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Abstract
CP solvers predominantly use arc consistency (AC)
as the default propagation method. Many stronger
consistencies, such as triangle consistencies (e.g.
RPC and maxRPC) exist, but their use is limited
despite results showing that they outperform AC on
many problems. This is due to the intricacies in-
volved in incorporating them into solvers. On the
other hand, singleton consistencies such as SAC
can be easily crafted into solvers but they are too
expensive. We seek a balance between the effi-
ciency of triangle consistencies and the ease of im-
plementation of singleton ones. Using the recently
proposed variant of SAC called Neighborhood SAC
as basis, we propose a family of weaker singleton
consistencies. We study them theoretically, com-
paring their pruning power to existing consisten-
cies. We make a detailed experimental study us-
ing a very simple algorithm for their implementa-
tion. Results demonstrate that they outperform the
existing propagation techniques, often by orders of
magnitude, on a wide range of problems.

1 Introduction
Recent works on local consistencies stronger than arc con-
sistency (AC) have shown that they can quite often outper-
form it when used inside search. Two classes of strong local
consistencies for binary constraints have received the most
attention. The first class, inspired by path consistency, in-
cludes triangle-based consistencies like restricted path con-
sistency (RPC) [Berlandier, 1995], path inverse consistency
(PIC) [Freuder and Elfe, 1996], and max restricted path con-
sistency (maxRPC) [Debruyne and Bessiere, 1997]. The
other class is that of singleton consistencies, with single-
ton arc consistency (SAC) being the prime example [De-
bruyne and Bessiere, 2001]. Recently, a variant of SAC called
neighborhood SAC (NSAC) was proposed [Wallace, 2015;
2016a]. The difference between NSAC and SAC is that at
each singleton check, i.e. temporary assignment of a variable
x, NSAC restricts the application of AC to the neighborhood
of x, whereas SAC applies AC to the whole problem.

Experiments demostrate that triangle-based methods,
specifically RPC and maxRPC, are quite competitive to AC

when maintained, and very often outperform it [Vion and De-
bruyne, 2009; Balafoutis et al., 2011; Stergiou, 2015]. On
the other hand, the full application of SAC throughout search
is way too expensive despite recent developments in SAC al-
gorithms. Hence only its selective application is a viable op-
tion, and only for specific problems [Bessiere et al., 2011;
Balafrej et al., 2014]. Overall, it seems that triangle-based
consistencies are a much better option than singleton ones
as alternatives for AC. Some evidence about this can also be
found in [Wallace, 2016b]. However, a significant advantage
that singleton consistencies have, is that they can be quite eas-
ily integrated in CP solvers.

In this paper we seek a balance between the efficiency of
triangle-based consistencies and the ease of implementation
of singleton ones. To achieve this we study a number of new
singleton consistencies that are based on NSAC and follow
the reasoning behind either RPC or maxRPC. These consis-
tencies are much cheaper than SAC while at the same time
being very easy to implement.

We begin by considering singleton consistencies inspired
by maxRPC. We first show that NSAC achieves a level of
local consistency that is strictly stronger than that achieved
by maxRPC. Then we consider a weaker version of NSAC,
called NS1pAC, that only applies one pass of AC in the neigh-
borhood of the considered variable during a singleton check.
We show that this property is incomparable to maxRPC.
However, if we simply insist that the constraints involving
the considered variable are examined first during the single
AC pass, then NS1pAC is strictly stronger than maxRPC, and
interestingly it can be applied with the same asymptotic cost.

Then we turn our attention to singleton consistencies in-
spired by RPC. During a singleton check these consistencies
are enforced by first applying AC on the constraints involving
the considered variable x. Then, following the reasoning of
RPC, the domain sizes of the variables in the neighborhood of
x are inspected. If at least one of these variables has a single-
ton domain then AC is applied, either in the entire neighbor-
hood of x or in a sub-graph of the neighborhood, depending
of the particular method. If there is no singleton domain in
the neighborhood of x then nothing is done. Results from a
theoretical analysis of these RPC-inspired methods show that
their pruning capabilities lay between RPC and NSAC.

Finally, we make an experimental evaluation of all the con-
sidered methods. The results outline our most important con-
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tribution: Singleton neighborhood consistencies are not only
very easy to implement, but also significantly outperform all
of the competitive existing methods (AC, RPC, maxRPC) on
numerous problems, and quite often by many orders of mag-
nitude, while being less frequently outperformed by large
margins. This is the first time where the practical value of
fully maintaining singleton consistencies during search is de-
mostrated on a wide range of problems.

2 Background
A binary Constraint Satisfaction Problem (CSP) P is defined
as a triplet (X ,D, C) where: X = {x1, . . . , xn} is a set of
n variables, D = {D(x1), . . . , D(xn)} is a set of finite do-
mains, one for each variable, with maximum cardinality d,
C = {c1, . . . , ce} is a set of e constraints. A binary con-
straint cij involves variables xi and xj and specifies the al-
lowed combinations of values for the two variables.

A binary CSP P is typically depicted as graph G where
variables correspond to nodes and constraints to edges. A
variable xj is a neighbor of a variable xi iff cij ∈ C. The
neighborhood N(xi) of a variable xi is the subgraph of G
that includes xi, all neighbors of xi, any constraint between
xi and one of its neighbors, and any constraint between two
neighbors of xi.

A value ai ∈ D(xi) is arc consistent (AC) iff for every
constraint cij there exists a value aj ∈ D(xj) s.t. the pair of
values (ai, aj) satisfies cij . In this case aj is called a support
of ai. A variable is AC iff all its values are AC. A problem is
AC iff there is no empty domain in D and all the variables in
X are AC.

A number of weaker variants of AC have been proposed
and were quite often used in the past. One such variant is 1-
pass AC (aka full look-ahead when used inside search). This
method considers each pair of variables only once and there-
fore removes arc inconsistent values that can be detected by
making only one pass through the constraints of the problem.

Stronger methods based on AC, such as singleton AC, have
also been considered. A value ai ∈ D(xi) is singleton AC
(SAC) iff after restricting D(xi) to ai and applying AC to P ,
there is no domain wipeout (DWO) [Debruyne and Bessiere,
2001]. A problem is SAC iff all values in all domains are
SAC. Neighborhood SAC (NSAC) is a variant of SAC which,
after restricting D(xi) to ai, applies AC to N(xi).

Another widely known local consistency is path consis-
tency. A pair of values (ai, aj), with ai ∈ D(xi) and
aj ∈ D(xj), is path consistent (PC) iff for any third vari-
able xk there exists a value ak ∈ D(xk) s.t. ak is a support of
both ai and aj . In this case aj is a PC-support of ai in D(xj)
and ak is a PC-witness for the pair (ai, aj) in D(xk).

If AC, or (N)SAC, is enforced on a problem then single
inconsistent values can be identified and removed from the
corresponding domains. These are examples of domain fil-
tering local consistencies. In contrast, if PC is enforced then
pairs of inconsistent values can be identified. To store the de-
rived knowledge, new binary constraints must be introduced
or existing ones must be modified, but this can be tricky and
non-intuitive. Hence, maxRPC, RPC and other domain filter-
ing variants of PC have been proposed.

A value ai ∈ D(xi) is restricted path consistent (RPC)
iff it is AC and for each constraint cij s.t. ai has a single
support aj ∈ D(xj), the pair of values (ai, aj) is PC. A value
ai ∈ D(xi) is max restricted path consistent (maxRPC) iff it
is AC and for each constraint cij there exists a support aj for
ai in D(xj) s.t. the pair of values (ai, aj) is PC.

It has been shown that a weaker variant of maxRPC (resp.
RPC), called lmaxRPC (resp. lRPC), is more cost effective in
practice [Vion and Debruyne, 2009; Balafoutis et al., 2011;
Stergiou, 2015]. This method enforces a restriction on how
the deletion of a value that is not maxRPC (resp. RPC) is
propagated by only checking for PC-support loss after a dele-
tion and avoiding to check for PC-witness loss.

Following [Debruyne and Bessiere, 2001], a consistency
property A is stronger than B iff in any problem in which A
holds then B holds, and strictly stronger iff there is at least
one problem in which B holds but A does not. A local consis-
tency property A is incomparable with B iff A is not stronger
than B nor vice versa.

3 NSAC and maxRPC
In this section we study the relationship between NSAC and
maxRPC. Let us first define a weaker variant of NSAC, which
is based on 1-pass AC.

Definition 1 A value ai ∈ D(xi) is neighborhood single-
ton 1-pass arc consistent (NS1pAC) iff, given an order of the
variables in N(xi), after restricting D(xi) to ai and applying
1-pass AC to N(xi) according to the order, there is no domain
wipeout (DWO). A problem is NS1pAC iff all values in all
domains are NS1pAC.

Given that the only difference between NSAC and
NS1pAC is that the former applies full AC in the neigh-
borhood of the considered variable during a singleton check
while the latter applies AC in one pass, it is obvious that
NSAC is strictly stronger than NS1pAC. Importantly, the
amount of pruning achieved by 1-pass AC depends on the
order in which variables are considered. Inadvertently, this
affects the pruning strength of NS1pAC.

We show that in the general case, because of this effect that
the ordering has, NS1pAC is incomparable to maxRPC. We
assume that the algorithm for 1-pass AC visits the variables
one by one, and for each visited variable x it removes from the
domain of each other variable any value that has no support
in D(x).

x1

x2

x3

x4 x5

0 0
0 1
1 1

c12

0 0
0 1
1 2

c13 c14 c15

0 0
1 1
1 2

c23

0 1
1 0
1 2

c24 c25

0 2
1 0
1 1
2 2

c34 c35 c45

Figure 1: A problem that is maxRPC but not NS1pAC.

Proposition 1 NS1pAC is incomparable to maxRPC.
Proof: For a problem that is maxRPC but not NS1pAC,

consider Figure 1. The domains of the variables are:
D(x1) = D(x2) = {0, 1}, D(x3) = D(x4) = D(x5) =
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{0, 1, 2}. The tables show the allowed pairs of values for the
constraints. Value 0 of x1 is maxRPC because we can find a
PC-support in each of the other variables. Now assume that
NS1pAC assigns 0 to x1 and then applies 1-pass AC consid-
ering the variables in the order x1, x5, x4, x3, x2. This will
result in a DWO for x2. Hence, value 0 of x1 is not NS1pAC.

For a problem that is NS1pAC but not maxRPC, consider
Figure 2. Assume that D(x1) = {0, 1}, D(x2) = D(x3) =
D(x4) = {0, 1, 2}. Value 0 of x1 is not maxRPC because
it has no PC-support in any of the other variables. However,
if we temporarily assign 0 to x1 and apply 1-pass AC in the
order x2, x3, x4, x1, then no pruning will occur until x1 is vis-
ited, in which case value 2 will be deleted from the domains
of x2, x3, x4. But these deletions will not be propagated,
since no constraint will be re-examined. Hence there will be
no DWO meaning that 0 is NS1pAC.

x1

x2

x3

x4

0 0
0 1
1 2

c12 c13 c14

0 2
1 2
2 0
2 1

c23 c24 c34

Figure 2: A problem that is NS1pAC but not maxRPC.

It is easy to see that if lmaxRPC is used in the second part
of the proof instead of maxRPC, still value 0 of x1 will be
deleted. This means that NS1pAC is not only incomparable
to maxRPC, but also to lmaxRPC.

But under a simple condition which partially specifies the
order in which variables are examined when 1-pass AC is en-
forced during a singleton check, NS1pAC is strictly stronger
than maxRPC.

Condition FC Every time a singleton check is performed on
a value ai ∈ D(xi), all constraints involving xi are first
processed, and any value in a domain D(xj) that is not
supported by ai is pruned. Then all other variables in
N(xi) are processed.

Given that at a singleton check value ai is (temporarily)
assigned to xi, the above condition simply specifies that the
algorithm used for 1-pass AC first performs a type of forward
checking between ai and all variables constrained with xi.
Then 1-pass AC is applied on all other constraints.

Proposition 2 Under Condition FC, NS1pAC is strictly
stronger than maxRPC.

Proof: Assume that a value ai ∈ D(xi) is not maxRPC.
This means that it has no PC-support on some variable xj .
Since Condition FC is applied, after ai is assigned to xi, any
value that is not a support for ai will be deleted from the
domains of all of xi’s neighbors, including xj . Now take
some value bj ∈ D(xj) that supports ai. Since bj is not a
PC-support for ai, there exists a variable xk in whose domain
no value is a support for both ai and bj . Since, after Condition
FC, D(xk) only contains values that support ai and none of
them supports bj , when 1-pass AC examines xk it will delete
bj . Using the same reasoning, it will also delete any other
value in D(xj). Hence, we will have a DWO, meaning that

ai is not NS1pAC. For strictness consider again the first part
of the proof of Proposition 1.

In the following when referring to NS1pAC we will mean
the version of NS1pAC which applies Condition FC. It is now
trivial to prove that NSAC is strictly stronger than maxRPC.

Corollary 1 NSAC is strictly stronger than maxRPC.
Proof: To check if a value ai ∈ D(xi) is NSAC, AC

must be applied after the assignment of ai to xi is made. This
encompasses the appplication of Condition FC and achieves
at least the same pruning as 1-pass AC . Hence, trivially from
Proposition 2 NSAC is strictly stronger than maxRPC.

4 Singleton Consistencies Inspired by RPC
We now turn our attention to RPC by considering NSAC-
based local consistencies that follow the reasoning behind
RPC. We define two local consistencies as well as their 1-
pass variants, and study their pruning power.

4.1 Restricted Neighborhood and
sub-Neighborhood SAC

Before formally defining the new local consistencies, let us
briefly describe how they are applied, assuming that a vari-
able x is singleton checked using them. We call these con-
sistencies Restricted NSAC (RNSAC) and Restricted sub-
Neighborhood SAC (RsNSAC).

• At each singleton check xi = ai, first Condition FC is
applied.

• If after the application of Condition FC at least one vari-
able in N(xi) has a singleton domain then, in the case
of RNSAC, AC is applied in N(xi), while in the case of
RsNSAC, AC is applied in a sub-graph of N(xi). If a
DWO is detected then ai is removed.

• If after the application of Condition FC there is no sin-
gleton domain in N(xi) then nothing is done (AC is not
further applied).

The sub-graph of N(xi) where AC is applied in the case
of RsNSAC is specified as follows: Assuming that SD(xi)
is the set of variables with singleton domains after Condition
FC has been applied, this sub-graph of N(xi) includes xi and
any variable that belongs to SD(xi) or is constrained with a
variable in SD(xi).

Both RNSAC and RsNSAC are inspired by RPC which
tries to extend a pair of values ai ∈ D(xi) and bj ∈ D(xj)
to variables constrained with xi and xj only if bj is the single
support of ai in D(xj).

More formally, RNSAC is defined as follows.

Definition 2 A value ai ∈ D(xi) is restricted neighborhood
singleton arc consistent (RNSAC) iff it is AC and the fol-
lowing holds. If after restricting D(xi) to ai and applying
Condition FC there is at least one variable in N(xi) with sin-
gleton domain then the application of AC to N(xi) does not
result in a DWO.

To define RsNSAC formally, we need the following.
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Definition 3 Let SD(xi) be the set of variables in N(xi)
that have singleton domains after the application of Condi-
tion FC during the singleton check of a variable xi. Then
GSD(xi) is the sub-graph of N(xi) that includes xi, the vari-
ables in SD(xi), any variable in N(xi) constrained with a
variable in SD(xi), and any constraint that involves a vari-
able in SD(xi) and a variable in N(xi).

The difference between N(xi) and GSD(xi) is that the for-
mer includes constraints that involve two variables that do not
belong to SD(xi) while the latter excludes such constraints.
For example, consider the problem in Figure 3a. If we ap-
ply RsNSAC after 0 is assigned to x1, then after Condition
FC, D(x2) will be the only variable with a singleton domain
(i.e. SD(x1)={x2}). So AC will be applied in the subgraph
GSD(x1) comprising x1, x2, and x3, which is constrained
with x2, but not x4, as it is not constrained with x2. Hence,
c34 will not be considered.

Definition 4 A value ai ∈ D(xi) is restricted sub-
neighborhood singleton arc consistent (RsNSAC) iff it is AC
and the following holds. If after restricting D(xi) to ai and
applying Condition FC there is at least one variable in N(xi)
with singleton domain then the application of AC to GSD(xi)

does not result in a DWO.

We call the corresponding properties that apply 1-pass AC
RNS1pAC and RsNS1pAC.

4.2 Theoretical Results
By definition RNSAC (resp. RNS1pAC) is strictly stronger
than RsNSAC (resp. RsNS1pAC). Accordingly, RNSAC and
RNS1pAC are strictly weaker than NSAC and NS1pAC re-
spectively. We now show that RsNSAC and RsNS1pAC are
strictly stronger than RPC.

Proposition 3 RsNSAC and RsNS1pAC are strictly stronger
than RPC.

Proof: We prove that RsNS1pAC is strictly stronger than
RPC. By definition, it also holds for RsNSAC. Assume that
a value ai ∈ D(xi) is not RPC. This means that either it is
not AC or it has a single support bj on some variable xj and
the pair (ai,bj) is not PC. In the former case RsNS1pAC will
delete ai because when Condition FC applied, a DWO will
occur. In the latter case, after RsNS1pAC assigns ai to xi,
the application of Condition FC will delete from the domains
of all of xi’s neighbors, including xj , any value that is not a
support for ai. This will leave bj as the only value in D(xj).
Assume that xj is the only variable in N(xi) that is left with
a singleton domain after Condition FC has been applied. As
a result, 1-pass AC will be applied in the sub-network involv-
ing xi, xj , and any variable in N(xi) that is constrained with
xj . As the pair (ai,bj) is not path consistent, there must be
a variable xk in N(xi) that is constrained with xj , in whose
domain no value is a support for both ai and bj . As D(xk)
only contains values that support ai, when xk is considered
by 1-pass AC, bj will be deleted and D(xj) will be wipped
out, meaning that ai is not RsNS1pAC.

For strictness consider the problem in Figure 3a. Assume
that we are examining whether value 0 of x1 is RPC. The
domains of the variables are as follows: D(x1) = {0, 1},

D(x2) = D(x3) = D(x4) = {0, 1, 2}. The tables show
the allowed pairs of values for the constraints in the prob-
lem. Value 0 of x1 is RPC because it is AC, it has more than
one support in D(x3) and D(x4), and its single support 0 in
D(x2) is also a PC-support. On the other hand, the applica-
tion of RsNS1pAC will first assign 0 to x1 and enforce Con-
dition FC. This will remove value 2 from D(x3) and D(x4)
and will leave x2 with only value 0 in its domain, meaning
that 1-pass AC will be next applied. Assuming that the vari-
ables are considered in the order x2, x3, x4, no value removal
will occur when x2 is considered. When x3 is considered,
both 0 and 1 will be removed from D(x4), which will there-
fore be wipped out. Hence, value 0 of x1 is not RsNS1pAC
and will be deleted.

x1

x2

x3

x4

0 0
1 0
1 1
1 2
c12

0 0
0 1
1 0
1 1
1 2

c13 c14 c23

0 2
1 2
2 0
2 1
c34

(a)

x1

x2

x3

0 0
0 1
1 0
1 1
1 2
1 3
2 0
2 1
2 2
2 3
c12 c13

0 2
0 3
1 2
1 3
2 0
2 1
3 0
3 1

c23
(b)

Figure 3: (a) A problem that is RPC but not RsNS1pAC. (b) A prob-
lem that is RNSAC but not maxRPC.

We now compare RNSAC, RsNSAC, and their 1-pass ver-
sions to maxRPC and lmaxRPC.
Proposition 4 RNSAC, RNS1pAC, RsNSAC, and
RsNS1pAC are incomparable to maxRPC and lmaxRPC.

Proof: For a problem that is (l)maxRPC but not
RsNS1pAC, which is the weakest among the 4 singleton con-
sistencies, consider Figure 3a. Value 0 of x1 has a PC-support
in each of the other variables, and therefore it is (l)maxRPC.
But as explained above, it is not RsNS1pAC.

Now consider the problem of Figure 3b. The domains are:
D(x1) = {0, 1, 2}, D(x2) = D(x3) = {0, 1, 2, 3}. This
problem is RNSAC, which is the strongest among the 4 sin-
gleton consistencies, because it is AC and each value of each
variable has at least two supports in each of the other two
variables. However, value 0 of x1 is not (l)maxRPC because
it has no PC-support in D(x2).

NSAC

RNSAC

NS1pAC

RsNSAC

RNS1pAC

maxRPC

RsNS1pAC

lmaxRPC RPC AC

lRPC

Figure 4: A solid line denotes the “stronger than” relationship. A
dashed line denotes the “incomparable” relationship.

Figure 4 summarizes the relationships between the vari-
ous local consistencies discussed, with respect to their prun-
ing power. We include some relationships that have not been
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proved above but are very easy to prove. But to make the
figure easier to read, some other relationships are omitted.

5 Algorithm and Complexities
As shown by Wallace, any SAC algorithm can be used as
basis to build an NSAC algorithm. However, SAC algo-
rithms such as SAC-SDS, SAC-Opt, and SAC-3, described
in [Bessiere et al., 2011], are quite complex, and in the end
NSAC algorithms based on them are inferior in cpu times to
the simple NSACQ algorithm of [Wallace, 2016a].
Algorithm 1 The RNSQ algorithm
1: initialize(Q)
2: while Q 6= ∅ do
3: select and remove a variable xi from Q;
4: Deletion← FALSE;
5: for each ai ∈ D(xi) do
6: assign ai to xi and apply Condition FC;
7: if a DWO is detected then
8: remove ai from D(xi);
9: Deletion← TRUE;
10: else
11: if a neighbor of xi has singleton domain then
12: apply AC to N(xi);
13: if a DWO is detected then
14: remove ai from D(xi);
15: Deletion← TRUE;
16: if D(xi) = ∅ then
17: return FALSE;
18: if Deletion = TRUE then
19: add to Q any xj s.t. xj ∈ N(xi);
20: return TRUE;

We now give the algorithm we used in our experiments. We
present it for the case of RNSAC, which as shown at the next
section, is the best among all methods, calling it RNSQ. It fol-
lows the reasoning behind NSACQ (i.e. the use of a queue to
propagate deletions) and requires minimal changes to apply
any of the other consistencies studied. Like NSACQ, RNSQ
is a very simple algorithm stripped of any optimizations.

Algorithm 1 uses a data structure Q implemented as a
queue. For preprocessing, Q is initialized with all variables
in the problem. For use inside search, Q is initialized with all
neighbors of the currently instantiated variable. During the
singleton check of a value ai ∈ D(xi), Condition FC is first
applied. Then if there is no DWO and one of xi’s neighbors
is left with a singleton domain, AC in applied in N(xi). If a
DWO is detected, ai is deleted. It is is easy to see that if line
11 is omitted, the algorithm achieves NSAC.

The worst-case time complexity of applying RNSAC or
NSAC using Algorithm 1 is O(en2d5) assuming that AC-3
or one of its variants is used to apply AC in line 12. If an
optimal AC algorithm is used then the cost of NSAC falls by
a factor of d. But it is nowdays accepted that AC3-like algo-
rithms are more efficient than optimal ones, especially when
used inside search, because of their light use of data struc-
tures [Lecoutre and Hemery, 2007; Likitvivatanavong et al.,
2007]. The complexity of applying NS1pAC and RNS1pAC
is O(en2d4) because only one pass is made through the con-
straints. Interestingly, this is the same as the complexity
of maxRPC3rm which is the best maxRPC algorithm [Bal-
afoutis et al., 2011], and it is slightly higher than the O(end4)
complexity of lmaxRPC3rm. Let us not forget though that
NS1pAC is strictly stronger than maxRPC (and thus also
lmaxRPC) when Condition FC holds.

6 Experiments
We experimented with 16 classes of binary CSPs taken from
C.Lecoutre’s XCSP repository: rlfap, graph coloring, qcp,
qwh, bqwh, driver, haystacks, hanoi, pigeons, black hole, ehi,
queens, queensAttacking, queensKnights, geometric, com-
posed. A total of 1054 instances were tested. We mainly used
dom/ddeg instead of the more efficient dom/wdeg to avoid
severe interference between the heuristic and propagation.

The experiments were performed on a FUJITSU Server
(2.90GHz, 48 GB RAM, 16MB cache). We compared search
algorithms that maintain NSAC and its variants to ones that
maintain AC, lRPC, and lmaxRPC. The three baseline meth-
ods were implemented using the corresponding state-of-the-
art algorithms [Lecoutre and Hemery, 2007; Balafoutis et al.,
2011; Stergiou, 2015]. For simplicity, the three search algo-
rithms will be denoted by AC, lRPC, and lmaxRPC hereafter.
A timeout of 3600 seconds was imposed on all algorithms.

Table 1 summarizes the results for specific classes of prob-
lems, comparing NSAC, NS1pAC, RNSAC, RNS1pAC, and
RsNSAC to AC, lRPC, lmaxRPC. For the 1-pass methods AC
is applied following the lexicographic order. For each class
we give the following data: 1) The mean node visits and run
times from non-trivial instances that were solved by all algo-
rithms within the time limit. We consider as trivial any in-
stance that was solved by all algorithms in less than a second.
2) The number of timeouts for each algorithm, excluding in-
stances where all algorithms timed out.

Table 1 shows that NSAC and its variants are clearly more
efficient than the existing propagation methods. Specifically,
there are classes where the former methods are by far faster
(qcp, qwh, bqwh), others where they are very competitive
(coloring), and others where they overwhelmingly dominate
(composed-25-10, queensKnights, queensAttacking). AC and
lRPC are better on the geometric class, though not by very
large differences, at least compared to RNSAC and its vari-
ants. The only class where the singleton consistencies clearly
fail is queens. This is because the constraint graph in queens
is complete, meaning that NSAC is equivalent to SAC and
the weaker methods are close to SAC. Also, the large size
of domains entails a very large number of singleton checks.
Among the classes missing from Table 1, some are trivial
(e.g. ehi, hanoi, the rest of composed) and some are out of
reach for all methods (rlfap, black hole, haystacks), which is
partly due to the use of dom/ddeg. Class pigeons includes
3 instances that are not cut off. On these, lRPC is fastest,
followed by RNSAC and its variants, being around 1.6 times
slower, while all the rest are quite slower.

Among the singleton consistencies, it is clear that RNSAC
is the best. It cuts down the search tree size almost as much as
NSAC but it incurs considerably lower run times. The 1-pass
variants are generally less efficient, but in some cases they
offer advantages (coloring and queensAttacking). RsNSAC
is usually less efficient than RNSAC, meaning that the extra
propagation that the latter achieves pays off.

Figure 5 compares the cpu times between the best existing
method (lRPC) and the best of the methods proposed here
(RNSAC) including instances from all classes. It shows that
there are many instances where lRPC is cut off while RNSAC
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Table 1: Node visits (n), run times in secs (t), and number of timeouts (#TO) in summary. A (-) indicates that means could not be extracted
due to the timeouts. After the name of each class we give the number of non-trivial instances excluding those where all methods timed out.

class AC lRPC lmaxRPC NSAC NS1pAC RNSAC RNS1pAC RsNSAC
(n) (t) (n) (t) (n) (t) (n) (t) (n) (t) (n) (t) (n) (t) (n) (t)

qcp (15)
mean - - 665,526 600 500,320 542 48,301 190 85,825 306 46,862 134 85,825 212 170,258 277
#TO 9 3 3 1 2 0 1 2
qwh+ bqwh (120)
mean - - 210,982 178 135,606 125 6,740 22 10,665 30 6,675 15 10,665 23 34,412 44
#TO 14 2 2 0 0 0 0 1
graph coloring (22)
mean 1,245,736 192 214,633 66 211,487 87 202,466 100 201,819 83 202,466 65 202,095 51 198,933 59
#TO 0 0 0 1 1 0 0 0
comp-25-10 (10)
mean - - 1,453,249 592 1,259,839 573 105 0.30 107 0.29 219 0.23 87,301 7 101,571 12
#TO 5 3 2 0 0 1 1 3
geometric (100)
mean 148,839 120 68,379 112 45,807 339 15,944 840 19,116 917 20,237 247 24,034 268 26,900 262
#TO 0 0 0 0 1 0 0 0
queens (5)
mean 4470 15 4470 30 4470 1529 - - - - - - - - - -
#TO 0 1 2 4 4 4 4 4
qKnights (18)
mean 739K 647 739K 742 739K 953 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01
#TO 12 12 12 0 0 0 0 0
qAttacking (10)
mean - - - - - - 19 236 19 148 23 68 23 41 26 60
#TO 3 3 3 1 1 0 0 0

Figure 5: lRPC vs. RNSAC.

terminates. The opposite occurs only on instances of queens.
In addition, there are numerous instances where exponential
differences in favour of RNSAC occur.

Figure 6 displays a cactus plot giving the number of in-
stances solved per algorithm as the time limit increases, ex-
cluding very hard, trivial, and very easy instances (leaving
around 180 instances). We see that AC is competitive to lRPC
and lmaxRPC only on instances that are easy, but its perfor-
mance quickly starts to deteriorate. The two triangle based
consistencies are closely matched, with lRPC being better
on harder instances. Importantly, all singleton consistences
solve more instances at any given time limit, with RNSAC
being the best. RsNSAC is the worst on easy problems, while
NSAC and NS1pAC are the less efficient on hard ones.

Finally, we have also experimented with the dom/wdeg
heuristic. Results show that the neighborhood methods con-
tinue to perform very well on quasigroup problems as well
as queensKnights/queensAttacking, are quite competitive on
graph coloring, but are considerably slower on rlfap and
queens. The composed class is trivial for dom/wdeg while
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Figure 6: Number of instances solved per algorithm as the time al-
lowed increases (cactus plot).

black hole and haystacks remain very hard.

7 Conclusion
Using NSAC as basis, we have proposed and studied, both
theoretically and experimentally, a family of singleton con-
sistencies that are inspired by either maxRPC or RPC, and
are very easy to implement. Theoretical results show that
the pruning power of these consistencies lays between RPC
and NSAC. Experimental results show that these local con-
sistencies, and particularly RNSAC, display very good per-
formance. It is important to explore the viability of neigh-
borhood singleton consistencies for the case of non-binary
constraints. Strong local consistency methods for non-binary
constraints do exist for some classes of constraints (most no-
tably table constraints) but they are typically implemented
through algorithms or reformulations that are complex or/and
have high space requirements. Singleton neighborhood meth-
ods offer the very interesting possibility of easily achieving
strong pruning using existing, highly efficient, algorithms for
GAC or even lesser levels of consistency.
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