Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Player Movement Models for Platformer Game Level Generation

Sam Snodgrass, Santiago Ontaifion
Department of Computer Science, Drexel University
Philadelphia, PA USA
sps74 @drexel.edu, santi@cs.drexel.edu

Abstract

The use of statistical and machine learning ap-
proaches, such as Markov chains, for procedural
content generation (PCG) has been growing in re-
cent years in the field of Game Al. However, there
has been little work in learning to generate content,
specifically levels, accounting for player movement
within those levels. We are interested in extract-
ing player models automatically from play traces
and using those learned models, paired with a ma-
chine learning-based generator to create levels that
allow the same types of movements observed in the
play traces. We test our approach by generating lev-
els for Super Mario Bros. We compare our results
against the original levels, a previous constrained
sampling approach, and a previous approach that
learned a combined player and level model.

1 Introduction

Procedural content generation (PCG) studies the algorith-
mic creation of content (e.g., maps, textures, music, etc.),
often for video games. Recently there has been increased
interest in the use of machine learning-based approaches
to create video game content [Guzdial and Riedl, 2016;
Dahlskog et al., 2014; Summerville et al., 2015] also called
PCG via machine learning or PCGML [Summerville er al.,
2017]. However, most of these approaches are based on mod-
eling level geometry, without taking into account how the
player moves through levels, which is an important part of
level design. The problem we address in this paper is how to
leverage these machine learning approaches to generate maps
that account for player movement.

Player models have been used to guide content genera-
tors towards player-specific content, called experience-driven
PCG [Yannakakis and Togelius, 2011]. However, most
experience-driven approaches rely on player models paired
with search-based content generation algorithms [Togelius et
al., 2007; Yannakakis and Togelius, 2011]. We are interested
in leveraging machine learning both in the player model ex-
traction as well as for training the content generator. Sum-
merville et al.’s recent approach [Summerville er al., 2016]
is a notable exception in which they developed an approach
that annotated training maps with human paths extracted from

757

gameplay videos, and generated maps with a model trained
on those annotated maps, learning an implicit player move-
ment model within their generator. In this paper we propose
an approach that disentangles the player movement model
from the map model, allowing the movement model to be
used to guide the map model during generation, as well as
to evaluate paths through maps.

The remainder of the paper is organized as follows. We
start by formulating the specific problem we are trying to ad-
dress in Section 1.1. Then, in Section 2 we give background
on recent PCGML techniques for level generation and player
modeling approaches within the context of PCG. Next, in
Section 3 we discuss our Markov chain-based map generation
approach before moving onto our player movement modeling
approach in Section 4. Afterwards, in Section 5 we describe
our experimental setup and discuss our results. We close in
Section 6 by drawing our conclusions and suggesting avenues
of future work.

1.1 Problem Statement

In this paper we address the problem of accounting for player
movement while generating content. Specifically, we are in-
terested in the problem of generating levels that allow for the
types of movements observed in example play traces. We ad-
dress this problem by automatically extracting player move-
ment models from gameplay traces, and using those models
to guide a statistical level generator towards levels with high-
likelihood paths according to the learned model.

2 Background

Procedural content generation (PCG) is the algorithmic cre-
ation of content, typically for video games [Shaker ef al.,
2015]. This section discusses machine learning-based ap-
proaches and experience-driven approaches.

We are interested in generators that learn statistical prop-
erties from training data (i.e., existing maps), and use them
to sample new content, that is procedural content generation
via machine learning (PCGML) [Summerville et al., 2017].
For example, Dahlskog et al. [2014] proposed sampling new
maps using n-grams trained on input maps. Related ap-
proaches include generating maps using a model trained on
gameplay footage [Guzdial and Riedl, 2016], and treating
maps as strings and training a recurrent neural network in or-
der to sample new maps [Summerville and Mateas, 2016].

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

There has also been work on combining multiple machine
learning techniques to sample action RPG levels at multi-
ple levels of detail [Summerville and Mateas, 2015] as well
as learning ways of combining generators to achieve desired
content [Shaker and Abou-Zleikha, 2014].

We are also interested in experience-driven PCG ap-
proaches [Yannakakis and Togelius, 2011], or approaches that
use player models to guide generators. Yannakakis et. al
[2011] discuss player models for Super Mario Bros. and how
those model are used to guide an evolutionary map genera-
tor. This can also be seen in Galactic Arms Race where the
use of the various guns affects the types of guns that get gen-
erated [Hastings et al., 2009], and in race track generation
[Togelius ef al., 2007]. These approaches use player models
paired with evolutionary algorithms, but we want to leverage
machine learning to build player models and level models,
then use both models to generate new content.

Recently, Summerville et al. [2016] developed an ap-
proach that incorporates player behavior into the training
maps in the form of a path, then trains an LSTM neural net-
work on those annotated maps. This allows them to capture
an implicit player model within their map model, which they
then use to generate new maps. We will refer to this approach
as the SGMR approach for the remainder of this paper (after
the authors’ names). The work we present in this paper dif-
fers from theirs by disentangling the player movement model
from the map model. This allows us to both evaluate potential
player paths and more explicitly guide our generator, using
the learned player movement model.

3 Markov Chain-based Map Generation

In this section we give a brief introduction to multi-
dimensional Markov chains (MdMCs). We then discuss how
they are used to model and sample video game maps.

3.1 Markov Chains

Markov chains [Markov, 1971] model stochastic transitions
between states over time. A Markov chain is defined as a set
of states S = {s1, $2, ..., S, } and the conditional probability
distribution (CPD) P(S;|S;_1), representing the probability
of transitioning to a state S; € S given that the previous state
was S;_1 € S. The set of previous states that influence the
CPD are referred to as the network structure of the model.
Multi-dimensional Markov chains (MdMCs) are an exten-
sion of higher-order Markov chains [Ching et al., 2013] that
allow any surrounding state in a multi-dimensional graph
to be considered a previous state. For example, the CPD
defining the MdMC in Figure 1 (ns3) can be written as
P(S;r|St—1,r,St,r—1,St—1,r—1). By redefining what a pre-
vious state can be in this way, the model is able to more eas-
ily capture relations from two-dimensional training data, as
shown in our previous work [Snodgrass and Ontafién, 2016b].

3.2 Map Representation

A map is represented by an A x w two-dimensional array, M,
where h is the height of the map, and w is the width. Each
cell of M is mapped to an element of 7', the set of tile types
which correspond to the states of the MdMC and the objects
in the map. We add sentinel tiles to signify the boundaries.

758

Algorithm 1 ViolationLocationResampling(w, h, C')

1: Map — MdMC([0, 0], [w, h])
2: while (.. c(Map).cost) > 0 do

3: forallce Cdo

4 for all ([xz1, y1], [x2,y2]) € c(Map).sections do
5 forallc; € C do

6: coste, = ¢i(Maplx1,y1][T2, y2]).cost
7 end for

8: repeat

9: m = MdMC([z1, y1], [z2, y2])
10 forallc; € C'\ cdo
11: if coste, > ¢;(m).cost then
12 GoTo line 9
13: end if
14: end for
15: until ¢(m).cost < cost,
16: Maplz1, y1][z2,y2] = m

17: end for
18: end for

19: end while
20: return Map

3.3 Training

Training an MdMC requires a network structure and training
maps. Figure 1 shows example network structures that can be
used to train an MAMC. Training happens in two steps: Abso-
lute Counts and Probability Estimation. First, given the net-
work structure, we determine the tile configuration (i.e., posi-
tions and types of the previous tiles) for a position in the map.
We then count the number of times each tile follows each tile
configuration. Next, the conditional probability distribution
that defines the MdMC is estimated from these counts.

3.4 Sampling

Given a desired map size, h X w, a map is sampled one tile
at time, starting, for example, in the bottom left corner, and
completing an entire row before moving onto the next row.
For each tile, the MAMC is used to sample a tile based on the
tile configuration and the trained probability distribution.

While sampling, we use a look-ahead and fallback proce-
dure that generates a number of tiles ahead trying to avoid un-
seen states (i.e., combinations of tiles that were not observed
during training, and that we, thus, do not have a probability
estimation for). More information on this sampling approach
can be found in [Snodgrass and Ontafién, 2016b].

For the approach presented in this paper, we train a player
movement model which can determine the likelihood of a
given path through a map. Our goal is to sample maps that
allow for high-likelihood paths. In order to accomplish this,
we employ an extension [Snodgrass and Ontafi6n, 2016a] to
the standard sampling approach that is able to sample maps
satisfying provided constraints; in our case, one constraint is
a high-likelihood path through the sampled map. Below we
discuss the constrained sampling algorithm in more detail.

Algorithm 1 shows the Violation Location Resampling or
VLR algorithm used in our experiments. This algorithm takes
the desired dimensions of the output map and a set of con-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

nsy:
2(S,,) PSS
P(St ‘S[]) trl) S tIr rrl t]r])

Figure 1: The network structures used in our experiments; ns3 is
used as the main network structure, and each preceding ns; is used
as a fallback network structure.

straints, C, and returns a map satisfying those constraints.
Note that the constraints return a cost associated with the map
and sections of the map that can be resampled to reduce that
cost. The algorithm begins by sampling a new map, Map,
using the standard sampling approach (line 1). Next, if any
constraints return a nonzero cost for the map (line 2), then for
each constraint, ¢ € C' (line 3), the algorithm iterates over the
sections of the map which have a nonzero cost (line 4). It then
records the cost of the current section according to each con-
straint (lines 5-7). The algorithm then samples a new section,
m, of the same dimensions as the current section (line 9), and
checks if the cost of m is greater than the previous cost for
any other constraint (lines 10-14). If so, m is resampled, and
cost checking is repeated. If the cost with regards to the other
constraints is not raised, then m is only accepted if the cost
with regards to the current constraint, ¢, is lowered (line 15).
This process of finding violated sections and improving their
costs is repeated until the total cost of Map is O (line 2).

4 Player Movement Model

Our player movement model captures the probability of the
player-character performing a specific action. Formally, we
define a player movement model as a finite set of actions
A = {ai,a9,...,a,}, and a conditional probability distri-
bution (CPD) conditioned on either the previous action, the
current surroundings of the player-character, or both. We
define an action as the operation performed by the player-
character in a given time-step (e.g., movement, interacting
with an objects, etc.). We define a surrounding as the area in
the map around the player-character. Specifically, when us-
ing tile maps, a surrounding, s, is an z X y window of tiles
with the player-character at the center. Given that we use a
finite tile set to define our maps and our maps are of finite
size, there are a finite set of surroundings possible, denoted
S. Therefore, we can define the CPD of the player move-
ment model as P(A;|A;_1), when conditioned on the previ-
ous action; P(A;|S;), when conditioned on the current sur-
roundings of the player-character; or P(A:|A;_1,S;), when
conditioned on both, where ¢ indicates the current time-step

To build the above conditional probability distributions, we
extract sequences of actions and accompanying surroundings
from gameplay videos. Below we explain how we extract the
actions and surroundings from a gameplay video, and then
discuss how we train our player movement models.

759

Q| m| | m| | | | | |
Q| m| | X< -~| | | | |
Q| | | | o| | | | |
Q| | | | | | ™| | t|
Q| m| | m| | | | | |

Figure 2: A section of a frame taken from a gameplay video of Su-
per Mario Bros. (right) and our tile representation (left). Notice that
though the player-character does not completely occupy one tile po-
sition, its tile representation is placed into the most fully occupied
position (denoted by “X”).

4.1 Play Trace Extraction

As discussed in Section 2, experience-driven procedural con-
tent generation leverages player models in order to guide gen-
erators towards desirable content. We are interested in au-
tomatically learning one such player movement model from
gameplay videos. We will start with explaining how we ex-
tract the sequence of actions from the videos and then how
we extract the surroundings.

We start, similarly to the SGMR approach, by converting
the gameplay video into individual frames. We then represent
each frame as an h X w tile map, with a special tile type repre-
senting the player-character’s position in the map. Note that
while the position of the player-character in the tile map must
be discrete, the player-character’s movement in the video may
be continuous, resulting in the player-character not falling ex-
actly into one position in the tile representation. To remedy
this, we determine which tile position contains the most of
the player-character, and place the player-character’s tile rep-
resentation in that position in the tile map. An illustration of
this process can be seen in Figure 2. This process is also used
to place other moving elements, such as enemies.

Once we convert all the frames into their tile representa-
tions, we can extract the action and surrounding sequences.
To extract the action sequence, we compare sequential pairs
of frames. First, we align them according to their level geom-
etry, and then determine the difference between the positions
of the player-character in each frame. This gives us the action
taken between the two frames (e.g., moving right, jumping
up, standing still). We repeat this process for each sequential
pair of frames to get the sequence of performed actions.

To extract the sequence of surroundings, we examine each
frame’s tile representation individually. We locate the posi-
tion of the player-character’s tile and extract an x X y tile win-
dow centered at that position. If the window extends beyond
the edges of the tile frame, we fill those positions with sen-
tinel tiles. Repeating this for each frame gives us a sequence
of surroundings. Because there are many possible surround-
ings, we perform k-medoids clustering [Park and Jun, 2009]
with £ = 20 on the observed set of surroundings to find ex-
emplar surroundings to be used during training.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4.2 Model Training

Given action and surrounding sequences we can now train our
player movement models. We propose three models:

e Actions Only: This model learns the probability of per-
forming an action given the previous action. That is, it
learns P(at|a;—1), where a; € A, and A is the finite set
of all observed actions.

Surroundings Only: This model learns the probabil-
ity of performing an action given the surroundings of
the player (i.e., the map geometry). That is, it learns
P(aq|st), where a; € A, as above, and s; € S, and S is
the finite set of exemplar surroundings.

Actions and Surroundings: This model learns the
probability of performing an action given the previous
action and the current surroundings. That is, it learns
P(at|at—1, st), where a; € A, s; € S, as above.

To train these models, we estimate the conditional probability
distribution for the model according to the frequency of oc-
currences in the gameplay video via the extracted action and
surrounding sequences. That is, we count how many times
each action follows each condition (either action, surround-
ing, or pair of action and surrounding), and then set the prob-
ability of each action occurring following each condition ac-
cording to the observed counts. The code used to train our
models and perform our experiments are available online'.

5 Experimental Evaluation

We test our approach by sampling maps for the classic video
game, Super Mario Bros. The remainder of this section de-
scribes the chosen domain, elaborates on the experimental
set-up, and reports our obtained results.

5.1 Domain

Super Mario Bros. is a platforming game with linear maps (as
defined by [Dahlskog ef al., 2014]). That is, the player tra-
verses the maps from left to right while avoiding enemies and
pits. We extracted play traces for 4 maps using the method
outlined in Section 4, for a total of 2,685 frames. We ex-
tracted the play traces from a gameplay video posted online”
of a single human player playing through the game.

5.2 Experimental Set-up

We tested our approach by training an MdMC on the 4 maps
for which we had play traces. The MdMC approach allows
for the configuration of several parameters to improve per-
formance depending on the domain [Snodgrass and Ontafién,
2016b]. For our experiments, we set the parameters as fol-
lows: rowsplits = 14, the height of the maps; lookahead =
3; and using the network structure ng, seen in Figure 1, and
falling back to ne, n1, and ng as needed. We use the trained
MdMCs paired with the violation location resampling (VLR)
algorithm in order to enforce 2 constraints:

'bitbucket.org/Sam_Snodgrass/ijcai_2017
2youtube . com/watch?v=bNNwNPUzCMo

760

Table 1: Likelihood of Paths through Maps

Ly Ls Las

TD prayer 0.22592 0.14577 0.23890
TDAgem 0.12872 0.14512 0.11846
VLR piayabitity 0.12687 0.15300 0.11894
VLR iketihood 0.16079 0.19128 0.15204
SGMR 45 0.13388 0.15630 0.12134
SGMRp 0.13133 0.14751 0.11740
SGMRc 0.13265 0.15402 0.12043
SGMRp 0.13352 0.15893 0.11801
SGMRAvg 0.13284 0.15419 0.11929
SGMR Ay 0.13750 0.15817 0.12261

Playability(): To satisfy this constraint, a path must ex-
ist from the beginning to the end of the map. We test this
with Summerville er al.’s A* agent [Summerville et al.,
2015]. Unplayable sections are returned for resampling.

Likelihood(min): To satisfy this constraint, the path
through the level found by the A* agent must have a
likelihood above min, as evaluated by a specified player
movement model defined in Section 4. The lowest like-
lihood sections are returned for resampling.

In order to keep our Surroundings Only and Actions and
Surroundings player movement models reasonable, we per-
formed k-medoids clustering (with & = 20) using the 5 x 5
windows surrounding the player in each frame as the objects
to cluster. We found in preliminary experiments that 20 clus-
ters were enough to capture most of the various structures
found in the training maps, and that 5 x 5 windows captured
enough of immediate surrounding information.

For our experiments, we use the Actions and Surroundings
player model to evaluate the likelihood of the agent’s path
during sampling. We chose the minimum value of 0.15 based
on preliminary experimental results. We then sampled 100
maps using the VLR algorithm paired with only the playabil-
ity constraint and 100 maps with the VLR algorithm paired
with both the playability constraint and the likelihood con-
straint. We compare the likelihood of the A* agent’s path
through our sampled maps against the observed player’s path
through the training maps, the A* agent’s path through the
training maps, as well as the A* agent’s path through 100 lev-
els sampled by the SGMR approach using various play traces.

5.3 Results

Table 1 shows the results of our experiments. L 4 refers to the
average likelihood of the A* agent’s path through the maps
evaluated by the Actions Only player movement model, Lg
refers to the same using the Surroundings Only model, and
L 45 refers to the same using the Actions and Surroundings
model. TDggent and TDpjqyer efer to the training maps’
paths for both agent and player, respectively; VLR pjqyabitity
and VLR ikerinood refer to the our sampled maps’ paths, us-
ing only a playability constraint and with both playability and
likelihood constraints, respectively; and SGMR refers to the
paths of maps sampled by the SGMR approach using each of
their play traces for training (A-D), the combined values for
the maps sampled using each of those videos (Avg.), and the

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

|| Training Maps

.ﬂ
B VLR, juy ity ot .5:":% S|
\:’ VLR etinooa '3.;'.- ';o.‘ oo oy
- SGMRA ':a ® ': .}.ﬁﬁ
] SGMR Y 2k ol
B L4 e g
M SGMR, & ° .-:P
S%m e
W SGMR,, X o@,@;.
[| SGMR,, o, .;...: o
TR ’ Cetm
& 5%y e0° ® g $L% . o
E ooﬁo"\ .OQ%OCG * % a0 ..:‘::.;. &
o 0.03. % e Oooacl' Iy, v \.’:
LR i
..QQ‘ @o CDOOO..@...‘ ..,:‘;
3 © * * o
N R e et °
°8%o +° 2. ' ®
o % o Tgon o et e
& “ec G Creg® &
520000:5' ‘_.,2; s 8-0 ..9. 02,0 Fo
® - *

Figure 3: 2-D projection of the 4 training maps, the maps sampled
with our approach, and maps sampled with the SGMR approach.
Circled maps appear in Figure 5.

maps sampled after training on all of the videos (All). Note
that we randomly selected maps from sets of maps generated
by the SGMR approach with each of play traces until we had
100 maps that were able to be completed by the A* agent for
each of the configurations. We used the A* agent’s paths in
these maps instead of the paths generated by their method in
order to ensure uniformity throughout our evaluation.

First, it is important to note that, in general, the paths
obtained from the A* agent are much less likely than the
player’s path (when comparing the paths in the training
maps). This is to be expected, as the evaluation models were
trained on the observed player’s path, and an A* agent is
unlikely to behave very similarly to a human player. How-
ever, when only accounting for the current surroundings of
the player, the likelihoods of the player and agent paths are
similar (again for the training maps’ paths). This is because
when considering only the surroundings, there are often situa-
tions with one obvious solution. For example, if approaching
a pit with no other obstacles, it is likely for the player or agent
to jump; similarly, if on a flat surface with no other obsta-
cles, it is likely for the player or agent to move forward. This
movement model is too simplified though, as it only captures
what the player might do given the current surroundings with-
out accounting for what may have happened immediately pre-
vious. For example, if the player-character is in the air, then
only accounting for the surroundings it is difficult to predict
if she is moving up (jumping) or down (falling). With knowl-
edge of the previous action, this prediction is much easier, as
we can see in which direction she was moving previously.

Second, notice that the likelihood of the agent’s path is
fairly uniform across all of the maps, except for the maps
sampled by the VLR algorithm enforcing a playability and
likelihood constraint. This is to be expected, as this approach
will only sample maps that have a path likelihood above a
threshold. However, while our method guarantees a certain
level of path likelihood, we are also interested in investigat-
ing how the structures of the various maps relate.

Figure 3 shows the sampled maps projected in a two-

761

0.21

Figure 4: This figure shows a probabilistic finite state machine
where each node is an action. This represents our Action Only
model. “R” is moving right, “L” is moving left, “U” is moving up,
“D” is moving down, “N” is no movement, and the combinations are
diagonal movements. For clarity, we only include each node’s two
most probable transitions.

dimensional space based on a measure of distance between
them using the t-SNE visualization algorithm [Maaten and
Hinton, 2008]. To determine the distance between two maps,
we represented them as a histogram of high-level tiles, and
computed the Euclidean distance between these histograms.
High-level tiles were found by clustering 4 x 4 tile sections
using k-medoids (kK = 30) with the four training maps and
one map from each of the sampled sets. From the projection,
we can see that our sampled maps and the other sets of sam-
pled maps are quite distinct from one another, and that our
sampled maps lie closer to the training maps, while the other
maps are separated from them. Further, the maps we sam-
pled using the likelihood constraint lie closer to one particular
training map, while the maps sampled using only the playa-
bility constraint lie closer to the other three training maps.
This is likely due to the structure of the training maps. The
one training map is flat with very few other structures imply-
ing that to create maps with high-likelihood paths, our model
generated maps with stretches of flat space (as moving for-
ward on a flat space is very likely); this is reflected in Fig-
ure 5 (top two). Alternatively, the maps sampled without the
likelihood constraint have more obstacles, as seen in Figure
5 (third and fourth). Lastly, notice that the maps sampled by
SGMRp are distanced even from the other SGMR maps. In
[Summerville et al., 2016], the authors note that the player
in Video D attempted to collect all the coins and took long
paths through the maps. This resulted in maps with many
more structures and platforms than the other sampled maps,
and could explain the distance from the other sampled maps.

An additional benefit of separating the player movement
model from the map model is the ability to examine the move-
ment model independently. Figure 4 shows a visualization of
the Actions Only player movement model (showing only the
two most probable transitions between each action, for clar-
ity). This allows us to investigate what types of behaviors
are common or uncommon given our trained model. For ex-
ample, from the figure, we can see that many of the actions
have a high probability of transitioning to the “None” action

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Figure 5: This figure shows example maps sampled using the VLR pketinooa approach (top two), VLR pjayabitity (third and fourth), and an
example map for the SGMR approach with each of the play traces (A — D) and All (bottom five, in order).

(not moving). This indicates that it is likely for the player to
change between different actions by first stopping (e.g., if the
player is moving left (“L) and wants to move right (“R”), it
is more likely for the player to stop moving, and then begin
moving right than it is to immediately start moving right).
Figure 5 shows randomly selected sampled maps from each
of the approaches (also highlighted in Figure 3). As expected
of the VLR Liketihood maps (top 2), there are long stretches
of flat terrain, whereas the VLR pj,yapiity maps (third and
fourth) have many more mountainous structures and pipes.
Our most important result is that we are able to sample
maps that force the A* agent to take higher likelihood paths
through the maps. This shows that by guiding our sampling
algorithm with our player movement model we can sample
maps that afford paths that resemble those taken by the human
players from whom the player movement model was learned.

6 Conclusions and Future Work

This paper presents an approach for automatically building
a player movement model from a gameplay video and us-
ing that model to guide a machine learning-based generator
to create video game maps that allow for the types of move-

762

ments observed in the gameplay video. We tested our ap-
proach in the domain of Super Mario Bros. We found that
training the movement model separately from the map gener-
ator, we are able to produce maps that are more similar to the
training maps than other generators while allowing for high-
likelihood paths according to our learned movement model.

In the future, we would like to investigate how training our
movement models using different players’ gameplay videos
may affect the sampled levels. We are also interested in em-
ploying more human-like agents in place of the A* agent, in
order to avoid biasing the sampler towards “speed run” style
maps. We would like to apply this approach to more complex
domains as well, such as Loderunner where paths through
maps are more complex and require backtracking. Lastly, we
noticed that the more likely the path for a generated map, the
flatter that map tends to be. This may be because we only
constrain our sampling on the conditional probability distri-
bution, and not on other factors, such as the raw distribution
of actions in the gameplay trace. We would like to explore
this prospect more fully.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Cenkner et al., 2011] Andrew Cenkner, Vadim Bulitko, and
Marcia Spetch. A generative computational model for hu-
man hide and seek behavior. In AIIDE, 2011.

[Ching ef al., 2013] Wai-Ki Ching, Ximin Huang,
Michael K Ng, and Tak-Kuen Siu. Higher-order
markov chains. In Markov Chains, pages 141-176.
Springer, 2013.

[Dahlskog ef al., 2014] Steve Dahlskog, Julian Togelius, and
Mark J Nelson. Linear levels through n-grams. Proceed-
ings of the 18th International Academic MindTrek, 2014.

[Guzdial and Riedl, 2016] Matthew Guzdial and Mark
Riedl. Game level generation from gameplay videos.
In Twelfth Artificial Intelligence and Interactive Digital
Entertainment Conference, 2016.

[Hastings et al., 2009] Erin J Hastings, Ratan K Guha, and
Kenneth O Stanley. Evolving content in the galactic
arms race video game. In Computational Intelligence and
Games, 2009. CIG 2009. IEEE Symposium on, pages 241—
248. IEEE, 2009.

[Maaten and Hinton, 2008] Laurens van der Maaten and Ge-
offrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(Nov):2579-2605, 2008.

[Markov, 1971] Andrey Markov. Extension of the limit theo-
rems of probability theory to a sum of variables connected

in a chain. In Dynamic Probabilistic Systems: Vol. I:
Markov Models, pages 552-577. Wiley, 1971.

[Ortega et al., 2013] Juan Ortega, Noor Shaker, Julian To-
gelius, and Georgios N Yannakakis. Imitating human play-
ing styles in super mario bros. Entertainment Computing,
4(2):93-104, 2013.

[Park and Jun, 2009] Hae-Sang Park and Chi-Hyuck Jun. A
simple and fast algorithm for k-medoids clustering. Expert
Systems with Applications, 36(2):3336-3341, 2009.

[Shaker and Abou-Zleikha, 2014] Noor Shaker and Mo-
hamed Abou-Zleikha. Alone we can do so little, together
we can do so much: A combinatorial approach for gen-
erating game content. In Tenth Artificial Intelligence and
Interactive Digital Entertainment Conference, 2014.

[Shaker er al., 2015] Noor Shaker, Julian Togelius, and
Mark J. Nelson. Procedural Content Generation in
Games: A Textbook and an Overview of Current Research.
Springer, 2015.

[Snodgrass and Ontafién, 2014] Sam Snodgrass and Santi-
ago Ontafion. Experiments in map generation using
markov chains. In Proceedings of the 9th International
Conference on Foundations of Digital Games, volume 14,
2014.

[Snodgrass and Ontafién, 2016al Sam Snodgrass and Santi-
ago Ontafién. Controllable procedural content genera-
tion via constrained multi-dimensional markov chain sam-
pling. In 25th International Joint Conference on Artificial
Intelligence, 2016.

763

[Snodgrass and Ontafién, 2016b] Sam Snodgrass and Santi-
ago Ontafién. Learning to generate video game maps us-
ing markov models. IEEE Transactions on Computational
Intelligence and Al in Games, 2016.

[Summerville and Mateas, 2015] Adam Summerville and
Michael Mateas. Sampling hyrule: Sampling probabilistic
machine learning for level generation. 2015.

[Summerville and Mateas, 2016] Adam Summerville and
Michael Mateas. Super Mario as a string: Platformer level
generation via LSTMs. Proceedings of Ist International
Joint Conference of DiGRA and FDG, 2016.

[Summerville et al., 2015] Adam James Summerville,
Shweta Philip, and Michael Mateas. MCMCTS PCG
4 SMB: Monte Carlo tree search to guide platformer
level generation. In Eleventh Artificial Intelligence and
Interactive Digital Entertainment Conference, 2015.

[Summerville et al., 2016] Adam Summerville, Matthew
Guzdial, Michael Mateas, and Mark O Riedl. Learning
player tailored content from observation: Platformer level
generation from video traces using Istms. In Twelfth Ar-
tificial Intelligence and Interactive Digital Entertainment
Conference, 2016.

[Summerville et al., 2017] Adam Summerville, Sam Snod-
grass, Matthew Guzdial, Christoffer Holmgard, Amy K
Hoover, Aaron Isaksen, Andy Nealen, and Julian To-
gelius. Procedural content generation via machine learning
(pcgml). arXiv preprint arXiv:1702.00539, 2017.

[Togelius er al., 2007] Julian Togelius, Renzo De Nardi, and
Simon M Lucas. Towards automatic personalised content
creation for racing games. In Computational Intelligence
and Games, 2007. CIG 2007. IEEE Symposium on, pages
252-259. IEEE, 2007.

[Yannakakis and Togelius, 2011] Georgios N Yannakakis
and Julian Togelius. Experience-driven procedural content
generation. [EEE Transactions on Affective Computing,
2(3):147-161, 2011.

