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Abstract

In this article, we provide the epistemic-
entrenchment characterization of the weak
version of Parikh’s relevance-sensitive axiom for
belief revision — known as axiom (P) — for
the general case of incomplete theories. Loosely
speaking, axiom (P) states that, if a belief set K
can be divided into two disjoint compartments,
and the new information ¢ relates only to the
first compartment, then the second compartment
should not be affected by the revision of K by ¢.
The above-mentioned characterization, essentially,
constitutes additional constraints on epistemic-
entrenchment preorders, that induce AGM revision
functions, satisfying the weak version of Parikh’s
axiom (P).

1 Introduction

Belief Revision is the study of knowledge in flux. The article
that is widely considered to mark the birth of the field is the
seminal work of Alchourrén, Girdenfors, and Makinson, re-
ported in [Alchourrén et al., 1985]. This work has given rise
to a formal framework, now known as the AGM paradigm (or
simply AGM), after the initials of its three founders. Part of
the AGM paradigm is a set of rationality postulates for belief
revision, known as the AGM postulates for revision.

Parikh, recently, identified that the AGM postulates for re-
vision are rather liberal in their treatment of the notion of rel-
evance. More precisely, according to Parikh, a rational agent
does not change her entire belief corpus during belief revi-
sion, but only the portion of it that is relevant to the new infor-
mation. To fully capture this intuition of local change, Parikh
introduced an additional axiom, named (P), in [Parikh, 1999].

Despite all the research on axiom (P), only recently it has
been characterized in terms of possible worlds [Peppas et al.,
2004; 2015]. Nevertheless, such a characterization in terms
of epistemic entrenchments has not been formulated yet, for
the general case of incomplete theories — only for the special
case of a complete theory as an initial belief set, in [Peppas et
al., 2000]. This is the gap that the present article aims to fill.
We examine new constraints on sentences, that characterize
precisely the class of epistemic entrenchments, correspond-
ing to revision functions, satisfying the weak version of ax-
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iom (P) (in addition to AGM postulates for revision), for the
general case of incomplete theories.

The paper is structured as follows. The next section intro-
duces some notation and terminology. We then present some
background material on the AGM paradigm and the notion of
relevance (Sections 3 and 4). In Section 5, we characterize
precisely the weak version of axiom (P) in terms of epistemic
entrenchments, for the general case of incomplete theories.
In the last section, we make some concluding remarks.

2 Formal Preliminaries

Throughout this article, we work with a finite set of proposi-
tional variables P. We define £ to be the propositional lan-
guage generated from P (using the standard Boolean connec-
tives A, V, —, <+, 7, and the special symbol 1) and governed
by classical propositional logic. A literal is a propositional
variable p € P or its negation. For any set of propositional
variables ) C P, by Qi we denote the set containing all lit-
erals induced by Q; i.e., Q* = QU {-p : p € Q}. For any
set of literals () C PE, by V(@ we denote the disjunction of
the literals in Q.

A sentence ¢ € L is contingent iff ¥ ¢ and ¥ —¢. For a set
of sentences I of £, we denote by C'n(I") the set of all logical
consequences of I', i.e., Cn(T') = {¢p € L : T |= ¢}, and by
I the set of all the negative elements of I'. We shall write
Cn(¢1, @2, ..., ¢n), for sentences ¢1, ¢a, ..., ¢y, as an ab-
breviation of Cn({¢1, $2,...,d,}). For any two sentences
¢, 1, we shall write ¢ = ¢ iff Cn(¢) = Cn(y)). A theory
K of L is any set of sentences of £ closed under =; i.e.,
K = Cn(K). A theory K is complete iff, for all sentences
o€ L, ¢ € Kor—¢ € K. For a theory K and a set of
sentences I' of £, we denote by K + I the closure under =
of KUT; ie., Cn(K UT). For a sentence ¢ € L, we shall
write K + ¢ as an abbreviation of K + {¢}.

We define a possible world r (or simply a world), to be a
consistent set of literals, such that for any propositional vari-
able p € P, either p € r or =p € r. The set of all possi-
ble worlds is denoted by M. For a set of sentences I' of L,
[['] denotes the set of all possible worlds that satisfy I'; i.e.,
[] = {r € M : r = T}. We often use the notation [¢]
for a sentence ¢ € L, as an abbreviation of [{¢}]. For a set
of worlds V' C M, we denote by ¢(V) the set of sentences
satisfied by all worlds in V;ie., t(V) ={¢p € L: 1 = ¢, for
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allr € V. If V = @, then we define t(V') = L. It is easy to
observe that ¢(V) is always a theory.

We often consider sublanguages of L. Let () be a sub-
set of the set of propositional variables . We denote by
L® the sublanguage of £, defined over Q. In the limiting
case where (Q is empty, we take £% to be the language gen-
erated by L and the Boolean connectives. For a sentence x
of L, we denote by L, the minimal sublanguage of £, within
which x can be expressed.! If  is inconsistent, we take £, to
be £2.2 Moreover, by P, we denote the propositional vari-
ables in the minimal language of x, and by £, the language
LP~Px_ Lastly, for a set of sentences I' of £, L denotes the
minimal sublanguage of £, within which all the sentences of
I" can be expressed.

Furthermore, we shall often project operations defined
above for the entire language £, to one of its sublanguages
L. When this is the case, all notation will be subscripted by
the sublanguage £’. For instance, for a set of sentences T,
the term Cnz/(T') denotes the logical closure of T in L'; i.e.,
Cnge () = Cn(T") N L. Ttis clear that the operation is rela-
tive to the original language £, when no subscript is present.

Finally, some definitions on preorders. A preorder (e.g., <)
over a set V' is any reflexive, transitive binary relation in V.
The preorder < is called roral iff for all r,7' € V,r <7’ or
7’ < r. We shall write < 7" iff » < 7" and v’ £ r. We shall
also write r =~ ' iff r < 7’ and v’ < r. In addition, for any
X C V, by min(X, =) we denote the set {r € X : for all
r' e X,ifr’ < rthenr < r'}.

3 The AGM Paradigm

In this section, we shall briefly review the axiomatic approach
of the AGM paradigm, as well as two explicit constructions
for this process; the first is based on preorders over sentences
(epistemic entrenchments), and the second on preorders over
possible worlds (faithful preorders).

3.1 Belief Revision

In the AGM paradigm, belief revision is modelled as a
function *, mapping a theory K and a sentence ¢ to the
theory K * ¢. The AGM postulates for revision, motivated
by the principle of minimal change, which appear to capture
much of what characterizes rational belief revision, are listed
below (see [Girdenfors, 1988] or [Peppas, 2008] for an
extended discussion on the postulates):

(K*1) K x ¢ is a theory of L.

(K*2) ¢ e K *¢.

(K*3) K=x¢ C K+ ¢.

(K*4) If-¢ ¢ K, then K + ¢ C K * ¢.

(K*5) K =x¢ | Liff = —¢.

(K*6) Ifop =1, then K x ¢ = K ).

(K¥7) K # (9 A4) C (K %)+,

(K*¥8) If ) ¢ K x ¢, then (K x ¢) + 1 C K * (¢ A ).

'That means that £, contains a sentence that is logically equiv-
alent to y, and, moreover, no proper sublanguage of £, contains
such a sentence.

*Itis easy to verify that, for every x, £, is unique — see [Parikh,
1999] for details.
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3.2 Epistemic Entrenchments

Apart from the above axiomatic approach to belief revision,
a number of explicit constructions for this process have been
proposed. The first constructive model that we discuss here
has been proposed by Giérdenfors and Makinson, [Gérdenfors
and Makinson, 1988], and it is based on the notion of epis-
temic entrenchment. Formally, an epistemic entrenchment,
related to a theory K of L, is a binary relation < in £, that
satisfies the following postulates (see [Gérdenfors, 1988] or
[Peppas, 2008] for an extended discussion on the postulates):

(EE1) For all ¢,9,x € L, if ¢ < 1 and ¢ < y, then
¢ <X

(EE2) Forall ¢,v € L,if ¢ =1, then ¢ < 4.

(EE3) Forallg,p e K,¢ < pAvYoryp < pAY.

(EE4) When K # L, ¢ ¢ K iff ¢ < 1), forall ¢ € L.

(EE5) If¢ < ¢forally € L, then |= ¢.

Note that, from the above postulates, it follows that every
epistemic entrenchment is a total preorder in L.

Intuitively, an epistemic entrenchment <, related to a
theory K, represents the relative epistemic loss caused by
the removal of a belief from K; that is, the higher a belief
is in the epistemic-entrenchment preorder <, the more is
lost in terms of epistemic value by its removal from K.
Consequently, for any two formulas ¢ and v, such that
¢ < 1, whenever a choice exists between giving up ¢
and giving up 1, the former will be surrendered, in order
to minimize the epistemic loss. Formally, the idea of an
epistemic entrenchment determining the result of belief
revision is captured by the following condition:

(< %) 1Y€ K x¢iff either ~¢ < =g V ) or | ¢

Girdenfors and Makinson, [Girdenfors and Makinson,
1988], proved that the family of functions over theories con-
structed from epistemic entrenchments by means of (< )
is precisely the class of AGM revision functions (i.e., the
functions satisfying the postulates (K*1) — (K*8)).> The aim
of this article is to characterize the subclass of epistemic
entrenchments, that induce revision functions satisfying the
weak version of axiom (P)* (in addition to (K*1) — (K*8)),
for the general case of incomplete theories.

3.3 Faithful Preorders

Another popular construction introduced by Katsuno and
Mendelzon, [Katsuno and Mendelzon, 1991], is based on to-
tal preorders over possible worlds, called faithful preorders.’

For a theory K, a preorder over possible worlds < is said
to be faithful to K iff it is total and such that the minimal

3To be precise, Girdenfors and Makinson established a connec-
tion between epistemic entrenchments and contraction functions, in
[Girdenfors and Makinson, 1988]. However, thanks to the Levi
Identity, the connection with revision functions, mentioned above,
follows directly. Note that (< ) appears in [Lindstrom and Rabi-
nowicz, 1991; Rott, 1991].

4 Axiom (P) will be discussed, in details, later in this article.

5The construction model, introduced by Katsuno and Mendel-
zon, is basically a subsequent reformulation of Grove’s system of
spheres [Grove, 1988].
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worlds (with respect to <) are those satisfying K; i.e.,

min(M, =) = [K].% Given a preorder < that is faithful to K,

the revision of K by any sentence ¢ can be defined as follows:
(2%) K x¢=t(min([¢], X)),

Intuitively, < represents a plausibility ranking over possi-
ble worlds: the more plausible a world r is, the lower it ap-
pears in the ranking. Hence, (=< ) essentially defines K * ¢
as the theory corresponding to the most plausible worlds, sat-
isfying the new information ¢.

Katsuno and Mendelzon proved that the functions induced
from faithful preorders are precisely those satisfying the
AGM postulates for revision.

For ease of presentation, throughout this article we shall
not consider the limiting cases of an inconsistent belief set
and/or epistemic input, nor a tautological epistemic input.
Hence, from now, unless explicitly stated otherwise, we as-
sume that the initial belief set K is a consistent theory, and
that the epistemic input ¢ is a contingent sentence (i.e., nei-
ther a tautology, nor a contradiction).

Finally, given the connection between faithful preorders
and revision functions, which in turn are connected to
epistemic entrenchments, it should in principle be possible
to establish a direct connection between faithful preorders
and epistemic entrenchments. Indeed, this connection is
expressed by the following condition (throughout this paper,
the symbols 7 and 7’ always represent possible worlds):

(SE) For any two contingent sentences ¢, 9 € L, ¢ <
iff, for some r € [~¢], r < 1/, for every 7’ € [—)].

The result below, that appears also in a slightly differ-
ent way in [Peppas and Williams, 1995], follows almost
immediately, connecting revision functions to epistemic
entrenchments and faithful preorders.

Lemma 1. Let K be a theory of L, < an epistemic entrench-
ment related to K, and = a preorder faithful to K. Then, <
and = correspond to the same revision function by means of
(< %) and (= *), respectively, iff they satisfy condition (SE).

4 Relevance-sensitive Belief Revision

When revising a theory K by a sentence ¢, it seems plausible
to assume that only the beliefs that are relevant to ¢ should
be affected, while the rest of the belief corpus remains
unchanged. For example, an agent that is revising her beliefs
about quantum mechanics is unlikely to revise her beliefs
about Greek economy. This simple intuition is not fully
captured in the AGM paradigm [Alchourrén et al., 1985].
In this sense, Parikh in [Parikh, 1999] introduced a new
axiom, named (P), as a supplement to the AGM postulates.
The main intuition that axiom (P) aims to capture is that an

To be precise, in [Katsuno and Mendelzon, 1991], faithful pre-
orders are associated to sentences rather than theories, since a belief
set is represented as a sentence rather than a theory. However, the
two approaches are equivalent, given that we are working with a
language built over finitely many propositional variables.
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agent’s beliefs can be subdivided into disjoint compartments,
referring to different subject matters, and that when revising,
the agent modifies only the compartment(s) affected by the
new information:

(P) If K = Cn(x,v), where x, are sentences of dis-
joint sublanguages L1, Lo, respectively, and ¢ € L1,
then Kx¢ = (Cng, (x)o¢)+1), where ¢ is arevision
operator of the sublanguage L;.

Parikh, in [Parikh, 1999], showed that (P) is consistent
with the AGM postulates (K*1) — (K*6) (known as the basic
AGM postulates), while Peppas et al. in [Peppas et al., 2015]
proved that axiom (P) is in fact consistent with all eight AGM
postulates (K*1) — (K*8).

Furthermore, in [Peppas ef al., 2015], it was shown that
axiom (P) is open to two different interpretations. According
to the first reading, i.e., the weak version of axiom (P), which
we denote (WP), the revision function ¢ that modifies the
relevant part of K — call it the local revision function —
may vary from theory to theory, even when the relevant part
Cn(x) stays the same. That means that weak (P) allows the
local revision function to be context-dependent. According
to the second reading, i.e., the strong version of axiom (P),
which we denote (sP), the local revision function ¢ becomes
context-independent. To avoid ambiguity between the two
versions, Peppas et al. recast axiom (P) in terms of the
following two conditions, that make no reference to a local
revision operator:

(wP) IfK =Cn(x,¢), LyNLy =, and ¢ € L,, then

(Kxd)NLy=KNL,.

(sP) IfK =Cn(x,v¢), LyNLy =2, and ¢ € L,, then
(K * @) N Ly = (Cn(x) * ¢) N Ly.

In the same work, both versions of axiom (P) — or, equiv-
alently, conditions (wP) and (sP) — were characterized in
terms of possible worlds. Herein, we use the weak version
of axiom (P), because it is much more general and intuitive.

4.1 Possible-world Characterization for the
Special Case of Complete Theories

It turns out that the possible-world characterization of (wP),
for the special case of complete theories, is the following
condition:

(SP) If Diff (K,r) C Diff (K,r'), thenr < 1.

By Diff (K, r) is denoted the set of propositional variables,
over which a consistent complete theory K and a world r
disagree (i.e., the symmetric difference of the variables that
are satisfied by K and r); that is, Diff (K,r) = ((K —r) U
(r—K))np.

Note that a characterization of condition (SP) — and con-
sequently of (wP) for the special case of complete theories —
in terms of epistemic entrenchments has been done in [Peppas

Since K is a consistent complete theory, there is a world w,
such that [K] = {w}.
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et al., 2000]. In this article, we provide such a characteriza-
tion for the general case of incomplete theories.

4.2 Possible-world Characterization for the
General Case

To elevate the possible-world characterization of (wP) for the
general case, an extension of the definition of Diff was pro-
posed in [Peppas et al., 2015], in order to cover comparisons
between a world r and an arbitrary, possibly incomplete, the-
ory K. This is accomplished, taking into account the concept
of a K-splitting, that is central to Parikh’s notion of relevance.

Let K be a theory and Q = {Q1,...,Q,} a partition of
Piie, UQ = P, Q; # @, and Q; N Q; = @, for all
1<i#j<n Wesaythat Q = {Q1,...,Q,} isa K-
splitting iff there exist sentences ¢; € LO1, ... ¢, € L,
such that K = C'n(¢1, . .., ¢n). Parikh has shown in [Parikh,
1999] that, for every theory K, there is a unique finest K-
splitting (denoted by JF); i.e., one which refines every other
K-splitting.®

Under the above, the extended definition of Diff is as fol-
lows: Diff (K,r) = |J{F; € F : forsome ¢ € LI K = ¢
and r = —¢}. Note that, in the special case of a consistent
complete theory K, the above definition of Diff collapses to
the one given for (SP).

Having defined Diff, the appropriate possible-world char-
acterization of (wP), for the general case, are the conditions
(Q1) and (Q2) below:

QD
(Q2)

If Diff (K,r) C Diff (K,") and Diff (r,7’) N Diff
(K,r) =@, thenr <7’
If Diff (K, r) = Diff (K, ') and Diff (r,r") N Diff
(K,r) =@, thenr ~ 1.

Both conditions (Q1) and (Q2) are variants of (SP). Like
(SP), both these conditions relate the plausibility of a world r
to its difference Diff (K, r) from the initial belief set K.

5 Epistemic-entrenchment Characterization
of Weak (P) for Incomplete Theories

We now proceed to our objective, which is to characterize
the weak version of axiom (P) — or, equivalently, condition
(wP) — in terms of epistemic entrenchments, for the general
case of incomplete theories. This is accomplished, taking into
account the K -splitting concept, as in the case of the possible-
world characterization for the general case. We first introduce
some more notation.

Let K be a consistent and (possibly) incomplete theory of
L,andlet F = {F1,..., F,} be the finest K -splitting. Then,
there exist unique (modulo logical equivalence) sentences
x1 € L .. xn € L, such that K = Cn(x1,. .., Xn)s
with £,, N EXj =g, forall 1 < i # j < n. Wecall these
sentences the units of K. Intuitively, the units of K can be re-
garded as the “building blocks” of K, with all other sentences
of K following from them. The unit set of K, namely, the set
of all units of K, is denoted by U; i.e., U = {x1,.--,Xn}-

8 A partition Q' refines another partition Q iff, for every Q} € Q’,
there is Q; € @, such that Q; C Q.
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Consider now a sentence ¢ in L. A support set for ¢ in
K is a set I" of units of K, that entails ¢; i.e., ' C U and
I' E ¢. A support set for ¢ in K is minimal iff no proper
subset of it entails ¢. The intuitive reading of the above and
the following definitions is based on the view that the units
of K are the primary beliefs. Thus for example, intuitively, a
minimal support set for ¢ in K is a minimal set of units, that
suffices to “justify” the presence of ¢ in K. Note that the set
of all minimal support sets for ¢ in K is denoted by S.S(¢).

In this sense, we define a cut for a sentence ¢ in K to be
a minimal set of units, whose withdrawal from K will leave
¢ unsupported. Formally, a cut for ¢ in K is a set € of units
of K, 8 C U, such that i/ — 6 ¥ ¢, and for every proper
subset 0’ of 6, U — &' = ¢. Since a cut @ for a sentence ¢ in
K intersects every minimal support set for ¢ in K, it follows
that § C EU S5()-

At this point, it should be noted that the notions of sup-
port set and cut correspond to the notions of kernel and in-
cision function, respectively, presented in [Hansson, 1994].
More precisely, Hansson provides in his article a natural non-
relational generalization of safe contraction [Alchourrén and
Makinson, 1985], called kernel contraction. For this purpose,
he defines a ¢-kernel of I' to be a minimal subset of a set of
sentences I, that imply a sentence ¢, and the kenrel set to be
the set of all ¢-kernels of I", denoted by I" LL gzb.g Moreover,
he also defines an incision function o for I to be a function,
that makes an incision into every ¢-kernel of I, selecting sen-
tences to be discarded. Then, kernel contractions are defined
as follows: given a set of sentences I', a sentence ¢ and an
incision function ¢ for I, the kernel contraction of T by ¢,
denoted by I' =, ¢, isequal to I' — o (I" 1L ¢). Thatis, I' ~, ¢
can be obtained erasing from I" the sentences cut by o. Note,
lastly, that the support sets and cuts presented herein refer to
units of K, while Hansson’s kernels and incision functions
refer to arbitrary sentences. For this reason, support sets and
cuts are compatible with Parikh’s notion of relevance, while
kernels and incision functions are not.

We can now define that a sentence ) is better supported
than a sentence ¢ in K, which we denote by ¢ <1 v, iff the
following two conditions hold:

(i) For every minimal support set for ¢ in K, there is a mini-
mal support set for ¢ in K, such that the latter is a subset
of the former; i.e., VS € SS(¢), 3Q € SS(¢), such that
QCS.

(i) There is a minimal support set for ¢ in K, that is disjoint
from every minimal support set for ¢ in K; i.e., IR €
SS(), suchthat RNS = &, VS € SS(¢).

In terms of cuts, a sentence 1 is better supported than a
sentence ¢ in K iff, for every cut 6’ for ¢ in K, there is a cut
0 for ¢ in K, such that 6 C 6.

Intuitively, v is better supported than ¢ in K, if whenever
ones cuts enough “links” to “disconnect” 1y from the units of
K, regardless of how this is done (there are, in general, more
than one ways), ¢ also gets disconnected.

Sentences ¢ and v are equally supported in K, which we
denote by ¢ ~ 1, iff ¢, v € K, and, moreover, the set of

°In [Fuhrmann, 19911, kernels are called entailment sets.
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all minimal support sets for ¢ in K is equal to the set of all
minimal support sets for ¢ in K i.e., SS(¢) = SS(¥).

In terms of cuts, sentences ¢ and v are equally supported
in K iff ¢, ¢ € K, and, moreover, the set of all cuts for ¢ in
K is equal to the set of all cuts for ¢ in K.

For any two sentences ¢, 1) € L, we define that ¢ and ¢ are
logically equivalent modulo L (where I is a set of sentences
of £), which we denote by ¢ =r v, iff, for every sentence
A€ Lp, AE ¢iff A |E . Clearly, if L1 = L, then ¢ = 1.

With the above definitions, we can formulate the counter-
parts of (Q1) and (Q2) for epistemic entrenchments. Consider
an epistemic entrenchment <, related to a consistent and
(possibly) incomplete theory K. The conditions (EP1) and
(EP2) below turn out to be the epistemic-entrenchment
duplicate of (Q1) and (Q2):

If $ <vpand ¢ = 55(4) ¥, then ¢ < 9.
If  ~ 1 and ¢ =554 ¥, then ¢ ~ .

(EP1)
(EP2)

To understand the intuition behind the above conditions, let
us consider a concrete example, referring to condition (EP1);
the same intuition applies for (EP2). Let K = Cn(a
b,c < d), where a, b, ¢, d are propositional variables. The
finest K -splitting is F = {{a, b}, {c,d}}, and the unit set of
KisU = {a < b,c + d}. Moreover, let ¢ = aV -bVeVd
and ¥ = aV —bV cV —d. Then, SS(¢) = {{a + b}}
and SS(¢) = {{a < b},{c <> d}}. Hence, we derive that
¢ <1 and ¢ =js55(¢) ¥, and according to the condition
(EP1), it follows that ¢ < 1. However, this is not the case
for the sentences ¢ = ~aVbVcVdandy = aV bV
¢V —d. Here, although SS(¢) = {{a < b}} and SS(v) =
{{a + b},{c ¢ d}} (and thus ¢ < ¢), there is a sentence
A€ Lyss(e) (e.g, A ==a V b),such that \ = ¢ and \ ¥ 1)
(and thus ¢ #(j55(¢) ¥)- Hence, the relative order of ¢, 1,
with respect to <, is not constrained by (EP1).

In the special case of a consistent complete theory as an
initial belief set (i.e., [K] = {w}), (EP1) is equivalent to
condition (EP) presented below — which appears in [Peppas
et al., 2000] as a constraint on sentences — while (EP2)
reduces to a vacuous condition.!”

(EP) If ¢ <1, then ¢ < 1.

Condition (EP), basically, associates the epistemic en-
trenchment of a sentence, with the degree of support it has in
a theory; the more supported a sentence is, the higher the sen-
tence appears in the epistemic-entrenchment ordering. Both
conditions (EP1) and (EP2) are variants of (EP). Indeed, the
antecedent of (EP1) is stronger than the one of (EP), since
it requires not only that ) is better supported than ¢ in K,
but, moreover, that ¢ and 1 are logically equivalent modulo
Ly ss(g)- Condition (EP2) is, also, in the spirit of (EP). It
deals with the limiting case of two sentences ¢ and ), that
are equally supported in K, and, moreover, they are logi-
cally equivalent modulo £ s5(¢) = L 55(y)- For such sen-
tences, (EP2) states that they ought to be equally entrenched.

Note that condition (EP) is, basically, a translation of (SP) in
the realm of epistemic entrenchments.

776

Theorem 1 below establishes the connection between
Q1) — (Q2) and (EP1) — (EP2), and, thus, provides the
epistemic-entrenchment characterization of the weak ver-
sion of axiom (P), for the general case of incomplete theories.

Theorem 1. Let K be a consistent theory of L, < a preorder
faithful to K, and < the epistemic entrenchment related to K,
corresponding to = by means of (SE). < satisfies (Q1)—(Q2)
iff < satisfies (EP1) — (EP2).

Proof.
(=)
Suppose that < satisfies (Q1) and (Q2).

For (EP1), assume that, for any two contingent sentences
¢, € L, ¢ <11 and ¢ = 55(4) ¥ We need to show that
¢ < 1. Notice that from ¢ <19 it follows that ¢) € K. There-
fore, if ¢ ¢ K, (EP1) follows directly from (EE4). Assume,
therefore, that ¢ € K.

Consider any world r/, such that v’ € [-¢]. Clearly,
there is a cut ¢’ for ¢ in K, such that ' = —¢’.!' Since
¢ =\ ss(e) ¥, it follows that {r N Ljgg(e) : forall 7 €
[-]} = {r' N Lss(e) : forall v’ € [=]}, hence there is a
world r € [—¢], such that r agrees with » on all propositional
variables in £ gg(4), and with a K-world on the remaining
variables.'> Moreover, since ¢ <1 9, for every cut ¢ for 9
in K, there is a cut € for ¢ in K, such that § C ¢ (with
ﬁU s5(¢) C "), from which we derive that r = —6. Hence,
it follows that Diff (K,r) C Diff (K,r’) and Diff (r,r") N
Diff (K,r) = @, therefore from (Q1), it follows that r < 7.
Finally, since for some r € [~¢], 7 < 1/, for every r’' € [—)],
we derive from (SE) that ¢ < 1), as desired.

For (EP2), assume that, for any two contingent sentences
6,0 € L, ¢ ~ v and ¢ =_g5(4) Y. We need to show
that ¢ ~ . If LUSS(¢) LUSS(w) = L, then ¢ = 1),
and therefore trivially ¢ 1.  Assume, therefore, that
Lyss) = Lyss) C L.

Consider any world r, such that r € [—¢]. Clearly, there is
acut § for ¢ in K, such that r |= — (see Footnote 11). Since
10) =USS(¢) 1), it follows that {’/‘ N ‘CU SS(¢) - forall » €
[-¢]} = {r' N Lyss) : forall ¥ € [-¢]}, hence there is
aworld r' € [)], such that r" agrees with r on all proposi-
tional variables in L 55(¢) = £ 55(v)» and with a K-world

~

' Assume, on the contrary, that v’ |= ¢’, for all cuts @’ for ¢ in
K. Observe that {6’ : such that ¢’ is a cut for ¢ in K} = |J SS(¢).
Therefore ' = J SS(v), hence ' |= 1. Contradiction.

2Let S; be the set of worlds in [~¢)], that satisfy the i-th el-
ement of R = {r N Lyss(e : forall r € [~¢]}. Clearly,

U Si = [—¢]. It suffices to show that there is a world, in every
i€R

Si, such that it agrees with a K -world, on all propositional variables
in £ — ﬁU 55(¢)- Now, assume, for contradiction, that there is no
such world in S;. Then, for every world w in S;, there is a sen-
tence v € L — L g3(¢) sSuch that K |= v and w |= —w. Clearly
then, there is a sentence ¢ € £ — L ss(¢), such that K |= ¢ and
t(S;) = —¢. However, \/ t(S;) ¢, hence there is a sentence

i€R

£ € L—Lss(s),suchthat K |= & and —¢ = =& (or € |= ¢), from
which it follows that K |= ¢, through a sentence in £ — L} s5(4)-
Contradiction.

=
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on the remaining variables (see Footnote 12). If r agrees with
a K-world too, on all propositional variables in £ —EU 55(¢)>
then it follows that Diff (K, r) = Diff (K, r’) and Diff (r,r’)
N Diff (K,r) = &, therefore from (Q2), r ~ r’. If r dis-
agrees with all K-worlds, on some propositional variables in
L — L ss(4)- then it follows that Diff (K, ") C Diff (K, )
and Diff (r',r) N Diff (K,r') = &, therefore from (QI1),
r’ < r. In either case, we derive from (SE) that ¢ £ .
By a totally analogues argument, considering now any world
r’ such that ' € [-)], we can also prove that ¢) £ ¢. Conse-
quently, ¢ ~ 1) as desired.

(=)

Suppose that < satisfies (EP1) and (EP2).

For (Q1), assume that, for any two worlds r, v’ € M, Diff
(K,r) C Diff (K,r") and Diff (r,r") N Diff (K,r) = @.
We need to show that r < ¢/ If Diff (K,r) = &, then r
is consistent with K, and therefore » € [K] (and of course
r’ ¢ [K]). Then, the faithfulness of < entails (Q1). Assume,
therefore, that Diff (K, r) # &.

Construct the sentence 1 as follows: ¢ = V(—’). Clearly,
K E ¢ and r' = —. Moreover, by construction, the only
cut 8" for ) in K is the set of all units of K, that can be
expressed in L2 (K.m)  Now, construct the sentence ¢ as
follows: ¢ = V(—r). Clearly, K |= ¢ and r = —¢. More-
over, by construction, the only cut for ¢ in K is the set of all
units of K, that can be expressed in L2 (K.7) - Since Diff
(K, r) C Diff (K,r"), it follows that, for every cut 6’ for ¢ in
K, thereis a cut 0 for ¢ in K, such that @ C 6’, in other words,
¢ <11). By the construction of ¢ and ), and since Diff (r, ') N
Diff (K,r) = @, we derive that ¢ =(jg5(¢) ¥. Hence, from
(EP1) it follows that ¢ < . Finally, the construction of ¢
and ¢ entails, also, that [~¢] = {r} and [-¢)] = {r'}, hence
from (SE), r < 7’ as desired.

For (Q2), assume that, for any two worlds r, 7’ € M, Diff
(K, r) = Diff (K,r’) and Diff (r,7') N Diff (K,r) = &. We
need to show that r ~ 7. If Diff (K, r) = P, thenr = r’ and,
therefore, (Q2) trivially holds. Moreover, if Diff (K,r) = &,
then v, € [K]. Then, the faithfulness of < entails (Q2).
Assume, therefore, that & # Diff (K,r) C P.

Construct the sentence 1 as follows: ¢ = V(—’). Clearly,
K | ¢ and ' = —). Moreover, by construction, the only
cut 6’ for 1) in K is the set of all units of K, that can be ex-
pressed in LDif (K.r') Now, construct the sentence ¢ as fol-
lows: ¢ = V(—r). Clearly, K |= ¢ and r = —¢. Moreover,
by construction, the only cut for ¢ in K is the set of all units of
K, that can be expressed in L (K:7) Since Diff (K,r) =
Diff (K, "), it follows that § = €’ (i.e., the set of all cuts for ¢
in K is equal to the set of all cuts for v in K), in other words,
¢ ~ 1. By the construction of ¢ and 4, and since Diff (r, ')
N Diff (K,r) = @, we derive that ¢ = gg(¢) 1. Hence,
from (EP2) it follows that ¢ ~ . Finally, the construction
of ¢ and v entails, also, that [-¢] = {r} and [¢)] = {r'},
hence from (SE), r ~ 7’ as desired. |

6 Conclusion

It is clear that Parikh’s relevance-sensitive axiom (P) can be,
basically, considered as a very important axiom for rational
belief revision, in addition to the AGM postulates (K*1) —
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(K*8). This is true, not only from a theoretical viewpoint, but
also from the perspective of a successful implementation of
an AGM belief revision system, for real-world applications.

In this paper, we have provided the -epistemic-
entrenchment characterization of the weak version of
Parikh’s relevance-sensitive axiom (P) — or, equivalently,
of condition (wP) — for belief sets that are not necessarily
complete. What is quite appealing about our results is that the
conditions (EP1) and (EP2), that characterize precisely weak
(P), are natural constraints on the relative “retractability”
of sentences. Note that an equivalent condition to (EP1) —
(EP2), for the special case of consistent complete theories,
appears in [Peppas et al., 2000].

The notion of language splitting seems intrinsic to any at-
tempt to form a theory of anything at all. The assumption
that we can ignore some aspects, while considering others, is
inherent in almost all intellectual activity. As a consequence,
the results reported herein could also be significant for other
related domains of Artificial Intelligence, where the notions
of relevance and local change play an important role, such
as description logics, ontology update and merging, spatio-
temporal reasoning, legal reasoning, multi-agent systems re-
vision, and many others.

Lastly, we note that the epistemic-entrenchment charac-
terization of (wP) — contrary to its possible-world char-
acterization, provided in [Peppas et al., 2015] — is better
alligned with the notion of ensconcement [Williams, 1992;
1993; 1994], in the context of belief base revision schemes
[Nebel, 1998]. Briefly, an ensconcement is a total preorder
on a belief base B, that can be “blown up” to a full epis-
temic entrenchment <, related to Cn(B). In other words, it
is some sort of “base” for <; i.e., a (typically) concise rep-
resentation of an epistemic entrenchment. An ensconcement
ordering satisfies the priority consistency condition, reported
in [Rott, 19911, where Rott has shown that it is a necessary
and sufficient condition for the extension of any total preorder
to an epistemic entrenchment < on C'n(B). Hence, enscon-
cement orderings are always extensible to epistemic entrench-
ments. Williams, in [Williams, 1993; 1994], provided an ex-
plicit construction of such an extension. Of course, these
observations are crucial for a possible implementation of a
successful AGM belief revision system, where one major ob-
stacle is the large amount of information, that the user needs
to provide to the system.

We will conclude our work by pointing out that an in-
teresting direction for future work would be to extend the
epistemic-entrenchment characterization to cover the strong
version of axiom (P) — or, equivalently, condition (sP).
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