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Abstract

In this paper, we aim to study how the performance
of modern answer set programming (ASP) solvers
is influenced by the treewidth of the input program
and to investigate the consequences of this relation-
ship. We first perform an experimental evaluation
that shows that the solving performance is heav-
ily influenced by the treewidth, given ground input
programs that are otherwise uniform, both in size
and construction. This observation leads to an im-
portant question for ASP, namely, how to design
encodings such that the treewidth of the resulting
ground program remains small. To this end, we
define the class of connection-guarded programs,
which guarantees that the treewidth of the program
after grounding only depends on the treewidth (and
the degree) of the input instance. In order to ob-
tain this result, we formalize the grounding process
using MSO transductions.

1 Introduction

Answer set programming (ASP) [Marek and Truszczynski,
1999; Brewka et al., 2011; Gebser et al., 2012a] is a well-
established logic programming paradigm based on the stable
model semantics. Its main benefit is an intuitive, declarative
language, and the fact that, generally, each answer set of a
given logic program describes a valid solution of the original
problem. Solving ASP programs is usually a two-step pro-
cess. First, a (usually fixed) encoding for a given problem is
written in the language of non-ground ASP. This encoding,
together with a set of input facts representing the actual prob-
lem instance, gets passed to a grounder which transforms it
into an equivalent propositional ASP program. In the sec-
ond step, this ground program is then evaluated by a solver.
Such ASP solvers are now readily available (e.g., [Gebser
et al., 2012b; Alviano et al., 2015; Elkabani et al., 2005;
Leone et al., 2006]) and have made huge strides in efficiency.

This leads to the following interesting practical question:
What is the relationship of solver efficiency and different pa-
rameters of the ground input program, and how is the solving
time influenced by these parameters? On the theoretical side,
computational complexity investigations were carried out for
the classical parameter of input size [Eiter and Gottlob, 1995;
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Truszczyriski, 2011; Dantsin er al., 2001], while several
structural parameters were studied in the field of parameter-
ized complexity [Gottlob er al., 2010; Pichler et al., 2014;
Fichte and Szeider, 2015]. This has also led to specialized
implementations that try to explicitly exploit these parame-
ters [Jakl et al., 2009; Fichte et al., 2017]. While these theo-
retical investigations provide us with valuable insight into the
problem of ASP solving, it is not obvious what conclusions
can be drawn for the actual practical solving performance of
today’s top-of-the-line ASP solvers. It would be interesting to
see how current CDCL-based solvers are influenced, in prac-
tice, by variations in such structural parameters and whether
guidelines for ASP modeling can be derived from such inter-
actions. One of the few results in this direction is the dis-
covery of a strong correlation between the rule-to-atom ratio
of a ground ASP program and the solving time [Zhao and
Lin, 2003], a property that carries over from similar stud-
ies for SAT [Selman ef al., 1996]. A more recent study on
phase transitions in ASP also deals with this topic [Wen et
al., 2016]. Beside these results, however, the practical im-
pact of structural parameters on solving time has not, in the
authors’ opinion, received adequate attention in the literature.

In this paper we focus on the parameter of treewidth, a
measure of how closely a ground ASP program structurally
resembles a tree. Our goal is to study how the performance
of modern ASP solvers is influenced by the treewidth of
the given ground input program and to investigate the con-
sequences of this relationship. To this end, our first main
contribution is to carry out an extensive experimental evalu-
ation of two top-of-the-line ASP solver implementations and
investigate how the solving performance behaves when the
solvers are presented with hard instances of uniform size and
construction, but variable treewidth, using a carefully crafted
ASP problem encoding and adequately generated, tree-like
instances. Our experiments show that the solving time for
programs of the same size and construction indeed increases
drastically with the treewidth. This is an interesting re-
sult, which shows that similar results for SAT solvers and
resolution-width [Atserias er al., 2011] do indeed carry over
to the more complex world of ASP. Our observations suggest
that, when encoding problems in (non-ground) ASP, it is not
only important that the resulting ground program is small, but
also that its treewidth is kept as small as possible, given a set
of input facts.
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Example 1. Reachability can be modeled in different ways
using ASP. One way would be to model the transitive closure
of a graph as follows (where e is the predicate representing
graph edges and r the predicate to mark reachable vertices):

t(X,Y) :— e(X,Y).
t(X,2) :— t(X,Y), e(Y,Z).
r(Y) :— t(X,Y), start(X).

However, when used as a sub-program that the grounder has
to instantiate, such an encoding causes any two (connected)
vertices in the input graph to appear together in a rule after
grounding (in place of the variables x and z in the second
rule). This then causes the graph representation of the ground
program to contain a clique whose size equals the number
of vertices of the original input graph, resulting in a high
treewidth. Conventional wisdom in ASP would recommend
the following encoding:

:— start (X).
- e (X,Y), r(xX).

Here, not only is the grounding smaller, but also the treewidth
decreases dramatically. In fact, it now solely depends on the
treewidth (and not the size) of the input graph. O

This example illustrates that the way a problem is encoded
can influence the treewidth of the ground program consider-
ably. Due to the grounding step, however, it is not obvious
at the time of writing a non-ground ASP encoding how to
achieve a low-treewidth grounding and the benefits that come
with it. This is as opposed to, for example, SAT formulas that
can be generated directly while keeping treewidth in mind.
The second main contribution of this paper addresses this
issue and allows us to leverage the treewidth-sensitivity of
ASP solvers: We define the class of connection-guarded pro-
grams, which guarantees that the treewidth of a program after
grounding does not increase arbitrarily but only depends on
the treewidth (and degree) of the input facts. We also show
that programs in our class are, at the same time, expressive
enough to encode relevant problems from the second level of
the polynomial hierarchy. In our proofs, we use the notion of
MSO transductions [Courcelle and Engelfriet, 2012] to for-
mally represent the grounding process and investigate its in-
fluence on the treewidth. To our knowledge, this is the first
time that this technique has been used in the context of ASP.

The remainder of the paper is structured as follows. In Sec-
tion 2, we give relevant definitions for ASP, treewidth, and
MSO transductions. Section 3 deals with our first main con-
tribution, the experimental evaluation of solver performance
with respect to treewidth, and shows that there is a significant
correlation. Section 4 presents our second main contribution,
namely, proposing the class of connection-guarded ASP pro-
grams that aims to preserve the treewidth of the given instance
after grounding. We also address implications of our results
for ASP solving and modeling. Finally, we conclude the pa-
per with a discussion in Section 5.

2 Preliminaries

Answer Set Programming (ASP). ASP is a declarative prob-
lem modeling and solving framework with a complex lan-
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guage that we only briefly introduce here. For a full, formal
introduction, we refer to other sources [Brewka et al., 2011;
Gebser et al., 2012bl. A non-ground disjunctive logic pro-
gram 1I consists of a set of rules of the form r : hy V---V
hi < p1,...,Pn, N1, . .., "y, Where hy, p; and n, are
atoms, called head (H (r)), positive and negative body atoms
(BT (r) and B~ (r)), respectively. An atom a is of the form
s(X, ¢) and consists of a predicate name s, a sequence of
variables X, and a sequence of constants ¢, where | X |+ |c| is
the arity of s. We denote variables by capital letters, and con-
stants and predicates by lower-case words. We assume rules
to be safe, that is, all variables appear in the positive body. A
rule is ground if it contains no variables. A fact is a ground
rule with an empty body and just one head atom. A predicate
is extensional in II if it appears only in rule bodies of II. We
also call an atom extensional if its predicate is extensional.

A non-ground rule can be seen as an abbreviation for
all possible instantiations of the variables with domain con-
stants. In ASP, this instantiation is explicitly performed by
a grounder that transforms a (non-ground) program into an
equivalent set of ground rules. Grounders implement many
advanced techniques to generate ground programs that are as
small as possible. Since these techniques are sometimes quite
involved and hinder theoretical investigation, for the purposes
of this paper we define an idealized grounder as follows:

Definition 2. Let IT be a non-ground ASP program, let TI™
denote the positive program obtained from II by removing all
negated atoms and replacing disjunctions with conjunctions
(i.e., splitting disjunctive into normal rules), and let M/ T be
the unique minimal model of IT*. For every rule r € II and
substitution s from variables to constants, the grounding of
I1, denoted gr(IT), contains s(r) iff s(BT(r)) C M. O

Ground ASP programs are intended to be interpreted ac-
cording to the stable model semantics [Gelfond and Lifschitz,
1988]. Given a non-ground program II (called encoding) to-
gether with a set of facts A (called instance) as input, the main
reasoning task considered in this paper is to decide whether
the corresponding grounding gr(II U .A) has a stable model
(or answer set). For fixed programs 11, this problem is Eg-
complete [Eiter and Gottlob, 1995].

In ASP code listings, we represent the <— symbol in rules
by :-. In Section 3, we will make use of advanced ASP con-
structs like inequality and aggregate functions, as described
in the ASP language specification [Calimeri ef al., 2015].

Graphs, Tree Decompositions, and Treewidth. We assume
all graphs to be undirected, simple, and ordered, which means
that there is an arbitrary but fixed total order over the vertices
of the graph. For a graph G, V(G) denotes the set of vertices
and F(G) the set of edges. A graph H is a minor of a graph
G if H can be obtained from G by deleting edges or ver-
tices, or by contracting edges. The Cartesian product GLOH
of graphs G and H has vertices V(GOH) = V(G) x V(H)
and an edge between vertices (u,u’) and (v, v’) iff u = v and
(u',v") € BE(H),oru' = v and (u,v) € F(G). A (square)
grid of size n is the Cartesian product of two paths of length
n. The line graph G, of a graph G has V(Gp) = E(G), and
(e1,e2) € E(Gy) iff edges e; and es share a vertex in G.
Let G be a graph, T arooted tree, and  a labeling function
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that maps every node ¢ of T to a subset of V(G) called the
bag of t. The pair (T, x) is a tree decomposition of G if the
following holds: (i) for each v € V(G), there exists at € T,
such that v € x(t); (ii) for each {v, w} € E(QG), there exists a
t € T, such that {v,w} C x(t); and (iii) for each r, s,t € T,
such that s lies on the path from 7 to ¢, we have x(r) N x(t) C
x(s). The width of a tree decomposition is defined as the
cardinality of its largest bag minus one. The treewidth of a
graph G, denoted by tw(G), is the minimum width over all
tree decompositions of G. For a minor H of a graph G it
holds that tw(G) > tw(H). Trees have treewidth 1. Grids of
size n, the complete graph K,, with n nodes, and the complete
bipartite graph K, ,, all have treewidth n.

Graph Representations and Treewidth of ASP Programs.
The primal graph of a ground ASP program II is a graph
whose vertices are the atoms in IT and there is an edge (a, b)
if atoms a and b appear together in a rule in II. The incidence
graph of 11 is a bipartite graph whose vertices are the atoms
and rules in II and there is an edge between a rule r and an
atom g if a appears in r. The primal treewidth or incidence
treewidth of an ASP program II is the treewidth of its primal
or incidence graph, respectively. By treewidth we generally
refer to the primal treewidth. For ASP programs of bounded
treewidth, the answer set existence problem can be solved in
linear time [Gottlob et al., 2010]. The instance graph of an in-
stance A is a graph whose vertices are the constants in .4, and
which has an edge (a, b) if constants a and b appear together
in a fact from A. The treewidth or degree of an instance A is
the treewidth or degree of its instance graph, respectively.

MSO Transductions. Monadic second-order (MSO) logic is
an extension of first-order logic by quantification over sets.
We omit a formal definition as all formulas in this work will
be first-order. MSO can be used to specify MSO transduc-
tions [Courcelle and Engelfriet, 2012], which are mappings
from graphs to graphs. The idea is that an MSO transduction
formalizes how a graph G can be transformed into a graph G’
by the following operations: (1) copying G a fixed number
of times, (2) filtering vertices that satisfy an MSO-definable
property, (3) defining the edges of G’ in terms of the edges of
G via MSO formulas. This is achieved by specifying MSO
formulas (d;)ier, (0i,5)(i,j)erx1» Where I is an arbitrary fi-
nite set, each J; has one free variable, each 6; ; has two free
variables, and the signature of the formulas consists of the bi-
nary predicates edge and succ. For every graph G, we write
Str(G) to denote the relational structure with domain V(G),
that interprets edge by F(G) and succ by the successor re-
lation according to the vertex ordering. We call the graphs
for which 7 is defined input graphs, and the image of 7 the
output graphs. The §; formulas specify which vertices exist
in 7(G). For each v € V(G), there can be up to || copies of
vin 7(G): There is a copy v; in 7(G) iff Str(G) F 6;(v). Fi-
nally, the edges in 7(G) are specified using the 6; ; formulas.
For each pair of vertices (v, w) € V(G) x V(QG), there is an
edge (v;,w;) € E(7(Q)) iff Str(G) F 6; ;(v, w) in addition
to Str(G) F §;(v) and Str(G) E §,(w).

MSO transductions allow us to prove statements about how
a graph transformation affects the treewidth of a graph:

Proposition 3 ([Courcelle and Engelfriet, 2012, Corol-
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1 assign(X,Y,1) | assign(X,Y,0)
2 sum(V,S\2) :— vertex(V), S #sum{ AW :

assign(W,V,A); AW : assign(V,W,A) }.
— sum(V,S), capacity(V,C), S != C.

:— edge(X,Y).

3

Listing 1: Finding valid assignments in capacitated graphs.

lary 1.53]). Let 7 be a fixed MSO transduction. For every
input graph G, the treewidth of 7(G) depends only on the
treewidth of G and the degree of 7(G).!

3 Impact of Treewidth on ASP Solvers

In this section we will demonstrate, by experimental evalua-
tion, that state-of-the-art ASP solvers have an inherent sen-
sitivity to treewidth in practice, that is, they perform faster
on ground programs of small treewidth. To show this claim,
a carefully designed experiment is needed in order to actu-
ally reveal the influence of the treewidth (and not some other
parameter) on the solving time. Ground programs used for
testing therefore need to (1) have the same number of answer
sets, (2) have a uniform structure, (3) have constant size, and
(4) vary in treewidth. To this end, we consider the problem of
deciding whether a capacitated graph has a valid assignment:

Definition 4. A capacitated graph is a pair (G, ¢), where G is
an undirected graph and c a function mapping each vertex to
O or 1. An assignment is a function mapping each edge to 0 or
1, and we call it valid if for each v € V(G) the sum modulo
2 of the values assigned to incident edges equals ¢(v). O

This problem was used by Urquhart to construct hard
SAT formulas [Urquhart, 1987] using the method of Tseitin
[1983]. Listing 1 shows an ASP encoding for this problem.
Line 1 assigns either O or 1 to each edge. Line 2 calculates for
each vertex the sum modulo 2 of the values assigned to inci-
dent edges. Finally, Line 3 eliminates all assignments where
for some vertex the sum and capacity do not agree.

Input Instances. In order to satisfy condition (1), we will
only construct unsatisfiable instances. It is known that a con-
nected capacitated graph has a valid assignment iff the sum
of all vertex capacities is even [Urquhart, 1987]. To construct
unsatisfiable instances, we thus generate graphs where all ver-
tices except for one have capacity 0.

To satisfy condition (2), we choose Listing 1 as our fixed
problem encoding and construct instances in the following
way: We generate so-called grid-tree instances, which are
random binary trees of grids as illustrated in Figure 1, ac-
cording to two parameters: treesize (the number of grids in
the tree) and gridsize (the size of each grid).

Given a grid-tree instance, we can find other grid-tree in-
stances that lead to the same grounding size by increasing the
treesize while decreasing the gridsize (or vice versa). Thus,
in order to satisfy condition (3), we first fix a grounding size
(in terms of the number of atoms), and then find combinations
of treesize and gridsize to achieve this grounding size.

Finally, we establish condition (4). For a graph G con-
sisting only of a disjoint union of grids G1,..., Gy plus

'Tn fact, our MSO transductions preserve bounded cliquewidth;
however, bounded cliquewidth and bounded treewidth coincide on
graphs of bounded degree [Courcelle and Olariu, 2000].
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Figure 1: Example for an input instance graph.

1 atleast(v7,1) :— 1 { assign(v3,v7,1), assign(v6,v7,1),
assign(v7,v8,1), assign(v7,vll,1) }.

2 atleast(v7,2) :— 2 { assign(v3,v7,1), assign(v6,v7,1),
assign(v7,v8,1), assign(v7,vll,1) }.

3 atleast(v7,3) :— 3 { assign(v3,v7,1), assign(v6,v7,1),
assign(v7,v8,1), assign(v7,vll,1) }.

4 atleast(v7,4) :— 4 { assign(v3,v7,1), assign(v6,v7,1),

assign(v7,v8,1), assign(v7,vll,1) }.

5 sum(v7,0) :— not atleast(v7,1).

6 sum(v7,0) :— atleast(v7,2), not atleast(v7,3).

7 sum(v7,0) :— atleast(v7,4).

8 sum(v7,1) :— atleast(v7,1), not atleast(v7,2).

9 sum(v7,1) :— atleast(v7,3), not atleast(v7,4).
Listing 2: Grounding of Line 2 in Listing 1 for vertex v7.

some edges that do not create any new cycles, it holds that
tw(G) < max{tw(G1), ..., tw(Gy), 1}, since we can easily
obtain an appropriate tree decomposition of G from those of
G1,...,GE. Hence the treewidth of a grid-tree instance A
only depends on the gridsize. We now need to show that the
treewidth of A determines the treewidth of the grounding.

Proposition 5. Given program 11 from Listing 1 and a grid-
tree instance A, the primal treewidth and incidence treewidth
of gr(IL U A) are both linear in the treewidth of A.

Assume, for simplicity, that A is just a single grid of size 4.
We call the nodes in the first row of the grid v1, ..., v4, the
nodes in the second row v5, ..., v8, and so on. In order to
show the above proposition, first note that Line 1 and Line 3
in Listing 1 cannot cause any cycles in the primal graph of
gr(ITU.A). Now consider Listing 2, which shows the ground-
ing for Line 2 of Listing 1 for vertex v7 of .A. Figure 2b shows
the primal graph of this partial grounding (where M, N repre-
sents the atom assign (vM, vN, 1) ). Clearly, the rule bodies
of the first four lines in Listing 2 cause the central clique be-
tween vertices 3,7; 7,8; 7,11; and 6,7 to appear. Note that
this forms a clique precisely between the incident edges of
vertex v7. Now, take only the rule bodies of Lines 1 to 4 in
Listing 2, and the same also from the analogous groundings
of every other vertex in 4. The corresponding partial primal
graph is shown in Figure 2a. In fact, this is precisely the line
graph of the grid in .A. The full primal graph of gr(IT U A)
can now be obtained by replacing every clique in Figure 2a
(which represents some vertex v from A) with a gadget anal-
ogous to the one in Figure 2b, but for vertex v. Note that
this gadget has constant size (and, therefore, treewidth). We
thus have that the treewidth of gr(IT U A) is asymptotically
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(a) The line graph of a grid

of size 4. (b) Primal graph of Listing 2.

Figure 2: Structure of the primal graph of Listing 2.
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Figure 3: Clasp and WASP running time.

upper-bounded by the treewidth of the line graph of A. It is
not difficult to extend this argument to the case where A is a
grid-tree instead of a single grid.

To complete our line of argument, note that it is known that
the treewidth of the line graph is linear in the treewidth of the
original graph if the maximum degree of the latter is bounded
by a constant, as is the case for grids [Cilinescu et al., 2003].
Since the incidence treewidth is upper-bounded by the primal
treewidth [Szeider, 20031, this establishes condition (4).

Benchmark Setting. In our tests we used two batches of in-
stances constructed as presented before, each batch for a dif-
ferent grounding size. For the first batch the number of atoms
in the grounding is approximately 10350 and for the second
16700, & 100. In each batch there were 20 instances for each
treewidth between 2 and 10.> Grounding was done using the
grounder gringo 4.5.4 [Gebser et al., 2011]. We then mea-
sured the running time of the ASP solvers clasp 3.1.4 [Gebser
etal.,2011] and WASP 2.0 [Alviano et al., 2015].

Results and Discussion. Figure 3 shows how the average
solving time of clasp and WASP changes with the treewidth
for our two batches of instances. Recall that the treewidth
of the corresponding ground program is linear in the input

’Full archive: http://dbai.tuwien.ac.at/proj/
decodyn/ijcail7-benchmarks.zip
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treewidth by Proposition 5. Since the running time in Figure 3
is denoted on a logarithmic scale, we can thus see that the run-
ning time increases exponentially with the treewidth while the
grounding size remains the same. Moreover, the running time
for small programs with high treewidth can be substantially
longer than for large programs with small treewidth.

We thus conclude that the treewidth of the grounding has a
major impact on the running time of current ASP solvers and
that, for good solving performance, it is important to keep the
treewidth of ground programs as low as possible.

4 A Treewidth-Preserving Class of Programs

As we showed in the previous section, treewidth has a strong
influence on the solving time of ASP solvers. In order to ex-
ploit this relationship in practice, whenever possible, an ASP
encoding II should be written in such a way that, for a given
instance A, it does not arbitrarily increase the treewidth of
gr(IT U A) compared to the treewidth of .A. To this end, we
introduce the class of connection-guarded ASP programs.

Definition 6. Given an ASP program II, the extensional join
graph of a rule r in II is the graph whose vertices are the
variables in r and which has an edge between two variables if
these variables occur together in a positive extensional body
atom in r. We call II connection-guarded if the extensional
join graph of each rule in II is connected. O

The proposition below follows directly from this definition.

Proposition 7. Let 11 be a connection-guarded program, r a
rule in 11, and A an instance. For any two constants a and b
in any ground rule v’ € gr(I1 U A) obtained from r during
grounding, the distance between a and b in the instance graph
of A is at most the number of variables in r.

The intention of connection-guarded programs is to guar-
antee that the treewidth of the grounding remains bounded,
provided that the treewidth and degree of the input instance
is also bounded. The following theorem is the main result of
this section and states this formally.

Theorem 8. Let I1 be a fixed connection-guarded program,
and A an instance. If A has bounded treewidth and degree,
then both the primal graph and the incidence graph of gr(I1U
A) also have bounded treewidth and degree.

Before we prove this, we define several auxiliary notions.
Our proof relies on MSO transductions and in this context we
treat instances as relational structures. We build a transduc-
tion for program II that transforms the instance graph of an
ASP instance A into the incidence graph of gr(II U A). For
this, we use the following auxiliary formulas.

Firstly, for any positive integer ¢, the following formula
expresses that a vertex y is the ¢-th neighbor of a vertex z.
(Recall that we assume ordered graphs. The transitive closure
of the succ relation is MSO-definable and we denote it by <.)

—3z(z < y A edge(z, 2)

A /\ —neigh,(z, 2))

1<j<i

neigh; (z,y) = edge(z,y) A

A path identifier m = (i1, ...,i1) of length k is a k-tuple
of positive integers. It is called bounded by some integer d, if

856

each integer in the tuple is bounded by d. We define the for-
mula path,_(x,y) to express that vertex y is reachable from
vertex x via a sequence of vertices vg, v1, ...,V such that
vg = ¥, vy = ¥, and v; is the i;-th neighbor of v;_y, for

1 < j < k. We write ¢ to denote the empty tuple.
path_(z,y) = z=y
path<i17___7ik>(m,y) = Elz(path<i17___7ik71>(x,z)

Aneigh;, (z,y)) fork>1
We define the total order <4 over path identifiers bounded
by d such that 7 <4 7’ if 7 is lexicographically smaller than
/. The formula fp? (x, y), defined below, represents that 7 is
(according to <) the first path identifier bounded by d that
identifies a path to vertex y when starting from vertex x.

y) A /\ —path_ (z,y)

T <Lgm

fpd(z,y) = path,(z,

For all nonnegative integers k,¢,d and path identifiers
7, ..., each of length at most ¢ and bounded by d, we
define the formula uidi’flwﬂk (z,y1,...,yx). It represents
that = is the smallest vertex connected to all the vertices
Y1, ..., Yk via paths of length at most ¢, and that each 7; is
the first path identifier that identifies a path to y; when start-
ing from x. For ease of notation, let reachy(x, y) be the for-
mula representing that vertex y is reachable from vertex x in
at most ¢ steps along the edge predicate.

.0
]‘nd”lljld,...ﬂr,c (.’L’, Yiy--- 7yk) =

/\ fpfri (z,y:) N3z (z <xA /\ reachg(z,yi))
1<i<k 1<i<k

Note that for the empty tuple ¢, the formula uid%%(z) =
=3z (z < x) holds only for the smallest vertex of the graph.

Having the above definitions at our disposal, we are now
ready to proceed to the proof of Theorem 8.

Proof of Theorem 8. We will, for the moment, assume that II
is constant-free; we will show later how to handle the general
case. Let ¢ be the maximum number of variables in any rule
of II. Furthermore, assume that A has bounded treewidth and
degree, and let d denote the degree of A.

From II and d, we will construct a fixed MSO transduction
Ti1,q4 that transforms the instance graph of A into the inci-
dence graph of gr(IT U A) with bounded degree. By Propo-
sition 3, this is sufficient to show our claim. To this end, let
Ta = (Ag WA, ©), where A, contains formulas gener-
ating the atom vertices of the incidence graph, A,. contains
formulas generating the rule vertices, and © contains formu-
las generating the edges between them.

The Set A,. For each predicate p of arity k occurring in II
and for each k-tuple of path identifiers (m,..., 7)) each of
length at most £ and bounded by d, let A, contain the formula

6p[7rl,...,7rk](x) = Elyl T (xvyla"'vyk)'

The Set A,. For each rule r € II with k variables and for
each k-tuple of path identifiers (mq, ..., m) each of length at
most £ and bounded by d, let A,. contain the formula

-y u1d

.....

Srfmy, ) (@) = Jyr - Jye wide? L (2,y1,. . uk)

.
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The Set ©. Since we need to link atoms and rules, we have to
check compatibility between an instantiation of an atom and
the instantiation of a rule. To this end, let p be a predicate of
arity k, let r be a rule with variables Y7,...,Y,, and let A, ,
be the set of all those tuples (i1, .. ., ix) of integers where the

atom p(Y;,,...,Y;, ) occurs in 7. We define the formula
compat,, . (T1,. -, Tk, Y1, -+, Yn) =
V N wi=u,
(i1,0sip) €Ap »  1<J<K

This auxiliary formula is true if the variables x; (represent-
ing the instantiation of an atom with k-ary predicate p) agree
with the variables y; (representing the instantiation of a rule r
with n variables) in such a way that the p-atom would appear
in the instantiation of rule 7.

We are now ready to give the formulas in ©. For each
predicate p of arity k occurring in IT and each k-tuple of path
identifiers (71, . .., ) each of length at most ¢ and bounded
by d, as well as for each rule r € II with n variables and each
n-tuple of path identifiers (p1, . .., p,) each of length at most
¢ and bounded by d, let © contain the formula

ol (@y) = Fzy -3 Tyr - Fya(
- 10

,wk)/\u1dp’fl’m}pn(y,y1,...,yn)

.,xk,yl,...,yn)).

This completes the construction of the MSO transduction
Tr,4- Let G be the instance graph of A with degree bounded
by d. Clearly, since II, d and ¢ are fixed, so is 7r1,4. From
the construction of ©, it is easy to verify that iy 4(G) has
bounded degree as well. It now remains to show that 71 4(G)
yields the incidence graph of gr(IT U A) as desired. In fact,
Ti1,4(G) does not precisely produce the incidence graph of
gr(IT U A), as it differs from it in two respects. Firstly, the
rulesin A, produce a vertex for any atom instantiating a pred-
icate, irrespective of whether these atoms actually appear in
gr(ITU .A). However, this is not a problem since vertices that
do not appear in the grounding are isolated in 7y ¢(G) and
thus do not increase the treewidth or the degree of 1 4(G).
The second difference is the fact that 711 4(G) does not con-
tain vertices for the facts from A. However, the incidence
graph of gr(ITU.A) contains, for each fact a € A, arule vertex
r, connected only to the vertex for atom a. Adding these ver-
tices and edges increases the treewidth at most by one. These
observations and the fact that GG, by assumption, has bounded
treewidth and degree, together with Proposition 3, prove our
claim for the incidence graph of constant-free programs II.
Given a tree decomposition 7~ of the incidence graph, by re-
placing each rule vertex in a node of 7 with all adjacent atom
vertices in the incidence graph, we obtain a tree decomposi-
tion of the primal graph. The fact that, since II is fixed, the
number of atoms in any rule is bounded proves our claim also
for the primal graph.

It is tedious, but straightforward, to generalize this proof
to programs with constants, and we will only give the gen-
eral idea here. For each constant occurring in II, we need
to add a constant symbol to our MSO signature. Then

,,,,,

’Mm"(x,xh...

A compat,, (1, -
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we need to adapt the formulas uidf;fl"“mk, Op[rs,...,my) and
Opirs,....m1]ir[o1,....0n] 1D SUCh @ way that they allow any m; or
p; to also be a constant from II (instead of just a path identi-
fier), representing the fact that the corresponding position in
the atom or rule is already filled by a constant. [

The proof of Theorem 8 relies on the rather primitive
notion of grounding from Definition 2. Incidence graphs
obtained from state-of-the-art grounders are generally sub-
graphs of the output of our transduction. However, since de-
gree and treewidth of a graph can only decrease for a sub-
graph, Theorem 8 applies also to state-of-the-art grounders.

Thus connection-guarded programs preserve bounded
treewidth of an instance A in the grounding, under the condi-
tion that the degree of A is also bounded. Unfortunately this
condition is necessary, as witnessed by the rule p (X, Z) : -
e(X,Y), e(Y,Z), where e is extensional: When given a
tree of height 1 (and thus of treewidth 1) with n vertices, the
incidence graph of the grounding has linear treewidth, as the
complete bipartite graph K,,_; ,—1 is a minor of it. Also
the restrictions in Definition 6 cannot easily be relaxed with-
out destroying bounded treewidth already with very simple
programs: If we allow “unconnected” rules like p (X, Y) : -
v (X), v(Y), then the complete graph K, is a minor of the
incidence graph of the grounding for any n-vertex instance.

It turns out that, despite their restricted syntax, connection-
guarded programs are rather expressive. Straightforward en-
codings for problems like Graph Coloring or Hamiltonian
Cycle directly fall into our class (cf. the second encoding
in Example 1). Our final result shows that our class pre-
serves the theoretical complexity bounds of full ASP. Since
the encoding for 2QBF in [Leone et al., 2006, Section 3.3.5]
is clearly connection-guarded, the following theorem can be
immediately obtained:

Theorem 9. For fixed connection-guarded programs, the an-
swer set existence problem is Y5 -complete.

5 Discussion

In this paper we experimentally showed that modern ASP
solvers perform better when the ground input programs have
small treewidth, all other things being equal. This is strong
evidence that one should not only aim for small ground-
ings when encoding problems in ASP, but also for ground-
ings of small treewidth. We furthermore defined the class
of connection-guarded non-ground ASP programs, and we
proved that grounding such programs together with input
facts whose representation as a graph has small treewidth and
degree leads to a ground program whose treewidth is also
small. Thus we provided an effective tool for exploiting the
relationship between treewidth and solving performance in
order to obtain more efficient ASP encodings. Future work
includes the investigation of alternative classes of programs
that preserve small treewidth.
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