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Abstract
Research in abstract argumentation typically per-
tains to finite argumentation frameworks (AFs). Ac-
tual or potential infinite AFs frequently occur if they
are used for the purpose of nonmonotonic entail-
ment, so-called instantiation-based argumentation,
or if they are involved as modeling tool for dia-
logues, n-person-games or action sequences. Apart
from these practical cases a profound analysis yields
a better understanding of how the nonmonotonic the-
ory of abstract argumentation works in general. In
this paper we study a bunch of abstract properties
like SCC-recursiveness, expressiveness or intertrans-
latability for unrestricted AFs .

1 Introduction
In the last two decades formal argumentation has become one
major research area in Artificial Intelligence. The main reason
for its popularity is its numerous fields of application ranging
from nonmonotonic reasoning over multi-agent systems as
well as aspects of knowledge representation to analysis tool
for debates or dialogues (cf. [Bench-Capon and Dunne, 2007;
Rahwan and Simari, 2009] for excellent overviews). Dung’s
abstract argumentation frameworks (AFs) [Dung, 1995],
which are essentially directed graphs, play a dominant role
in this field since they are frequently used as an evaluation
component in deductive approaches to argumentation and as
common basis for more complex abstract argumentation form-
alisms. It is therefore not surprising that many fundamental
properties typically considered for nonmonotonic formalisms
have been studied in recent years. Among others, central
issues like replaceability [Oikarinen and Woltran, 2011], ex-
pressibility [Dunne et al., 2015] intertranslatability [Dvořák
and Woltran, 2011] as well as general modularity and loc-
ality properties were studied [Baroni and Giacomin, 2007;
Baumann, 2011; Baroni et al., 2014]. As a matter of fact,
almost all existing research on abstract argumentation is re-
stricted to finite AFs, and thus there is no systematic analysis
of abstract properties in the unrestricted case. Studying in-
finite AFs is far from being an academic exercise since it is
motivated by the following observations/facts:
• actual infinity: The semantics of rule-based argumenta-

tion formalisms (like ASPIC [Prakken, 2010]) is usually

given via the evaluation of induced Dung-style AFs. It
was already observed that even a finite set of rules may
lead to an infinite set of arguments (cf. [Caminada and
Oren, 2014; Strass, 2015]). Consequently, after clarifying
whether some argumentation semantics always provides
one with a formal meaning one may ask for sound and
complete procedures evaluating even infinite AFs.

• potential infinity: Allowing an infinite number of argu-
ments is essential in applications where upper bounds
on the number of available arguments cannot be estab-
lished a priori. For instance, this applies to multi-agent
dialogues [Belardinelli et al., 2015] as well as modeling
approaches including time or action sequences [Baumann
and Strass, 2012]. A central issue regarding dynamics is
whether, and if so how, one may simplify a current frame-
work in a semantically neutral way even if an unbounded
number of arguments may arise in future.

• theoretical foundations: The first theoretical results
as well as applications regarding infinite AFs can be
traced back to Dung himself [Dung, 1995]. For in-
stance, he showed how to model (possibly infinitely
many) solutions of n-person games with the help of
AFs. Surprisingly, this research direction was some-
how neglected for nearly 20 years. In recent times in-
finite AFs are gaining attention [Baroni et al., 2013;
Baumann and Spanring, 2015]. Besides the deeper un-
derstanding of how the nonmonotonic theory of abstract
argumentation works, we believe that a profound analysis
will be of great benefit for the argumentation community
as well as other research fields using Dung-style AFs as
modeling tool.

The paper is organized as follows. Sect. 2 provides the
necessary background on AFs. Sect. 3 contains our main
contributions, namely an analysis of unrestricted AFs w.r.t.
computational aspects including the characteristic function
as well as SCC-recursiveness, subset relations between se-
mantics, replaceability, expressibility and intertranslatability.
Moreover, for each considered topic we contrast our general
results with former ones restricted to finite AFs. Due to the
limited space we omit all proofs. Nevertheless, in almost all
cases we included some short comments indicating how to
prove the statement in question. Finally, in Sect. 4 we discuss
our results and give some pointers for future work.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

807



Table 1: Existence and Uniqueness

stb ss stg cf2 stg2 pr ad co na cf gr il eg
finite AFs ∃ ∃ ∃ ∃ ∃ ∃ ∃ ∃ ∃ ∃! ∃! ∃!

unrestricted AFs ∃ ∃ ∃ ∃ ∃ ∃! ∃! ∃

2 Background
More often than not the assumption of a certain reference
set U , say universe of arguments is implicitly assumed and
not explicitly stated in argumentation papers. For any AF
F = (A,R) we require that A ⊆ U as well as R ⊆ A×A. In
order to deal with AFs possessing infinitely many arguments
we have to request that |U| ≥ ℵ0 = |N|. No further conditions
are imposed. An AF F = (A,R) is called finite if |A| ∈ N,
otherwise it is called infinite. Moreover, an AF F is called
finitary if each of its arguments has only finitely many attack-
ers. We use F as an abbreviation for the class of unrestricted
frameworks, i.e. F contains all AFs w.r.t. U .

We say a attacks b in F = (A,R) whenever (a, b) ∈ R.
An argument a ∈ A is defended by a set A′ ⊆ A in F
if for each b ∈ A with (b, a) ∈ R, b is attacked by some
a′ ∈ A′ in F . For a set E ⊆ A we use E+

F or simply, E+ for
E ∪ {b | (a, b) ∈ R, a ∈ E}. If G = (B,S), we useA(G) as
well asR(G) to refer to the first or second component of G , i.e.
B or S, respectively. The set L(G) = {a ∈ A(G) | (a, a) ∈
R(G)} contains all self-attacking arguments. Finally, the
union of two AFs as well as the restriction to a certain set C ⊆
U is defined as expected, i.e. F ∪G = (A(F )∪A(G), R(F )∪
R(G)) and F |C = (A(F ) ∩ C,R(F ) ∩ (C × C)).

An extension-based semantics σ : F → 22
U

is a func-
tion which assigns to any AF F a set of sets of arguments
σ(F ) ⊆ 2A(F ). Each one of them, a so-called σ-extension
E , is considered to be acceptable with respect to F . For
two semantics σ and τ we write σ ⊆ τ , if for any AF F ,
σ(F ) ⊆ τ(F ). Besides conflict-free and admissible sets (ab-
breviated by cf and ad ) we consider a large number of mature
semantics, namely naive, stage, stable, semi-stable, complete,
preferred, grounded, ideal and eager semantics (abbreviated
by na, stg , stb, ss , co, pr , gr , il and eg respectively). A recent
overview can be found in [Baroni et al., 2011].

Definition 1 Let F = (A,R) be an AF and E ⊆ A.

1.E ∈ cf (F ) iff for no a, b ∈ E, (a, b) ∈ R,
2.E ∈ na(F ) iff E ∈ cf (F ) and for no I ∈ cf (F ), E ⊂ I ,
3.E ∈ stg(F ) iff E ∈ cf (F ) and for no I ∈ cf (F ), E+⊂I+

4.E ∈ stb(F ) iff E ∈ cf (F ) and E+ = A,
5.E ∈ ad(F ) iff E ∈ cf (F ) and E defends all its elements,
6.E ∈ ss(F ) iff E ∈ ad(F ) and for no I ∈ ad(F ), E+⊂I+

7.E ∈ co(F ) iff E ∈ ad(F ) and for any a ∈ A defended by
E in F , a ∈ E ,

8.E ∈ pr(F ) iff E ∈ co(F ) and for no I ∈ co(F ), E ⊂ I ,
9.E ∈ gr(F ) iff E ∈ co(F ) and for no I ∈ co(F ), I ⊂ E ,

10. E ∈ σ(F ) iff E ∈ ad(F ), E ⊆
⋂
τ(F ) (for σ/τ ∈

{il/pr , eg/ss}) and there is no I ∈ ad(F ) satisfying E ⊂
I ⊆

⋂
τ(F ). ♦

3 From Finite to Unrestricted Frameworks
A priori it is unclear whether certain abstract properties satis-
fied for finite AFs carry over to unrestricted ones. To the best
of our knowledge, the only properties which were already ana-
lyzed outside the realm of finiteness are universal and unique
definedness of semantics (cf. [Baumann and Spanring, 2015]
for an overview). These results vividly show that it makes
an important difference whether we restrict ourselves to finite
AFs. After a brief review of these results we will tackle a
bunch of well-known and important issues in the theory of
abstract argumentation.

3.1 Existence and Uniqueness
Already Dung considered the question of existence and unique-
ness of extensions for unrestricted frameworks. For instance,
he showed that preferred semantics guarantees at least one
extension for any AF [Dung, 1995, Corollary 12]. Later on fur-
ther results were achieved showing that existence and unique-
ness of extensions may depend on the structure of the con-
sidered AFs [Weydert, 2011; Baumann and Spanring, 2015].
Table 1 provides a compact overview. An empty entry indic-
ates a possible collapse of the semantics σ, i.e. for some AFs
F we observe σ(F ) = ∅. The entries ”∃” or ”∃!” indicate that
for any AF F , |σ(F )| ≥ 1 or |σ(F )| = 1, respectively.

3.2 Computing the Grounded Extension
In contrast to Definition 1 Dung defined the grounded exten-
sion of an AF F as the⊆-least fixpoint of the so-called charac-
teristic function ΓF : 2A(F) → 2A(F) with E 7→ {a ∈ A(F ) |
a is defended by E}. Moreover, he showed that this definition
coincides with the ⊆-least complete extension [Dung, 1995,
Theorem 25]. In case of finite (and even finitary) AFs the
characteristic function is ω-continuous, implying that the least
fixpoint equals

⋃
i<ω ΓiF (∅) [Gabbay and Grossi, 2014]. How-

ever, in case of non-finitary AFs ΓF might not be ω-continuous
but still remains monotonic. Consequently, ω-iteration might
not be sufficient (cf. Example 1). Nevertheless, even in case of
unrestricted AFs we may ensure the stepwise ”computation”
of the grounded extension by using ordinals beyond ω. The
assertion can be shown with results from lattice theory.
Theorem 1 For any unrestricted AF F = (A,R) exists an
ordinal α of size at most |A(F )|, s.t. gr(F ) =

{⋃
i<α ΓiF (∅)

}
.

Example 1 (ω ·2-iteration) Consider the following non-
finitary AF F = (A,R) where A = {ai, bi | i ∈ N} and
R = {(ai, ai+1), (bi, bi+1), (a2i, b1) | i ∈ N}.

a1F :

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

. . .

. . .
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Table 2: SCC-recursiveness and Well-definedness

stb ss stg cf2 stg2 pr ad co na cf gr il eg
finite AFs SW W W SW SW SW SW SW W SW SW W W

unrestricted AFs W W W S S W W W W W W W W

Clearly, gr(F ) = {{ai, bi | i ∈ N, i is odd}}. Let us
compute some iterations. For finite ordinals n we have⋃n
i=1 ΓiF (∅) = {a1, ..., a2n−1}. Then, the first limit ordinal

ω yields
⋃
i<ω ΓiF (∅) = {ai | i ∈ N, i is odd} which does

not coincide with the grounded extension. Pursuing with
successor ordinals results in

⋃ω+n
i=1 ΓiF (∅) = {ai | i ∈

N, i is odd}∪{b1, ..., b2n−1} and finally, after ω+ω, i.e. ω ·2 -
iterations we end up with a fixpoint coinciding with the groun-
ded extension. Please observe that the cardinality of ω·2 equals
ℵ0 = |A(F )| as promised by Theorem 1.

3.3 SCC-recursiveness
The concept of SCC-recursiveness plays a decisive role in the
study of argumentation semantics. We mention two important
facts: firstly, it guarantees desirable properties like direction-
ality and secondly, it already gave rise for new semantics
definitions like cf2 and stg2 which are able to overcome cer-
tain questionable results of former semantics (cf. [Baroni et al.,
2005; Baroni and Giacomin, 2007; Dvořák and Gaggl, 2012]
for more details). Semantics satisfying SCC-recursiveness can
be incrementally computed via a recursive schema which is
based on the decomposition of AFs along their strongly con-
nected components (SCCs). More precisely, the schema takes
a base semantics σ, proceeds along the induced partial order-
ing and evaluates the SCCs according to σ while propagating
relevant results to subsequent SCCs. This procedure defines
a σ2 semantics. We say that a semantics τ is SCC-recursive
if there is a base function σ, s.t. for any AF F , τ(F ) =
σ2 (F ). In case of finite AFs a bunch of semantics have
been identified to be SCC-recursive (cf. [Baroni et al., 2005;
Gaggl and Strass, 2014], Table 2 gives an overview).

In case of unrestricted frameworks we are faced with some
difficulties in drawing conclusions. Firstly, infinite AFs need
not possess initial SCCs which is granted for finite AFs. This
makes checking whether a certain set is a σ2 -extension more
complicated and due to the recursive definitions not that easy
to handle. Secondly, even worse, even if initial SCCs are
available there is no guarantee that the recursion will stop in
finitely many steps.

Example 2 (Non-SCC-recursiveness) Consider the follow-
ing finitary AF F = (A,R) where A = {ai, bi | i ∈ N} and
R = {(bi, ai), (ai+1, ai), (ai, bi+1) | i ∈ N}.

a1F :

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

. . .

. . .

Obviously, B = {bi | i ∈ N} ∈ τ(F ) for any semantics
τ ∈ {stb, ss , stg , pr , ad , co,na, cf , gr , il , eg}. Striving for
a contradiction, suppose that there is base semantics σ, s.t.

τ(F ) = σ2 (F ). Observe that the AF F possesses two SCCs,
namely C1 = {b1} and C2 = A \ {b1}. For C1 we end
up with the base case returning {b1} ∈ σ(F |C1

). For C2

we have to consider the AF F ′ = F |C2\{a1} (since a1 is
attacked by the SCC C1). Now, we have to determine whether
B′ = {bi | i ∈ N, i ≥ 2} is a σ2 -extension of F ′. Note that
this is equivalent to deciding whetherB is a σ2 -extension of F .
This means, the candidate set B leads to infinite recursion, i.e.
the base case will never be considered although B ∈ τ(F ).♦

In contrast to all other semantics available in the literature,
cf2 and stg2 were originally defined in terms of the recurs-
ive schema with naive and stage semantics as base functions.
This means, SCC-recursiveness is given by definition but Ex-
ample 2 shows that both semantics are not well-defined (in
the sense of a function) in the general unrestricted case since
we cannot determine whether B ∈ cf2 (F ) or B ∈ stg2 (F ),
respectively.
Theorem 2 For unrestricted frameworks we have,
1. for any σ ∈ {stb, ss , stg , pr , ad , co,na, cf , gr , il , eg},

semantics σ is not SCC-recursive and
2. cf2 and stg2 are SCC-recursive.

Table 2 summarizes all results. The entries ”SW”, ”S” and
”W” in row certain AFs and column σ mean that for certain
AFs the semantics σ is SCC-recursive and well-defined, SCC-
recursive but not well-defined and well-defined but not SCC-
recursive.

3.4 Subset Relations between Semantics
Note that the shorthand σ ⊆ τ requires that both semantics
are total functions since a framework to which one of these
semantics is undefined renders the subset shorthand undefined
itself. Consequently, stb ⊆ stg2 ⊆ cf2 ⊆ na does not hold in
general (Example 2) but it does in case of finite AFs as shown
in [Dvořák and Gaggl, 2012]. All other subset relations already
known from finite AFs carry over to unrestricted AFs which
can be shown with reasonable effort. The following figure
summarizes the results in a compact way. For two semantics
σ and τ , σ ⊆ τ iff there is a path from σ to τ in Figure 1. A
red-highlighted arrow indicates that the corresponding subset
relation is guaranteed for finite frameworks only.

stb
finite finite

finite

ss

stg

stg2

pr

na

cf2

co ad

cf

gr il eg

Figure 1: Subset Relations
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Table 3: Expansion Equivalence

stb stg ss pr ad il eg co gr na cf
finite (and jointly exp.) AFs k(stb) k(stb) k(ad) k(ad) k(ad) k(ad) k(ad) k(co) k(gr) k(na) k(na)

unrestricted AFs ? ? k(ad) k(ad) k(ad) k(ad) k(ad) ? ? k(na) k(na)

3.5 Expansion Equivalence
In contrast to classical (monotone) logics ordinary equival-
ence is not sufficient to capture replaceability without loss of
information (cf. [Baumann and Strass, 2016] for more detailed
information on this issue). This means, analogously to other
non-monotonic logics one may easily find two AFs F and G
which possess the same σ-extensions but differ semantically if
augmented by a further AF H . We say that both frameworks
are expansion (or strong) equivalent if the latter is impossible.

Definition 2 Given a semantics σ. Two AFs F and G are

1. ordinarily equivalent w.r.t. σ iff σ(F ) = σ(G),
2. expansion equivalent w.r.t. σ (for short, F ≡σE G) iff for

each AF H we have, σ(F ∪H ) = σ(G ∪H ), ♦

It was the main result in [Oikarinen and Woltran, 2011] that
expansion equivalence can be decided by looking at the syntax
only. More precisely, they introduced the notion of a kernel
of an AF F which is (informally speaking) a graph where
redundant attacks w.r.t. F are deleted or added and showed that
syntactical identity of suitably chosen kernels characterizes
expansion equivalence w.r.t. the considered semantics.
Definition 3 Let σ ∈ {stb, ad , gr , co}. For any AF F =
(A,R) we define the σ-kernel F k(σ) =

(
A,Rk(σ)

)
of F as:

1.Rk(stb) =R \ {(a, b) | a 6= b, (a, a) ∈ R},
2.Rk(ad) =R\{(a, b) | a 6= b, (a, a) ∈ R, {(b, a), (b, b)}∩R 6= ∅},
3.Rk(gr) =R\{(a, b) | a 6= b, (b, b) ∈ R, {(a, a), (b, a)}∩R 6= ∅},
4.Rk(co) =R \ {(a, b) | a 6= b, (a, a), (b, b) ∈ R},
5.Rk(na) =R ∪ {(a, b) | a 6= b, {(a, a), (b, a), (b, b)} ∩R 6= ∅}. ♦

Please note that all introduced kernels k are node- and loop-
preserving. This means, for any AF F , A(F ) =A(F k) and
L(F ) =L(F k). We say thatk characterizes an equivalence
notion ≡ if for any two AFs F and G , F ≡G iff F k =Gk .

Theorem 3 [Oikarinen and Woltran, 2011; Baumann et al.,
2016b; Gaggl and Woltran, 2013] For finite AFs, we have:

1. k(stb) characterizes ≡σE for any σ ∈ {stb, stg},
2. k(ad) characterizes ≡σE for any σ ∈ {ss , eg , ad , pr , il},
3. k(σ) characterizes ≡σE for any σ ∈ {gr , co} and
4. k(na) characterizes ≡σE for any σ ∈ {na, cf }.

We mention that all semantics considered in the literature
satisfy regularity given that finite AFs are considered. Regu-
larity means that expansion equivalent AFs have to share the
same arguments [Baumann, 2012]. This is obvious for the
semantics considered in Theorem 3 since all characterizing
kernels are node-preserving. Moreover, since the background
universe U contains infinitely many arguments it is always
possible to expand finite AFs F and G by ”fresh” arguments,
i.e. arguments which do not occur in A(F ) ∪A(G). Clearly,
dropping the finite assumption may rule out this possibility.

Example 3 (Non-regularity) Given c ∈ U , F = (U \ {c},
{(a, a) | a ∈ U \ {c}}) and G = (U , {(a, a) | a ∈ U \ {c}}).
For any H we observe stb(F∪H )=stb(G∪H ). In particular,

stb(F ∪H ) =


{{c}}, if {(c, a) | a ∈ U \ {c}} ⊆ R(H )

and (c, c) /∈ R(H )

∅, otherwise
Consequently, F ≡stb

E G although A(F ) 6= A(G). ♦

Example 4 (Non-coincidence) Let F =(U ,{(a, a) |a ∈ U})
and G = (U , {(a, b) | a, b ∈ U , a 6= b). Applying the groun-
ded kernel does not change anything for either framework,
i.e. F k(gr) = F and G = Gk(gr). Due to the absence of
unattacked arguments we deduce ΓF (∅) = ΓG(∅) = ∅ im-
plying that gr(F ∪ H ) = gr(G ∪ H ) = {∅} for any AF H .
Consequently, F ≡gr

E G although F k(gr) 6= Gk(gr). ♦

The examples show that neither regularity, nor Theorem 3
remain true in general. It turns out that for some semantics
we do not observe any differences if sticking to unrestricted
AFs. In particular, this is the case for all considered semantics
characterizable by the admissible or naive kernel. For the
remaining semantics Theorem 3 becomes false but we may
restore the characterization theorems if guaranteeing the exist-
ence of fresh arguments. We say that two frameworks F and
G are jointly expandable (w.r.t. U ) if U \ (A(F )∪A(G)) 6= ∅.
Theorem 4 For unrestricted AFs we have,
1. k(ad) characterizes ≡σE for any σ ∈ {ss , eg , ad , pr , il},
2. k(na) characterizes ≡σE for any σ ∈ {na, cf }.
For jointly expandable AFs we have,
3. k(stb) characterizes ≡σE for any σ ∈ {stb, stg} and
4. k(σ) characterizes ≡σE for any σ ∈ {gr , co}.

The main proof strategies are straightforward extensions of
those presented in [Oikarinen and Woltran, 2011]. However,
one has to pay attention whenever properties of finite AFs
like jointly expandability or finite computation of grounded
semantics are used. Table 3 summarizes all results. The entry
”k” in row certain AFs and column σ indicates that for certain
AFs expansion equivalence w.r.t. semantics σ is character-
izable through k . A question mark represents two different
things. First, the characterization problem is unsolved and
second, it can be checked that none of the introduced kernels
serve as a characterization. As an aside, in consideration of
Example 3 no node-preserving kernel may serve as a character-
izing kernel for stable semantics in case of unrestricted AFs.

3.6 Realizability
Realizability is concerned with the expressive power of logical
formalisms. It is well-known that in case of propositional
logic any finite set of two-valued interpretations is realizable.
Given such a finite set I, we always find a set of formulae T ,
s.t. Mod(T ) = I. In abstract argumentation we are equipped
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with a high number of semantics and it was shown that rep-
resentational limits highly depend on the chosen semantics
[Dunne et al., 2015]. We will see that it is essential which
class of frameworks we consider if we want to compare the
expressiveness of two semantics. In case of finite AFs it does
not make a difference whether we use semi-stable or preferred
semantics but it does if sticking to unrestricted frameworks.

We proceed with the formal definition of different σ-
signatures which collect all σ-realizable extension-sets of a
certain class of AFs. Note that members of the compact ver-
sions require a witnessing framework without rejected argu-
ments, i.e. any argument is contained in at least one extension.

Definition 4 The unrestricted, finite, compact and finite com-
pact σ-signatures of a semantics σ are defined as follows:
1. Σσ = {σ(F ) | F is an AF},
2. Σfin

σ = {σ(F ) | F is a finite AF},
3. Σcσ = {σ(F ) | F is an AF , A(F ) =

⋃
σ(F )} and

4. Σc,fin
σ = Σfin

σ ∩ Σcσ . ♦
Clearly, for any semantics σ, Σc,fin

σ ⊆ Σcσ,Σ
fin
σ ⊆ Σσ. For

a detailed discussion on the relation between finite and finite
compact signatures see [Baumann et al., 2016a]. For some
semantics both concepts coincide. Since finite AFs may realize
finite extensions only, for any considered semantics σ a strict
subset relation between finite compact and compact as well as
finite and unrestricted signatures. A detailed analysis is part of
future work. Let us recall a comparison of the expressiveness
of the semantics in the realm of finiteness.
Theorem 5 [Dunne et al., 2015] For finite signatures,

1. Σfin
na ⊂ Σfin

stg = Σfin
stb \ {∅} ⊂ Σfin

ss = Σfin
pr ,

2. Σfin
cf ⊂ Σfin

ad ⊂ Σfin
co and

3. {{E} | E ⊆ U , |E| ∈ N} = Σfin
σ ⊂ Σfin

τ where σ ∈
{gr , il , eg} and τ ∈ {na, stb, stg , pr , ss , co}.

Sticking to unrestricted AFs makes a comparison more com-
plex and for a long time it was unclear how to systematically
achieve comparison results regarding expressiveness. It is the
main result of this section that the relation between finite com-
pact signatures is intimately connected to their relation in case
of unrestricted signatures. More precisely, non-empty relative
complements in case of finite compact signatures between two
semantics carry over to their unrestricted versions.
Theorem 6 Given two semantics σ, τ ∈ {na, stb, stg , ss , pr ,
co, gr , il , eg , cf , ad} we have:
1. If Σc,fin

σ \ Σc,fin
τ 6= ∅, then Σcσ \ Σcτ 6= ∅ as well as

2. If Σcσ \ Σcτ 6= ∅, then Σσ \ Στ 6= ∅.
Now we are prepared for a comparison in case of unrestric-

ted frameworks.
Theorem 7 For unrestricted signatures the following hold:
1. {{E} | E ⊆ U} = Σσ ⊂ Σna ⊂ Στ for σ ∈ {gr , il} and
τ ∈ {stb, stg , ss , pr},

2. Σeg ⊂ Σpr ,
3. Σstb ⊂ Σσ for σ ∈ {stg , ss},
4. Σpr \ (Σstb ∪ Σss ∪ Σstg) 6= ∅,
5. Σstg \ (Σstb ∪ Σpr ∪ Σss) 6= ∅,
6. Σstb \ Σpr 6= ∅,

7. Σss \ (Σstb ∪ Σpr ∪ Σstg) 6= ∅,
8. Σco \ Σσ 6= ∅ and Σσ \ Σco 6= ∅ for σ ∈ {cf , ad},
9. Σcf ⊂ Σad .
In order to highlight the tremendous change we additionally
present the relations in Venn-diagrams for some selected se-
mantics. The dashed areas represent particular intersections
for which the question of non-emptiness has to be left open.

Σfin
na

Σfin
stg = Σfin

stb\{∅}

Σfin
pr = Σfin

ss

(a) Finite case

Σna

Σpr

Σstg
Σss

Σstb

(b) Unrestricted case

Figure 2: Signatures of Selected Semantics.

3.7 Intertranslatability
Intertranslatability revolves around the idea of mapping one
semantics to another. A motivation from [Dvořák and Woltran,
2011] is to reuse a solver for one semantics for another. The
main tool for this endeavour are functions mapping AFs to
AFs, so-called translations formally defined as follows.
Definition 5 [Dvořák and Woltran, 2011] Given two se-
mantics σ, τ . A function f : F → F is called an exact transla-
tion for σ → τ , if σ(F ) = τ(f(F )) for any AF F . It is called
a faithful translation if for any AF F first |σ(F )| = |τ(f(F ))|
and second σ(F ) = {S ∩A(F ) | S ∈ τ(f(F ))}. ♦

Please note that for some semantics there are no exact transla-
tions available due to reasons inherent to those semantics. For
instance, preferred semantics satisfies I-maximality, i.e. for
any AF F , pr(F ) forms a ⊆-antichain [Baroni and Giacomin,
2007]. This implies that an exact translation ad → pr can not
exist since for F = ({a}, ∅) we observe {∅, {a}} = ad(F ).
Sticking to faithful translations provides us with a positive
answer if we consider finite AFs only [Spanring, 2012, Trans-
lation 3.1.85]. However, the considered translation does not
serve in the general unrestricted case and interestingly, we will
see that any search for a suitable translation will never succeed.

We proceed with some preliminary exact translation results.

Theorem 8 Given an unrestricted AF F . Define Trcfad(F ) =
G with A(G) = {a ∈ A(F ) | (a, a) 6∈ R(F )} and R(G) =
{(a, b), (b, a) | a, b ∈ A(G), (a, b) ∈ R(F )}. We have that
cf (F )=ad(G) and na(F )=σ(F ) for σ∈{pr ,ss ,stg ,stb}.
According to Table 1 grounded and ideal semantics result in
exactly one extension even in case of unrestricted AFs. Eager
semantics in contrast additionally exhibits the possibility of
infinitely many extensions. In this case eager and preferred
semantics coincide [Baumann and Spanring, 2015, Theorem
15]. Both results give rise for the following exact translations.
Theorem 9 Given an unrestricted AF F and let σ ∈ {gr , il},
then Trστ (F ) = (S, ∅) is an exact translation for σ → τ with
τ ∈ {co, pr , stg , ss , stb, gr , il , eg} and σ(F ) = {S}. For
eg → pr use Tregτ (F ) in case |eg(F )| = 1 and id otherwise.

Remember that stable semantics may collapse even for finite
AFs. This means, there are frameworks which do not provide
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any stable extension. In order to provide exact translations for
stb → τ we have to construct an AF G , s.t. τ(G)=∅.
Example 5 (Semantical Collapse) Consider the non-finitary
AFG = (A,R1∪R2∪R3) as indicated below. Formally,A =
{pi, qi, ri | i ∈ N}, R1 = {(pi, qi), (qi, pi), (pi, ri) | i ∈ N},
R2 = {(rk, rk+1), (rk+1, rk+2), (rk+2, rk) | 0 ≡ k mod 3}
and R3 = {(pi, pj), (pj , ri) | i < j, i ≡ j mod 3}.

G :

· · ·

· · ·

· · ·

q0

p0

r0

q1

p1

r1

q2

p2

r2

q3

p3

r3

q4

p4

r4

q5

p5

r5

q6

p6

r6

q7

p7

r7

Due to lack of space we omit a detailed semantical analysis.
However, it can be checked that A =

⋃
pr(F ) and more

importantly, stb(F ) = stg(F ) = ss(F ) = ∅. Since
⋂
∅ = U

we further infer eg(F ) = pr(F ). ♦

Theorem 10 Let σ ∈ {stg , ss , stb}, F an unrestricted AF.
For G from Example 5 we have σ(Trstbσ (F )) = stb(F ) with

Trstbσ (F ) =

®
F, stb(F ) 6= ∅;
G, otherwise.

So far, we gave concrete translations only. The following
theorem generalizes the finite version from [Dvořák and Span-
ring, 2016, Section 6.1]. It establishes a close relation between
realizability and intertranslatability: if τ is not less expressive
than σ, then σ can be exactly translated to τ and vice versa.
Theorem 11 Given semantics σ, τ , we have Σσ ⊆ Στ if and
only if there is an exact translation for σ → τ .

Note that this theorem implies that translational impossibilit-
ies entail differences in the expressive power. For instance, the
following example shows that (in contrast to finite AFs) there
is no faithful translation for ad → pr yielding Σad \Σpr 6= ∅.
Example 6 (Translational Impossibility) The AF F =
(U , ∅) prohibits a faithful (and thus exact) translation Tr for
ad → pr . This is due to the fact that firstly, U ∈ ad(F )
enforces Tr(F ) = F because of the lack of fresh arguments
and secondly, pr(F ) = {U} entails Tr(F ) 6= F . ♦

Instead of listing all translational (im)possibilities we
provide figures illustrating all results in an eye-catching
way. Figure 3b summarizes known results regarding faith-
ful translations in the finite case [Dvořák and Woltran, 2011;
Spanring, 2012; Dvořák and Spanring, 2016], augmented with
obvious insights for unique status semantics il and eg . For
semantics σ, τ , encirclement in the same component indicates
bidirectional translations. An arrow from σ to τ means direc-
tional translations. If there is no directed path (for instance for
na to cf , or for cf to gr ), then there is no translation. Figure 3a
features the same visualization for unrestricted AFs. Drop-
ping the restriction assumption has some further consequences
for the considered semantics, namely exact and faithful inter-
translatability coincide. It is a part of future work to study

which basic requirements a semantics has to fulfill, s.t. both
forms of translations are essentially the same. However, in
consideration of Theorem 11 we may interpret Figure 3a as a
comparison of the expressiveness of the considered semantics.
That is, Σσ ⊂ Στ if and only if there is a directed path from σ
to τ . This interpretation supplements the former illustration
depicted in Venn-diagram 2b.

cf

ad

gr , il

co eg

pr

na

stb

stg ss

(a) Unrestricted AFs (faithful + exact)

gr , il , eg

na

cf

ad

co

stg , ss , pr

stb

(b) Finite AFs (faithful)

Figure 3: Intertranslatability.

4 Discussion
We provided a first extensive overview of abstract proper-
ties in case of unrestricted frameworks. In almost all cases
we observed substantial differences if leaving the realm of
finiteness. However, it is an important observation of this
study that some differences can be overcome if considering
AFs expandable by a certain number of “fresh” arguments.
For instance, in case of expansion equivalence we have seen
that being jointly expandable is sufficient for restoring former
results (Theorem 4). Moreover, regarding translations, we
observed that for slightly restricted AFs F = (A,R), s.t.
|A| ≤ |U \A| we are able to provide exact and efficiently com-
putable translations from preferred to semi-stable semantics
via Trprss (F ) = F ′ = (A′, R′) withA′ = A∪{a′ |a ∈ A} and
R′ = R ∪ {(a, a′), (a′, a′) |a ∈ A}. It is part of future work
to figure out whether this restriction allows for similar transla-
tional possibilities as in case of finite AFs (cf. Figure 3b).

Another promising issue related to the presented research
are alternative characterizations of cf2 and stage2 semantics
as presented in [Gaggl and Woltran, 2013; Dvořák and Gaggl,
2012]. These definitions avoid the recursive computation
of subframeworks and it is an interesting question whether
such alternative characterizations may overcome problems of
undefinedness as discussed in Section 3.4.

Finally, it is already known that AFs can be seen as a re-
stricted class of logic programs (LPs). More precisely, there
is a standard translation Tr from AFs to LPs, s.t. σ(F ) and
τ(Tr(F )) coincide for certain pairs of semantics σ and τ
[Strass, 2013, Theorem 4.13]. Consequently, one interesting
research question is to which extent results regarding infinite
AFs may contribute to a better understanding of infinite LPs.
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