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Abstract

We consider the problem of deleting nodes in a
covert network to minimize its performance. The
inverse geodesic length (IGL) is a well-known
and widely used measure of network performance.
It equals the sum of the inverse distances of all
pairs of vertices. In the MINIGL problem the
input is a graph G, a budget k, and a target
IGL T, and the question is whether there exists
a subset of vertices X with |X| = k, such that
the IGL of G — X is at most 7. In network
analysis, the IGL is often used to evaluate how well
heuristics perform in strengthening or weakening
a network. In this paper, we undertake a study of
the classical and parameterized complexity of the
MINIGL problem. The problem is NP-complete
even if 7' = 0 and remains both NP-complete and
W 1]-hard for parameter k on bipartite and on split
graphs. On the positive side, we design several
multivariate algorithms for the problem. Our main
result is an algorithm for MINIGL parameterized
by twin cover number.

1 Introduction

Strategic aspects of network analysis is an important research
area in many fields including Al (see, e.g., [Michalak er al.,
2017]1). Within this area, pinpointing the most important
nodes or edges is a fundamental problem [Michalak et al.,
2013; Chen et al., 2012; Zheng et al., 2011]. Applications
include disrupting an epidemic network (see, e.g., [Kovdcs
and Barabdsi, 2015]), weakening a terrorist network (see,
e.g., [Michalak et al., 2013]), finding the most critical
or vulnerable nodes (see, e.g., [Holme et al., 2002]) and
reducing reachability on a graph for network security (see,
e.g., [Zheng et al, 2011]). The problem is relevant to
various fields and sectors such as epidemiology, sociology,
physics, security and logistics. We focus on the problem of
weakening a covert network by identifying and eliminating
the individuals who are most critical for a high performance
of these networks. The problem has been considered both in
social network analysis and artificial intelligence (see, e.g.,
[Carley et al., 2003; Lindelauf e al., 2013; Michalak et al.,
2013]). A common practice among these studies is to use a
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heuristic to rank the vertices by their importance (see, e.g,
[Michalak er al., 2013; Michalak et al., 2015; Szczepanski
et al., 2015]). In order to measure the quality of their pick
they either use expert domain knowledge on the importance
of vertices in the network or turn to widely used network
performance measures like component order connectivity
(size of the largest connected component) [Gross et al., 2013;
Drange et al., 2016] and inverse geodesic length (IGL; sum of
the inverse distances between all pairs of vertices). Formally,
IGL(G) = > (uvycviusto m. The average inverse
geodesic length (AIGL) of G is the inverse geodesic length
of G normalized by the number of vertex pairs. Formally,
AIGL(G) = ﬁ - IGL(G). We opt to quantify network
performance by IGL; the motivation for that is two-fold.
Firstly, AIGL has been frequently used in the literature as a
global measure of the connectivity or robustness of a network.
It has been used to examine network vulnerability [Dagon
et al., 2008; Holme et al., 2002] and the effect of critical
nodes [Barabdsi and Albert, 1999] in the network security
domain. It has also been used to identify influential nodes in
a social network [Morone and Makse, 2015]. Game-theoretic
values and centrality measures, such as the Shapley value
and betweenness centrality of the nodes, have been used
as heuristics to delete nodes with large impact on network
performance [Holme er al., 2002; Amer and Giménez, 2004;
Michalak et al., 2015; Szczepanski et al., 2015]. In particular,
Szczepanski et al. [2015] delete the nodes with the highest
Shapley value as a heuristic to decrease the IGL. Secondly,
performance measures like component order connectivity
and diameter prove ineffective on dense graphs. On the
contrary, IGL remains effective in identifying critical nodes
irrespective of the input graph structure. Surprisingly, despite
its widespread use as a network performance measure, the
optimization problem with respect to IGL has not been
examined previously. We consider the vertex deletion
optimization problem corresponding to IGL:

MINIMIZE IGL (MINIGL)

Input: A graph G, an integer k, and a target inverse
geodesic length 7T'.
Question:  Does there exist X C V(G), such that

|X| <kand IGL(G - X) <T7?

The problem is NP-complete and we show that it remains



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Table 1: Covert networks with their number of vertices (n),
edges (m), vertex cover number (4), twin cover number (), and
neighborhood diversity (w).

Dataset n m é ¥ w
FIFA 450 | 5022| 422 | 38 449
Drug Net 293 | 145 | 70 36 142
Suffragettes 112 | 1342| 84 52 107
Caviar 110 | 163 | 25 17 60
Noordin 79 200 | 37 32 70

NP-complete on several graph classes that naturally occur in
application domains [Belik, 2016; Borgatti, 2012]. Our main
focus is a parameterized complexity analysis of the problem.

Our Results. We observe that, for T 0, MINIGL
is equivalent to VERTEX COVER and it is therefore
para-NP-hard for parameter 7. For parameter k, we
give reductions from CLIQUE on regular graphs to show
that MINIGL is W/[1]-hard and NP-complete, even when
restricted to bipartite and split graphs. For parameter
k + T, we give a kernel of size O(k* + T), which
establishes that the problem is FPT for this combined
parameter. Next, we consider structural parameters. The
vertex cover number is among the most widely studied
structural parameters [Fellows et al., 2008; Fomin et al.,
2014], neighborhood diversity [Lampis, 2012; Ganian, 2012]
is a parameter that generalizes vertex cover to dense
graphs, and Ganian [2015] recently proposed an alternative
generalization, the twin cover number, that still preserves
some of the nice properties of the vertex cover number. Our
main result is that MINIGL is FPT parameterized by twin
cover number. Since a vertex cover is a twin cover, this
implies that MINIGL is also FPT parameterized by vertex
cover number. However, we give a faster algorithm for this
parameter. We also provide an FPT algorithm parameterized
by neighborhood diversity and the deletion budget combined.
Our choice of parameters is motivated by real-world
datasets. Table 1 shows five representative datasets of
covert networks from [UCINET Software, 2017] with some
parameter values. Even on this small sample, we can already
see the importance of considering multiple parameters.
While, for the FIFA network, both the vertex cover number
and the neighborhood diversity are large, the smallest twin
cover contains fewer than 10% of the vertices. For instances
where all parameters are large, our current best approach will
turn out to be a simple FPT algorithm parameterized by w+k.
Our key take-home message is that minimizing IGL is
computationally hard even for very restricted graph classes
and that a parametrized complexity approach by identifying
and exploiting suitable parameters promises to be fruitful.

2 Preliminaries

Let G = (V,E) be an undirected, simple graph. We
denote the set of vertices and edges in G as V(G) and
E(QG), respectively, with n = V and m = E. For graph
terminologies not defined here we refer to [Diestel, 2010].
Let u,v € V with u # v. An edge xy is incident to v if
v € {z,y}. We say that u and v are adjacent or neighbors if
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uv € E(G). We denote the neighborhood of v, i.e., the set of
vertices adjacent to v, as N (v). The closed neighborhood of v
is Nv] = N(v) U {v}. The closed neighborhood of a vertex
set S is N[S] = [J,cg N[v], and its open neighborhood is
N(S) = N[S]\ S. A path between u and v is an alternating
sequence of vertices and edges that starts with v and ends
with v, with each edge in the path being adjacent to the
preceding and succeeding vertex, and each vertex occurring
at most once in the sequence. The length of a path is its
number of edges. The distance between u and v, denoted
by d(u,v), is the length of a shortest path between u and v.
The ith neighborhood of a vertex v is the set of vertices at
distance i from v and is denoted by N(v). If there is no
path between u and v then their distance is infinite. A pair
of vertices at finite distance is connected. Let S C V. A
graph induced on S is denoted as G[S5], i.e., V(G[S]) = S
and E(G[S]) = {ww € E : u,v € S}. Similarly, we denote
by G — S the graph G[V \ S]. A connected component of
G is a maximal subgraph of G where each vertex pair is
connected. A d-regular graph is a graph where each vertex
has d neighbors. A bipartite graph is a graph whose vertex
set can be partitioned into two independent sets. A split graph
is a graph whose vertex set can be partitioned into a clique K
and an independent set I. Such a partition (C, I') is known as
a split partition. Throughout this article we assume that /C is
a maximal clique in a given split partition (K, I).

Two vertices v and v are twins if N(u) \ {v} = N(v) \
{u}. Vertices u, v are true twins if they are twins and uv €
E(G). A set of vertices C' C V(G) is a twin cover of G, if
for every edge zy € E(G), either zy is incident to a vertex
in C or x and y are true twins [Ganian, 2015]. A graph G has
neighborhood diversity w, if there exists a partition of V' (G)
into at most w sets, such that all the vertices in each set are
twins; such a partition is called the neighborhood partition of
G and can be computed in polynomial time [Lampis, 2012].

A parameterized decision problem II is in FPT (Fixed
Parameter Tractable), if there is an algorithm solving any
instance = with parameter k in time f(k)-|x|¢, where f(k)isa
computable function of k and c is a constant. A parameterized
reduction from a parameterized decision problem II; to a
parameterized decision problem Ils is an algorithm, which,
for any instance I of II; with parameter k produces an
equivalent instance I’ of Il with parameter k' such that
there exists a computable function f such that £’ < f(k)
and the running time of the algorithm is f(k) - [I|°(V).
W1] is a class of parameterized decision problems closed
under parameterized reductions. W/[1]-hard problems are
considered unlikely to be in FPT [Downey and Fellows,
2013]. A para-NP-hard problem is NP-hard even for constant
values of the parameter. We refer to [Cygan et al., 2015] for
a detailed exposition of parameterized complexity.

3 Intractability for Parameter 7'

In this section we consider the parameterized complexity of
MINIGL when parameterized by the target inverse geodesic
length T'. We show that MINIGL is NP-complete, even when
T = 0, by observing that it is equivalent to the well-known
NP-complete VERTEX COVER problem [Karp, 19721, where
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for a given graph G and integer k, the question is whether &
vertices can be deleted from G to make the graph edgeless.
Since MINIGL remains NP-complete for a constant value of
T, MINIGL is para-NP-hard when parameterized by 7T'.

Theorem 3.1. MINIGL is NP-complete and para-NP-hard
for parameter 7T'.

4 Intractability for Parameter £

Given the previous hardness result for general graphs, we
consider MINIGL on special classes of graphs for which
VERTEX COVER can be solved in polynomial time, namely
split graphs and bipartite graphs. We also consider another
natural parameter, namely the size of the solution k. We begin
with a proof that for a split graph with vertex partition (IC, I),
there is an optimal solution for MINIGL containing only
vertices from /C. It can be proved by an exchange argument
replacing a vertex from [ by a vertex from /C and analyzing
the impact on the IGL.

Lemma 4.1. For each subset of vertices X C V(@) in a split
graph G = (K, I, E), there is a subset of vertices Y C K with
Y| < |X|,suchthat IGL(G —Y) < IGL(G — X).

We now consider MINIGL on split graphs and call this
problem SPLIT-MINIGL. We show that SPLIT-MINIGL is
NP-complete and W{1]-hard for parameter k. We provide
a parameterized reduction from the CLIQUE problem on
regular graphs, where, given a regular graph G and an integer
k, the question is whether G has a clique of size k. The
restriction of CLIQUE to regular graphs is known to be
NP-complete and W [1]-hard for parameter & [Cai, 2008].

Theorem 4.2. SPLIT-MINIGL
W1]-hard for parameter k.

is NP-complete and
Proof. For a CLIQUE instance (G = (V, E), k) withn = |V|
and m = |E|, where G is d-regular with d > 2, we obtain
a SPLIT-MINIGL instance (G’, k,T) as follows. The vertex
set of G’ consists of the clique X' = V and the independent
set I' = E. Set E(G') = {x129 : 1,29 € V} U {ze :
x € e € E}. See Fig. 1b. We retain the value of & and set

T= T( BE-D fd — k(k — 1), m+ =0 kd) where

T(ﬁo,ﬂl,ﬂz):(n_k).(zn_k_l)—ka—k.d
to(B k=2t (k1) )
+(n—k).4d'(d271))

L ((m=Ppo)-(m—pF—1) d-(d—1)
+3( e = (k) )

is the IGL of a graph obtained from G’ by deleting k vertices
from K’ so that I’ has (3; vertices of degree i. We now show
that (G', k, T') is a Yes-instance for SPLIT-MINIGL iff (G, k)
is a Yes-instance for CLIQUE.

Suppose (G',k,T) is a Yes-instance for SPLIT-MINIGL
and there is a solution X’ C V(G’') with |X'| = k. By
Lemma 4.1 we may assume that X’ C K'. Let G = G'—X'.
Let a; denote the number of vertices in I’ that have degree 4
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in G”. We have, IGL(G") = T(ag, a1,a3). Let us now
determine the values of a;; and s in terms of ag:

Ozlzk‘d—an a2=m+ao—kd.

Notice that by (1) and (2), the value of IGL(G")
T(ag, a1, a) decreases with increasing ag. In other words,
the inverse geodesic length is minimized when the number of
isolated vertices is maximized. We observe that IGL(G") <
T only if ag = @ But this is the maximum number of
vertices that can be isolated by deleting k vertices from G,
meaning that X’ forms a clique of size k in G. Hence, (G, k)
is a Yes-instance for CLIQUE.

Conversely, suppose that (G, k) is a Yes-instance for
CLIQUE and there exists a solution X C V(G), with | X| =
k, then, deleting X from G’ isolates @ vertices in I’.
Therefore, IGL(G' — X) < T. Thus, (G k,T) is a
Yes-instance for SPLIT-MINIGL. O

and

2

We further consider MINIGL on bipartite graphs and
call this problem BIPARTITE-MINIGL. We show that
BIPARTITE-MINIGL remains NP-complete and W1]-hard
when parameterized by k. Again, we provide a parameterized
reduction from CLIQUE on regular graphs.

Theorem 4.3. BIPARTITE-MINIGL is NP-complete and
W1]-hard for parameter k.

Proof. Consider an instance (G, k) of CLIQUE, where G is a
d-regular graph, d > 2, with n vertices and m edges. We
construct an instance (G’,k,T) for BIPARTITE-MINIGL.
We construct the vertex set V' (G’) with a bipartition (A, B),
where A = V(G) and B = By U By with B; = {e; : e €
E(G)}. The edge setof G’ is E(G') = {xe, : e1 € By,x €
e} U{zes : z € A es € By}. In this way each vertex in A
has degree d + m, each vertex in B has degree 2, and each
vertex in Bs has degree n (see Fig. 1¢c). We retain the value

of kandsetT =T (@), where

TBo)=m-(n—k)+2m—Fk-d
+%(m-(m—ﬁo)+(n_k).(;_k_l)
+(nfk)~d'(i_1)+m'(”;_1)) 3)
2 (k) (m— o) — (2m — - d))
pp (D gy 22D

Since vertices in A have much higher degrees than vertices in
B and they also occur on paths between vertices in B, one can
show that for each subset S C V(G'), there is a subset S’ C
A, such that IGL(G' — §') < IGL(G' — S). We now show
that (G, k,T) is a Yes-instance for BIPARTITE-MINIGL iff
(G, k) is a Yes-instance for CLIQUE.

Suppose that (G’,k,T) is a Yes-instance for
BIPARTITE-MINIGL and there is a solution X’ C A
with | X'| = k. Let G = G’ — X’ and o be the number of
isolated vertices in G”. Then, IGL(G") = T(«ayp). Note that
by (3), the value of IGL(G") decreases with increasing «.
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In other words, minimizing IGL is equivalent to maximizing

the number of isolated vertices. We have that IGL(G") < T
k-(k—1)

only if o 5— . But this is the maximum number of
vertices that can be isolated by deleting k vertices from G'.
Thus, there are k-(k=1) jsolated vertices in B and X’ forms
a clique in G. Hence, (G, k) is a Yes-instance for CLIQUE.
Conversely, suppose that (G, k) is a Yes-instance of the
CLIQUE problem and there exists a solution X C V(G),
with | X| = k. But then deleting X from A isolates (k1)
vertices in By. Therefore, IGL(G' — X) < T. Hence
(G',k,T) is a Yes-instance for BIPARTITE-MINIGL. O

5 Polynomial Kernel for Parameter i + T

Here we prove that MINIGL is FPT for parameter k + T by
providing a polynomial-time preprocessing algorithm which
produces an equivalent instance of MINIGL of size O(k? +
T). In the language of parameterized complexity, we design
akernel of size O(k? + T'). The following reduction rules are
applied in the order we state them here.

Reduction Rule 5.1 (Isolated Vertices). If there exists a
vertex € V(G) such that |[N(x)| = 0, then delete z.

For the next two reduction rules, let g := 24/ 19—6 + T — %

which is the positive solution for the equation T" = ¢+ @.

Reduction Rule 5.2 (High Degree Vertices). If there exists a
vertex © € V(G) such that |[N(z)| > ¢ + k, then remove z
from G and set k := k — 1.

Reduction Rule 5.3 (Bounded Edge Set). If |E(G)| > T +
k(g + k), then return NO.

The correctness proof for these rules is straightforward and
we skip it here due to space constraints.

Theorem 5.4. MinIGL has a kernel of size O(k* + T).

Proof. Given an instance (G, k,T) of MINIGL by applying
reduction rules 5.1-5.3 exhaustively, we obtain an instance
(G', k', T) where number of edges in G’ is at most T+ k(g +
k) = O(T+k(VT+k)) = O(k*+T). Since degree of each
vertex is at least 1, G’ has O(k? + T') vertices. O

6 FPT for Parameter Twin Cover Number

In this section we consider the twin cover number of the graph
as a parameter. Although, the TWIN COVER problem (given
a graph GG and an integer k, does G have a twin cover of size
at most k£?) is NP-complete [Ganian, 2015], a smallest twin
cover can be computed in time O(|E| + 1 - |[V| + 1.2738!),
where [ is the twin cover number [Ganian, 2015]. So, we may
assume that the input contains a smallest twin cover of G.

6.1 Description of the Algorithm

Let (G, k,T) be an instance of MINIGL and C be a smallest
twin cover of G with |C| = . Let P, be a partition of V(G) \
C into a set of equivalence classes {P;, P»,...,P,}, such
that, for any two vertices v and v, if N(u) NC = N(v) N C,
then u and v belong to the same equivalence class. This
implies that [P.| < 2!, as there is at most one equivalence
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Input : A graph G, an integer k, a target IGL T,
and a twin cover C' of G

Parameter: [ = |C|

Output : “yes” if (G, k,T) is a Yes-instance for

MINIGL, and “no” otherwise

Guess which subset C’ C C to delete;

Define P, for V(G) \ C;

Guess which equivalence classes to delete entirely;

Guess the number of vertices k' < k to delete from

equivalence classes in P;;

Greedily delete k' vertices from P;

6 Guess which vertices from the equivalence classes in

P, to delete;

7 if k <[ then
Guess the number of vertices to delete from each
equivalence class in P; and greedily delete these
vertices;

9 else return no;

10 if IGL(G) < T then return yes;

11 return no;

W N =

wn

Algorithm 1: MINIGL parameterized by the size of a twin
cover of the input graph.

class for each subset of C. Ganian [2015] observed that
G[V(G) \ C] is a disjoint union of cliques. In particular,
for each P; € P., G|P,] is a disjoint union of cliques. Let
the largest clique in P; be denoted as Z,,q.(G[F;]). Let
{P,Ps, P} be a partitioning of the equivalence classes in
‘P, as follows: an equivalence class P, € P. belongs to P
if there is no path from a vertex of P, to a vertex in another
equivalence class from P,; an equivalence class P, € P.\ P*
belongs to Py, if | Py| < 212 + 1; lastly, P; = P, \ (P UPs).
Using these notations, we outline Algorithm 1.

In the description of the algorithm, when we state that the
algorithm guesses an object, this means that the algorithm
branches into all possible values that this object can take.
In Step 1, the algorithm guesses which subset C’ C C to
delete, meaning that it branches into one subproblem for each
C’ C C and in this subproblem, all deletion sets containing
C’ but no other vertex from C are considered. Then, C" is
included in the solution and k is decreased by |C’|. From this
point onward, we set C' := C'\ C’ and [ := |C|. In Step
2, we define a set of equivalence classes P. on V(G) \ C
as described earlier. In Step 3, the algorithm guesses which
equivalence classes to delete entirely. In Step 4, the algorithm
guesses the number of vertices &’ that are deleted from P*. In
Step 5, the algorithm performs &’ iterations. In each iteration,
for each equivalence class P, € P}, it picks an arbitrary
vertex v € Zmae(G[P,]) and computes IGL(G — v). It
then greedily deletes one of those vertices whose deletion
decreases the IGL the most. In Step 6, for each vertex in
every equivalence class in Ps, the algorithm guesses whether
to include it in the solution. In Step 7, if the deletion budget
exceeds the size of the remaining twin cover C' then the
algorithm returns “no”, otherwise it performs Step 8. In
Step 8, for each equivalence class P; € P, the algorithm
guesses the number of vertices to be deleted from F;. For



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

N

(o)
@‘.
©

@ (V. E)

(b) (K, UIL, E) (© (AUB, E)

Figure 1: Figures (b) and (c) depict a graph obtained by transforming
the 3-regular graph in (a).

each such guess, the corresponding number of vertices is
iteratively and greedily deleted from the largest remaining
clique Z,,q.(G[P;]). In Step 10, the algorithm checks if the
graph G obtained by deleting k vertices has the desired IGL.
If so, it returns “yes” otherwise it returns “no”.

6.2 Correctness

In this section we prove that the algorithm described in the
previous section correctly solves MINIGL. Clearly, Steps 1-3
and 6 are exhaustive while Steps 4, 7, 10, and 11 are trivial.
In Step 5 and 8, when the algorithm deletes a vertex from
an equivalence class P, it greedily chooses a vertex from the
largest clique Z,,,q.(G[P;]) in P;. This greedy choice can be
shown to be optimal by using the properties of twin covers.

Lemma 6.1. For a graph G, a twin cover C of G, an
equivalence class P, € P, defined over V(G) \ C (as defined
in Section 6.1) and a pair of vertices z, y, where x € P, and
Y € Zmaz(G[Py]), we have that IGL(G—y) < IGL(G—x).

Apart from the greedy selection of vertices from each
equivalence class in P, the rest of Step 8 is exhaustive. It
remains to show that Step 9 is sound, i.e., if we reach this
step with k£ > [, and there is a set of vertices .S such that
S| <k, SNC = 0 and IGL(G — S) < T, then there is
another set S* such that |S*| < k and IGL(G — S*) < T,
but S* N C # (). Therefore, the current choice for C’ can be
ignored. Before presenting the formal argument we make an
observation that will help us prove the correctness of Step 9.

Observation 6.2. In a connected graph with twin cover
number [/, any two vertices are at distance at most 2/.

Claim 6.3. Let G be the graph obtained by performing Steps
1 to 6 in Algorithm 1, with twin cover C' and a set of
equivalence classes P;. If the algorithm reaches Step 9 with
k > 1, and there is a set of vertices S such that |S| = k,
SNC =0and IGL(G — S) < T, then there is a set S* such
that |S*| = k and IGL(G — S*) < T, but S*NC # 0.

Proof. Let S C (V(G)\ C) such that |S| = kand IGL(G —
S) < T. Let G’ be a connected component of G with twin
cover C' C C and a set of equivalence classes 731’ C P; such
that |[SNV(G")| > | UPiGP{ N(P;)]. Itis easy to see that such
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Figure 2: Connected component G’ considered in the
correctness proof of Step 9 of Algorithm 1.

a connected component G’ always exists, as k > [. Let P] =
{QlaQ2a . '7Qq}, where q < 2l and |Q7,| > |Qi+1“ Let
S’ =V(G') N S. We show that if k£ > [, there exist a set S*
with |S*| = |S’], such that IGL(G' — S*) < IGL(G' — )
and S* N C’ # (. Let r be the smallest index such that for
Q=0Q1UQUQ3...UQ,. QNS> |Ui_; N(Qi)l.
Since |S’| > |N(Q)|, we can always find such an index r. Let
Pr = {Q1,Q2,...,Q,}. We order the vertices in N(Q) in
descending order of the size of their neighboring equivalence
class (if a vertex is adjacent to more than one equivalence
class we order it with respect to the largest equivalence class
it is adjacent to, and ties are broken arbitrarily). Denote this
ordering by 7. For 1 < ¢ < r, denote D¢, = Q; NS’. For
1<i<rlethk; = |Dg,| while k, = |[N(Q)| — S0} ki.
To obtain the set S*, we start from S’ and then replace each
set Do, C S’ with a set of vertices Dy, € N(Q) with
|Dps,| = k;. For each i from 1 to r, the vertices composing
Dy, are picked sequentially from N(Q) according to .
Accordingly, Dy, € (N(Q1) U N(Q2) U ... U N(Q;))
and each vertex u € N(Q) belongs to exactly one such set
Dyy,. Figure 2 depicts G’ and highlights each D, along
with its corresponding Dys,. When deleting a vertex set X

from G’, we say that the contribution of a vertex v € X is
i 1

D ueXurtv Tdan] T 2eueV(GO\X dfusy- I other words,

for a vertex pair (u, v), we attribute ﬁ if u ¢ X, but only
half of that quantity if v € X. Thus, the contributions of all
vertices in X equals the decrease in IGL when X is deleted.

Let us now compare the mutually exclusive impact of
deleting D¢, and Dy,. Note that no remaining equivalence
class is deleted entirely, due to Step 3. In particular, this
means that all vertices in C' remain at the same distance.

First let us consider the impact of deleting the set of
vertices Dy,. We delete (|Q;| — 1) + (|Qi] —2) + ... +
(|Q:| — k;) paths of length one that connect the vertices in
Dy, to each other and to the remaining vertices in ;. Note
that Z§:1(|Ql| —Jj) < |Dg,| - |Q;]. Moreover, we know
that |[N(Dg,) N C| < |N(Q)|. Therefore, by deleting D,
we delete at most |Dg,| - [N(Q)| paths of length one that
connect vertices in N (Q) to the vertices in D¢, . Overall, the
exclusive impact of deleting Dg, is at most |Dg,| - |Q:] +
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- (IN(Q)|). Alternatively, we consider deleting the set
of vertices Dy, C N(Q). Since each vertex in Dy, has
at least |@;| neighbors in @ (given that Dy, C (N(Q1) U
N(Q2)...UN(Q;)) and |Q;| > |Qi+1]), by deleting the set
of vertices D ,, we delete at least | Dar,| - |Q;]| paths of length
one. By Observation 6.2 we know that for any pair of vertices
u,v € N(Q), d(u,v) < 2l. Therefore, for each vertex
x € Dy, we attribute at least half of 211 to x for each vertex
y € N(Q)\{z}. Therefore, the contribution of D, is at least

w for their distances to the vertices in N (Q).

So far, for the deletion of Dy, we have counted an exclusive

|- 1Qi] + [P V@I - pserve

that G’ contains at least two equivalence 4cllasses (connected
components with one equivalence class are handled in Step
5 of the algorithm). Since we replace each Dg, by Dy,
and N(Q) = U._, Du,, we disconnect all the equivalence
classes in P, from each other and from V(G’) \ Q. We know
that the distance between any two equivalence classes is at
most 2. Therefore, for a pair of equivalence classes (Q;, @)
where Q; € (P, \ {Q:}), we delete |Q;| - |Q,| paths of
length at most 2[. However |Dq, | - |Q;| + |Dg,| - |Q:i| —
|Dq,| - |Dq,| of these paths are also deleted when we delete
Dgq, U Dg,,. Hence, the exclusive impact of deleting vertices

in Dy, is at least (19s1=1De D (lQJ‘ D, 1) for these paths

between equivalence classes. Therefore in order to show that
IGL(G' — 5*) < IGL(G' — 5’), it suffices to show that

|Dq,

) - (1Q5] = [Dg,l)
S(IN(@Q)]) = 71Dl - (IN(@)] = 1).

We know that size of both equivalence classes |Q;|, |Q;] is
at least 212 + . Also, we know that |Dg,| = |Dy;| < I
and |Dg,| < . Similarly, we know that [N (Q)| < I. Thus,
> 41221+1.’
S*) <
S"). Moreover, |S*| = |S’| and S*NC’ # 0. O

1
Qi -

> |DQ1‘

“

replacing the values in equation (4) we get that [3
which holds for any [ > 1. This proves that I[GL(G’ —
IGL(G' —

6.3 Running Time

By considering the number of choices in each guessing step,
and computing the IGL of a graph using a polynomial-time
algorithm solving ALL-PAIRS SHORTEST PATH [Thorup,
19991, one can upper bound the running time of the algorithm

by 2! - 22 . O . 222+ . (1 4 1) More concisely, its
running time is 202"*) . O,

Theorem 6.4. MINIGL is FPT when parameterized by the
twin cover number.

7 Faster Algorithm for Parameter Vertex
Cover Number

The previous result implies that MINIGL is FPT when
parameterized by the vertex cover number of the input graph.
Here, we give a faster algorithm for this parameter.

Theorem 7.1. MINIGL can be solved in time 20(*) . nO(1)
where [ is the vertex cover number of the input graph.
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Proof. Let (G,k,T) be an input for MINIGL. A smallest
vertex cover S for G can be computed in 1.2738" . O
time [Chen et al., 2010]. Let I = V(G) \ S and note that
I is an independent set. Let Z. = {I1,I,...,I,} be a set
of equivalence classes partitioning I such that two vertices
from I belong to the same equivalence class if they have
the same neighborhood in C. Thus, ¢ < 2!. Note that if
k > 1, we can choose X = S as IGL(G — S) = 0. Now
we consider the case when £ < [. First observe that for
all u,v € I;, IGL(G — u) = IGL(G — v). Using this
fact, we define a branching algorithm that branches into at
most (2! + 1) subinstances to choose a vertex from S or an
equivalence class. In a subinstance, the algorithm deletes the
chosen vertex from .S or an arbitrary vertex from the chosen
equivalence class, and k decreases by one. The resulting
search tree has size at most (2! + 1)F < (2! + )% O

8 FPT for Parameter w + £

We now outline an algorithm for MINIGL parameterized by
the neighborhood diversity and deletion budget combined.
Although simple, it is of practical interest as it is never
asymptotically slower than a brute-force n*+©(1) approach.

Theorem 8.1. MINIGL can be solved in time w* - nOM),

where w is the neighborhood diversity of the input graph.

Proof. Let (G, k,T) be an instance of MINIGL and w be the
neighborhood diversity of G. Let Vy; = {V1,Va, -+, V,}
be the neighborhood partition of G. Let u,v € V;, by
definition of neighborhood partition, N(u) = N(v), hence
IGL(G — u) = IGL(G — v). Considering this observation,
we define a branching algorithm that branches on each part
Vi € V,; and deletes a vertex arbitrarily from the selected
part. Since we delete k vertices the branching tree has depth
k. Consequently, the algorithm runs in time w* - n®1), O

9 Future Directions

Our results point to natural future directions. Besides vertex
deletion as destructive action, other actions are of interest,
e.g., removing edges or decreasing the weights of edges.
Structural parameters such as treewidth, cliquewidth, and
feedback vertex set number are also of interest, as well as
approximation algorithms. But the most pressing question
that we leave open is the complexity of MINIGL on trees.
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