterministic con-
sistency steps and non-deterministic branching steps [Rossi
et al., 2006].

We propose to implement as constraints the preferences
of the players. For this, it is useful to consider how pref-
erences are defined from the goal of the players. Prefer-
ences have been widely studied in the litterature from the
point of view of knowledge representation, especially using
logic [von Wright, 1963; Bienvenu et al., 2010]. Gener-
ally, it is widely accepted that a preference is a preorder >
on a set of outcomes 2. It does not have to be total. We
have s »= s’ whenever s is preferred to s’. A utility func-
tion {2 — R as defined in games defines a natural preference
where s = s < u(s) > u(s’). But games also add a no-
tion of controllability: an outcome can only be compared to a
controllable one, thus making the preorder partial.

For a Constraint Game (P, V, D, G, opt), the set of out-
comes is defined by the search space DV, and the preference
associated to a player is induced by the utility given by the
value of his optimization variable. Since Player ¢ only con-
trols the variables V;, we can fully describe his preference
relation by giving the preferred outcomes for each uncon-
trollable situation defined by the other players, i.e. the set
of best responses in A; of Player i associated to each par-
tial state of A_;. This relation has been introduced in [Gott-
lob et al., 2005] in the context of graphical games under the
name of Nash constraint. The Nash constraint N; of Player
i is defined by N; = (Vo {(ss,5-i) | s—s € A_; AVSs, €
A u((siys—i)) > u((s},s—i))}). Theorem 4.3 of [Got-
tlob et al., 2005] adapted to Constraint Games states that
NE = sol(|J{N; | i € P}).
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Figure 2: Nash constraints for Lamb in extension

In this paper, we propose to implement players preferences
using global constraints and study filtering algorithms for
them. The Nash constraint N; contains at least one entry for
each partial profile in A_;. This property makes it unsuitable
for filtering values from the other players’ variables. More-
over, its representation in extension is exponential.

Example 4 (Example 1 continued).

The Nash constraint for Lamb is defined in Figure 2(a). Note
that if Wolf and Cabbage are not coming, Lamb is indifferent
and thus has both coming and not coming as best responses.

Since the Nash constraints N; contains all best responses
of Player i for all the uncontrollable situations defined by the
other players joint strategies, any strategy for ¢ that does not
belong to the projection NV, |y, is called a never best response.
We first state an intractability result:

Proposition 1. In a Constraint Satisfaction Game, deciding
whether an assignment nbr € A; for Player i is a never best
response is 111 -complete.

Proof. Membership is immediate.

For hardness, we reduce a QCSP [Bordeaux and Mon-
froy, 2002] @ = VX3YC to a 2-players O-sum CSG G =
({1,2},vi = X U {x,a}, Vo = Y U {y,b},G = (a =
b)V(CA(Y # nbr)A(x = y)) where Y # nbr stands for the
assignment of Y is different of the tuple nbr and =, y, a, b are
new variables whose domain contains at least two elements.
Since the game is 0-sum, we only need to specify the goal G
for Player 1 and take Player 2’s goal as the negation of G.

If Q is valid, then for all sX € DX, thereisa s¥ € DY
such that C' is true. Let v, and v, be the respective values of
x and a set by Player 1. If s¥ = nbr, then Player 2 assigns
b # v,. If s¥ # nbr, then Player 2 assigns y = v,. Hence
nbr is a never best response.

Conversely, if Q is not valid, then it does exist a tuple s¥ €
DX such that forall s¥ € DY, C is false. If s¥ = nbr, then
Player 2 assigns b = v,. If s¥ # nbr, then Player 2 assigns
b # v,. Hence nbr is a best response. O

Arc-consistency filtering amounts to removing all values
involved only in tuples which are never best responses. From
Proposition 1 and the exponential representation argument,
we infer that filtering the Nash constraint to arc-consistency
is intractable even for dichotomic preferences. Thus we in-
troduce three approximations in order to keep the problem
tractable. We recall that a propagator for a constraint is a
function that is i) correct, ii) contracting, iii) monotonic, and
iv) singleton complete [Apt, 1999]. The respect of these prop-
erties ensures the correct behavior of the propagator when
placed in the solver.
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The first approximation consists in using only the ob-
jective value. We call extended Nash Constraint eN; =
(Ve U {opti}, {(s,0;) | s € N;}) the Nash constraint N;
augmented with the value of the player’s objective (see Fig-
ure 2(b)). Instead of removing exact inconsistent values, we
will remove inconsistent objective values. The actual prun-
ing on decision variables is done by back-propagation of
arc-consistency through the constraints defining the objec-
tive. It means that we can approximate eN; by ooN; (ob-
jective optimal Nash constraint) defined by ooN; = (Vo U
{opt:},{(s,0:) | 3(s',0;) € eN; Ao; € eNi|opt,}). How-
ever, only looking at the objective value is not enough. In
different regions of the seach space, two tuples s and s’ may
have the same objective value o; for Player ¢ despite s is a
not a best response for s_; and s’ is one for s ,» hence the
approximation.

Still, computing the exact objective values can be dif-
ficult because the subspace generated by the variables V;
of Player ¢« may be huge. In our second approximation,
we replace the set of exact objective values by the interval
where they lie. This is defined by the constraint moolN; =
(Ve U {opt;},{(s,0;) | 3(s',0,) € eNy,0; > 0;}). Since
sol(eN;) C sol(ooN;) C sol(mooNj;), any filtering of
mooNN; is correct with respect to eNV;. Note that we only need
to update the lower bound because we have a maximization
problem.

Since consistent objective value correspond to one best re-
sponse, the minimum bound of the objective should be set
to the maximum value of the minimum bound of the best re-
sponses on the current search state S:

Mm(S) = max jnelgi(s 5—i)lopt

(1)

Thus we need to find (or approximate) the maximin of the
objective on the current subspace. The exact computation of
this maximin on a search state .S requires a traversal of the
subspace S_;, and for each tuple, a test for deviation in A;.
Unfortunately, a traversal of S_; is too costly. The third ap-
proximation consists in using arc-consistency to reject impos-
sible objective values.

To implement this filtering, we use an auxiliary solver with
Branch & Bound on a tree-search limited to Player ¢’s vari-
ables to maximize the minimum value of the objective on the
subspace at a node n of the main search tree. In order to
compute deviations for Player ¢, all variables of V; are reset
to their original domain A;, including those which were as-
signed before n. The domain of the variables of the other
players are given by S_; (some are already assigned at node
n and some are not). Whenever the minimum bound of the
objective is pruned to a value b, a new constraint opt; > b
is posted for the rest of the search. For a search state S,
we replace in formula (1) the traversal of the search space
S_; by an arc-consistency check. This amounts to compute
Mm ac(S), the best estimation arc-consistency can provide
for the maximum value of the minimum bound of the objec-
tive: Mmac(S) = maxs, e, b(AC((s4,5-:))) where AC
denotes arc-consistency applied to a search state. Formally,
the operator BB; : DV — DV implemented by the global
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constraint is defined by:

Sopt,- N [MmAC(S)"ub(SOPti)}
S,V # opt;

Sopt,-

x

BB;(S) = { _
When all variables are assigned, computing deviations
amounts to checking whether a complete assignment is a best
response for Player <.

Proposition 2. BB is a propagator for eN;.

Proof. Let S and S’ be two search states. First, because AC
is correct, we have Mmac(S) < Mm(S). Then, if some
value is pruned by Mm 4¢, then it has to be pruned also by
Mm.

e correctness: S N NE C BB(S). Take s € S N NE
and suppose s ¢ BB(S). Let s|opt, = 0; and let a; =
Mmac(S). Since s ¢ BB(S), we have 0; < ;. Then
there exists s, € A; such that (s}, s_;)|opt, = 0; > 0;.
Hence we have 0; < a; < o'iand (s}, s_;) is a deviation
for s and s ¢ NE, contradiction.

contractness: BB(S) C S. Since the propagator only
remove values, contractness is always true.

monotony: S C S’ — BB(S) C BB(S’). Take s €
BB(S), we have s € S since BB is contracting and
s € S’ by definition. Let s|opt, = 05, &y = Mmac(S)
and 3; = Mmac(S’). Since s € BB(S), we have
a; < 0;. Since AC is monotonic, we have 3; < «;.
Thus 8; < o; and s € BB(S").

e singleton completeness: ensured by construction.

4 Experiments

We have implemented a new solver for Constraint Games on
top of the constraint solver Choco v4 [Prud’homme et al.,
2017]. This new solver is composed of an interface to post
goals for the different players and the implicit post of the new
global constraints as defined in Section 3. An important as-
pect is that it does not require a modification of the classi-
cal Constraint Programming framework (search and consis-
tency).

The scope of the preference constraint for Player ¢ is the
set of all controlled variables V- plus Player ¢’s optimization
variable opt;. However, the propagator is called whenever the
objective of the player has been updated. Upon the call, it re-
vises opt; by launching a new search tree in a distinct solver
only on the variables of V;, having copied the current state
S_; of all the other players’ variables. During this search,
Branch & Bound is applied to the lower bound of the objec-
tive and the approximation of its maximin value on the cur-
rent subspace S_; is returned. For all experiments, we have
applied a lexicographic heuristics on the choice of variables
and a min value heuristics on the choice of the values.

We have performed experiments on classical games of
the Gamut suite [Nudelman et al., 2004]: Minimum Effort
Game (MEG), Travelers Dilemma (TD), Dispersion Game
(DG), Collaboration Game (CG), ArmRaces (AR), ElFarol
Bar Game (EFBG) [Arthur, 1994] and Colonel Blotto (CB)
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Game | Param. #PNE enum | Congal | Conga?2
7.7 6 30.60 10.63 0.10

MEG | 8.8 7 - 169.92 0.13
70.70 70 - - 480.08

6.6 1 5.95 2.80 0.06

TD 7.7 1 105.13 39.80 0.07
300.300 | 1 - - 514.73

6.6 720 2.46 1.53 2.02

DG 7.7 5040 43.36 21.86 35.42
8.8 40320 - 443.11 -

7.7 7 32.78 11.92 2.08

CG 8.8 8 - 225.31 27.85
9.9 9 - - 469.15

2.250 1 173.68 0.64 1.51

AR 2.2000 1 - 457.42 567.15
2.2500 1 - 596.30 -

16.2 12870 | 116.88 115.44 87.87

EFBG | 17.2 24310 | 256.77 249.04 188.80
18.2 48620 | 549.69 539.73 414.38

2.3.32 0 474.86 450.24 54.21

2.3.55 0 - - 564.96

CB 2.4.13 0 388.37 329.25 19.79
2.4.20 0 - - 244.75

2.6.6 0 278.57 240.43 16.89

2.6.10 0 - - 599.01

Table 1: Runtime of the different methods on Gamut games

[Roberson, 2006]. For space reasons, we invite the reader
to refer to the original papers to get a full description of the
games. They represent a wide range of games, with many,
few or no equilibria. In all games, the parameters are given
by two numbers: the number of players and the number of ac-
tions. For example, "MEG 5.5 denotes the Minimum Effort
Game with 5 players, each one having 5 actions. One excep-
tion is the Colonel Blotto game for which the second number
is the number of battlefields and the last one the number of
troops each player can deploy.

We have compared our new approach (called Conga 2)
to the complete enumeration of the search space (hereafter
called enum) as implemented in the Gambit solver [McKelvey
et al., 2016] and to a custom reimplementation of the Conga
algorithm (hereafter called Conga I) as described in [Nguyen
and Lallouet, 2014]. The results are presented in Table 1. All
times are given in seconds and we applied a maximum run-
time of 10 minutes to get the complete set of PNE for each
problem. All instances for which the given solver has reached
a timeout are indicated by ”—". Experiments have been run on
a Intel Xeon E5-1660 with 32 GB of RAM, Java 8 and Win-
dows 7.

We can see that Conga 2.0 is most of the time better than
Conga 1.0, reaching up to three orders of magnitude on MEG.
Exceptions are the Dispersion Game and Arm Race for which
there is little propagation. We have presented the results in
order to show the limits of each technique when staying under
the time limit of 10 minutes.
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S Graphical Aspects

When the utility of a player only depends on a subset of
the other players, the game is called graphical [Kearns et
al., 2001]. More formally, for a profile s € AP and two
players ¢ and j, we say that u;(s) is independent of j if
Vs € Aj,ui(s) = ui(s—j,;). 1If this is not true, then
i depends on j for s, denotecf by ¢ <5 j. We denote by
dep;(s) = {j | i <s j} the set of dependencies of Player ¢ for
the state s. For £ C A", we note dep;(E) = |, depi(s).
Finally, Player ¢ statically depends on Player j, denoted by
i<jifj € dep;(A7). A minimal dependency which occurs
only in a strict subspace of A” is called dynamic.

Example 5 (Example 1 continued).

Since Wolf only depends on Lamb and Lamb on Wolf and
Cabbage, the WLC game is actually a graphical game, as de-
picted in Figure 3. By using this dependency scheme, we are
able to reduce the size of the matrices to one 1 X 2, one 2 x 2
and one 2 X 2 X 2, for a total amount of 14 integers. Inter-
estingly, the WLC game owns a dynamic dependency: when
Wolf is coming, Lamb does not depend on Cabbage anymore.
It is reflected in the Lamb formula x;, = wlc + wl for which
l is a best response to w whatever the value of c.

The main purpose of graphical games is to save space in the
matrix representation, and also to speed-up the computation
of equilibria [Vickrey and Koller, 2002; Ortiz and Kearns,
2002]. We can build the oriented graph of dependencies be-
tween player D = (P, {(4,7) | ¢ <4}). If this graph is not a
clique, then the game is graphical. In this case, it is possible
to limit the scope of each global constraint to its associated
player and his set of dependencies. It ensures an increased
performance in the checking of deviations without relying on
a specialized algorithm. When checking for deviations, only
the state of the dependent variables is injected in the second
solver. In addition, because our global constraint is triggered
on updates of the objective, it is able to detect on-the-fly dy-
namic dependencies. Note that this kind of dependencies may
also occur in non-graphical games.

In our implementation, we provide the dependency graph
as a part of the model. We have performed experiments
on classical graphical games: Public Good Game (PGG),
Threshold Game of Complement (TGC) [Jackson, 2008] and
Road Game (RG) [Vickrey and Koller, 2002]. All games have
a fixed number of strategies, which is 2 for PGG and TGC,
and 4 for RG. Each model has been run on different topolo-
gies with different node degrees. In the circle topology (C),
each node is of degree 2 and the only parameter is the number
of players. For the tree topology (T), T 21.4.3 means that the
game has 21 players connected by a tree of maximal degree 3
on 4 levels. The last topology is the complete bipartite graph
(B) whose parameter is the number of players. The results
are shown in Table 2, also with a timeout of 10 minutes. In
all cases but one, adding the graphical information is highly
beneficial. It demonstrate the efficiency of the approach even

Figure 3: Dependency graph of the WLC game.
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Game | Topology #PNE enum | Congal | Conga?2
C.30 4610 347.60 332.02 15.21
C.40 76725 - - 330.50
T.21.4.3 0 522.65 339.56 2.51
T.91.9.3 512 - - 319.20
PGG | B.22 2 73.08 9.17 0.25
B.27 2 - 54.16 0.33
B.250 2 - — 485.85
C.150 2 460.45 311.54 1.69
C.170 2 470.89 2.21
C.2000 2 - - 479.91
T.57.7.3 2 538.98 80.82 1.04
TGC | T.1555.7.5 | 2 - - 182.89
B.22 2 131.68 15.48 2.31
B.27 2 - 91.50 10.23
B.33 2 - - 96.97
C.10 1119 16.20 10.92 3.45
C.13 9230 167.16 142.43 97.95
C.16 76004 - - 519.14
RG T.31.5.3 244 162.42 50.18 9.49
T.57.7.3 2174 - - 216.60
B.11 96 16.19 8.90 10.11
B.12 3728 140.54 105.18 63.74
B.15 384 - - 266.48

Table 2: Runtime of graphical games on different topologies

for graphs of relative high degrees.

6 Conclusion

In this paper, we have proposed a more elegant and effi-
cient vision of Constraint Games. We have fully modeled the
potential constraint pruning available in Game Theory, and
proved its intractability. We have proposed an efficient filter-
ing algorithm in the general and graphical cases and demon-
strated experimentally its efficiency over the state-of-the-art
game solver Conga 1.0 [Nguyen and Lallouet, 2014]. How-
ever, the main interest of this new approach is to bring game
theory closer to the elegant framework of Constraint Pro-
gramming by viewing agent preferences as constraints.

So far, we limited ourselves to the design of a complete
solver because only this type of solver is able to be used as
a basis for computing more specialized Nash equilibria, like
those optimizing a Social Welfare function or Pareto efficient.
Also completeness is required to compute Price of Anarchy
and Price of Stability. We did not include theses aspects for
lack of space. Another open question is the extension of our
filtering to games with hard constraints. As is, our filtering
is incorrect in presence of hard constraints because the ex-
pected deviation may not be satisfiable. As a consequence,
the solver becomes incomplete. In future work, we will also
be interested in the computation of one equilibrium, empha-
sizing the role of a good heuristics and opening comparisons
with best response dynamics [Ceppi ef al., 2010].
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