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Abstract
In many knowledge representation formalisms, a
constructive semantics is defined based on sequen-
tial applications of rules or of a semantic operator.
These constructions often share the property that
rule applications must be delayed until it is safe to
do so: until it is known that the condition that trig-
gers the rule will remain to hold. This intuition oc-
curs for instance in the well-founded semantics of
logic programs and in autoepistemic logic. In this
paper, we formally define the safety criterion al-
gebraically. We study properties of so-called safe
inductions and apply our theory to logic program-
ming and autoepistemic logic. For the latter, we
show that safe inductions manage to capture the in-
tended meaning of a class of theories on which all
classical constructive semantics fail.

1 Introduction
In many fields of computational logic, natural forms of in-
duction show up. Such an induction can be seen as a se-
quence of semantic structures obtained by iterative applica-
tions of rules or a semantic operator. For instance, in logic
programming, it is natural to think of sequences of interpre-
tations where at each stage a number of rules whose bod-
ies are satisfied are triggered (i.e., their head is added to the
current interpretation). For positive logic programs, all such
sequences converge to the minimal model. For non-positive
programs, this strategy may yield meaningless results. For
instance, for the program P = {a, b ← ¬a}, one such
sequence is ∅, {b}, {b, a}, the limit of which is not even a sup-
ported model of the logic program. Intuitively, what is wrong
here is that the rule b ← ¬a is applied before the value of
a is established. For stratified programs, like P , this problem
has been resolved [Apt et al., 1988]. For the general case,
the well-founded semantics [Van Gelder et al., 1991] offers a
solution that uses three-valued interpretations instead of two-
valued interpretations.

In recent work, the notions of natural and safe inductions
for inductive definitions were introduced [Denecker and Ven-
nekens, 2014; Denecker et al., 2017]. It was argued that this
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kind of processes forms the essence of our understanding of
inductive definitions.

In this paper, we lift those ideas to a more general setting:
we provide a principled study of inductions in approximation
fixpoint theory (AFT) (Denecker, Marek and Truszczyński
(DMT) 2000), an algebraic theory that provides a unifying
framework of semantics of nonmonotonic logics. We show
convergence of safe inductions in general and study the re-
lationship between safe inductions and various fixpoints de-
fined in approximation fixpoint theory.

By presenting our theory in AFT, our results are broadly
applicable. DMT [2000] originally developed AFT to unify
semantics of logic programs, autoepistemic logic and default
logic. Later, it was also used to define semantics of extensions
of logic programs, such as HEX logic programs [Antic et al.,
2013] and an integration of logic programs with description
logics [Liu et al., 2016]. Strass [2013] showed that many
semantics from Dung’s argumentation frameworks (AFs)
[Dung, 1995] and abstract dialectical frameworks (ADFs)
[Brewka et al., 2013] can be obtained by direct applications
of AFT. Cruz-Filipe [2016] and Bogaerts and Cruz-Filipe
[2017] showed that AFT has applications in database theory,
for defining semantics of active integrity constraints [Flesca
et al., 2004].

The theory we present in this paper induces for each of
the above logics notions of (safe) inductions and a safe se-
mantics. Our complexity results are obtained for general op-
erators and hence can also be transfered to various logics of
interest. Throughout the paper, we give examples from logic
programming; in Section 6, we apply our theory to autoepis-
temic logic. There, we show that safe inductions induce a
constructive semantics that captures the intended semantics
of a class of theories for which classical constructive seman-
tics fail. This failure was recently exposed and solved using
a notion of set-inductions which is based on sets of lattice
elements instead of intervals (which are standard in AFT)
[Bogaerts et al., 2016]. We show that safe inductions pro-
vide an alternative solution to this problem. Our solution is
more direct: in contrast to set-inductions or well-founded in-
ductions [Denecker and Vennekens, 2007], safe inductions do
not require any form of approximation; they are sequences in
the original lattice. For logic programming, this means that
they are sequences of interpretations such that some atoms
are derived in each step. For AEL, this means that they are
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sequences of possible world structures such that additional
knowledge is derived in each step.

2 Preliminaries: Lattices and Operators
A partially ordered set (poset) 〈L,≤〉 is a setL equipped with
a partial order ≤, i.e., a reflexive, antisymmetric, transitive
relation. We write x < y for x ≤ y ∧ x 6= y. We call 〈L,≤〉 a
complete lattice if every subset S ofL has a least upper bound∨
S and a greatest lower bound

∧
S. A complete lattice has

a least element ⊥ and a greatest element >. We use notations
x ∨ y =

∨
({x, y}) and x ∧ y =

∧
({x, y}).

An operator O : L→ L is monotone if x ≤ y implies that
O(x) ≤ O(y). An element x ∈ L is a prefixpoint, a fixpoint,
a postfixpoint of O if O(x) ≤ x, respectively O(x) = x, x ≤
O(x). Every monotone operator O in a complete lattice has
a least fixpoint [Tarski, 1955], denoted lfp(O), which is also
O’s least prefixpoint and the limit of any monotone induction,
i.e., of any increasing sequence (xi)i≥0 satisfying
• x0 = ⊥,
• xi ≤ xi+1 ≤ O(xi), for successor ordinals i+ 1,
• xλ =

∨
({xi | i < λ}), for limit ordinals λ.

Logic Programming Let Σ be an alphabet, i.e., a collec-
tion of symbols which are called atoms. A logic program P is
a set of rules r of the form h← ϕ, where h is an atom called
the head of r, denoted head(r), and ϕ is a conjunction of lit-
erals called the body of r, denoted body(r). An interpretation
I of Σ is a subset of Σ. The set of interpretations 2Σ forms
a lattice equipped with the order ⊆. The truth value (t or f )
of a propositional formula ϕ in a structure I , denoted ϕI , is
defined as usual. With a logic program P , we associate an im-
mediate consequence operator TP [van Emden and Kowalski,
1976] that maps a structure I to the structure

{p ∈ Σ | ∃r ∈ P : head(r) = p ∧ body(r)I = t}.
This is an operator on the lattice 〈2Σ,⊆〉.

3 Safe Inductions
Let L be a lattice and O an operator on L, fixed throughout
the rest of this paper.
Definition 3.1. We call y ∈ L derivable from x ∈ L if x ≤
y ≤ x ∨O(x).
Definition 3.2. Let x be an element of L. An O-induction in
x is a sequence (xi)i≤β such that
• x0 = x,
• xi+1 is derivable from xi for each i < β,
• xλ =

∨
({xi | i < λ}), for limit ordinals λ ≤ β.

Intuitively, we viewO as an operator that constructs certain
lattice points. An O-induction is the associated construction
process. Intuitively, if we are at a stage xi, O(xi) represents
what can be concluded from this given stage. Therefore, the
next step xi+1 in the induction is at least xi (xi+1 ≥ xi)
and at most the combination of xi and what can be concluded
from it (xi+1 ≤ xi ∨ O(xi)). In the context of a powerset
lattice (a lattice of the form 〈2S ,⊆〉), this means that xi+1 ⊆
xi∪O(xi), i.e., xi+1 only contains elements that were already
in xi or such that O concludes them from xi.

Definition 3.3. Let N = (xi)i≤β and N ′ = (yi)i≤α be two
O-inductions. We say that N ′ extends N if α ≥ β and xi =
yi for all i ≤ β. The extension is strict if yα 6= xβ .
Definition 3.4. An O-induction is terminal if there exists no
O-induction that strictly extends it.
Proposition 3.5. An O-induction (xi)i≤β is terminal if and
only if xβ is a prefixpoint of O.
Proposition 3.6. If O is monotone, all monotone inductions
are O-inductions in ⊥ and vice versa.
Corollary 3.7. If O is monotone, all terminal O-inductions
in ⊥ converge to lfp(O).

There is a high degree of non-determinism inO-inductions.
For monotone operators O, despite this non-determinism,
all O-inductions converge to the same point. As such, O-
inductions provide (if O is monotone) a way to construct an
intended lattice point (lfpO). For non-monotone operators,
the situation is quite different: O-inductions might not con-
verge to a single point.
Example 3.8. Let P be the logic program

{ p, q ← ¬p }
This is a simple, stratified logic program [Apt et al., 1988;
Przymusinski, 1988]. Its intended fixpoint (its so-called per-
fect model) is {p}. Let TP denote its immediate consequence
operator. The following are the three terminal strict TP -
inductions in ⊥ = ∅.
N1 = (∅, {q}, {p, q}) N2 = (∅, {p, q}) N3 = (∅, {p}) N
In Example 3.8 it can be seen that certain derivations in an

O-induction happen prematurely. For instance, inN1 andN2,
q is derived by the non-monotonic rule q ← ¬p. As soon as p
is derived, this rule no longer applies: q 6∈ TP({p, q}) = {p}.
In this sequence, the rule was applied when it was not safe
to do so. Below, we define a notion of safety to avoid such
premature derivations, i.e., to only derive facts that remain
derivable, regardless of what other derivations are made fur-
ther on in the induction process.
Definition 3.9. Let x′ be derivable from x. We say that x′ is
safely derivable from x if for each O-induction (xi)i≤β in x,
it holds that x′ ≤ x ∨O(xβ).

An O-induction (xi)i≤β is safe if xi+1 is safely derivable
from xi for each i < β.

In words, x′ is safely derivable from x if no matter what
other derivations we make (ending up in xβ), x′ consists at
most of what we have in x combined with what O concludes
from xβ , i.e., x′ ≤ x ∨O(xβ).

An induction is terminal if it cannot be extended into a
strictly larger induction. We define a similar concept for safe
inductions.
Definition 3.10. A safe O-induction N is safe-terminal if
there exists no strict extension N ′ of N that is safe.

In Example 3.8, we showed that not all terminal O-
inductions converge to the same lattice point. Luckily, the
safety criterion warrants a better situation.
Theorem 3.11. For each x ∈ L, all safe-terminal O-
inductions in x converge to the same lattice point.
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In order to prove this theorem, we use the following result.

Lemma 3.12. Let N = (xi)i≤β , N ′ = (yi)i≤γ be two safe
O-inductions with x0 = y0. For every i ≤ β, j ≤ γ it holds
that if i+1 ≤ β then xi+1∨yj is safely derivable from xi∨yj
and if j+1 ≤ γ then xi∨yj+1 is safely derivable from xi∨yj .
“

Proof of Theorem 3.11. Let N = (xi)i≤β and N ′ = (yi)i≤γ
be two safe-terminal O-inductions. Consider the sequence
(zi)i≤β+γ where zi = xi if i ≤ β and zβ+i = xβ ∨ yi if
i ≤ γ. By Lemma 3.12, this sequence is a safe O-induction.
Since N is safe-terminal, this sequence cannot be a strict ex-
tension ofN and hence xβ ∨yγ = zβ+γ = xβ , i.e., yγ ≤ xβ .
A symmetric argument shows that xβ ≤ yγ , hence xβ = yγ ,
as desired.

Definition 3.13. The safely defined point by O, denoted
safe(O) is the limit of all safe-terminal O-inductions in ⊥.

By Theorem 3.11, the safely defined point is well-defined.
We now study some properties of the safely defined point.

Proposition 3.14. For any operator O, safe(O) is a postfix-
point of O, i.e., safe(O) ≤ O(safe(O)).

Example 3.15. Consider a lattice {⊥,>} with two elements
and an operator O that maps ⊥ to > and > to ⊥. The safely
defined point byO is⊥, since> is not safely derivable (> 6≤
⊥∨O(>)). Here, the O-inductionN = (⊥) is safe-terminal,
but not terminal. N

Definition 3.16. We call an operator O complete if the safely
defined point by O is a fixpoint of O, i.e., if O(safe(O)) =
safe(O).

We will be mostly interested in complete operators O, as
they uniquely determine a fixpoint of interest of O.

Proposition 3.17. An operator O is complete if and only if
every safe-terminal O-induction in ⊥ is terminal.

Proposition 3.18. If O is a monotone operator, then O is
complete and safe(O) = lfp(O).

Theorem 3.11 shows that safe O-inductions, despite their
non-determinism, uniquely determine a lattice point of inter-
est. Furthermore, if O is monotone, this point is the least
fixpoint of O. The question now arises: what if O is non-
monotone? How does the safely defined point by O relate to
other points of interest? In particular, how does it relate to
fixpoints defined in approximation fixpoint theory? We study
this in Section 5. First, we study complexity.

Complexity The height of a finite lattice L is the length n
of the longest sequence ⊥ = x0 < x1 < · · · < > = xn in
L. We call y ∈ L a direct successor of x ∈ L if x < y and
there is no z such that x < z < y. The branching width of a
finite L is the maximum over x ∈ L of the number of direct
successors of x. All complexity results presented below are in
terms of the sum of the branching width and the height of the
input lattice. This means that we use the sum of the branching
width and the height as the measure of our input.

In this section, we assume that a class C = {〈L,O〉} of
pairs of a finite lattice L and an operator O : L → L is

given. Let FC denote the function problem: given one of the
〈L,O〉 in C and p, p′ ∈ L, compute (1) O(p), (2) p ∨ p′, and
(3) {x | x is a direct successor of p}. We assume that FC can
be solved in polynomial time.

The kind of setting used here is not so unusual: it is an al-
gebraic variant of data complexity. For instance, in logic pro-
gramming, each non-ground program P determines a class
of lattices and associated operators (immediate consequence
operators of the groundings of P with respect to a given do-
main). The height and branching width of the lattice are then
polynomial in terms of the domain size. In this setting, the
problem FCP is indeed polynomially solvable.

Theorem 3.19. Let C be a class as above. The decision prob-
lem given Li ∈ C, x, y ∈ Li, is y safely derivable from x by
Oi? is in co-NP.

Sketch of the proof. To prove this, we build a program that
nondeterministically traverses an O-induction from x. To de-
termine that y is not safely derivable from x, it suffices to find
one run of the algorithm such that y 6≤ x∨O(s) with s a state
in in theO-induction. Such algorithm runs in polynomial time
in the height of the lattice.

Theorem 3.20. Let C be a class as above. The decision prob-
lem given 〈L,O〉 ∈ C, s ∈ L, is safe(O) ≥ s? is in (∆P

2 ).
For some classes C, this problem is co-NP-hard.

Sketch of the proof. Containment follows from Theorem
3.19. Hardness follows from Theorem 6.10 of Denecker et
al. [2017].

4 Preliminaries: AFT
Given a lattice L, approximation fixpoint theory makes use
of the lattice L2. We define projections for pairs as usual:
(x, y)1 = x and (x, y)2 = y. Pairs (x, y) ∈ L2 are used to
approximate all elements in the interval [x, y] = {z | x ≤
z ∧ z ≤ y}. We call (x, y) ∈ L2 consistent if x ≤ y. We use
Lc to denote the set of consistent elements. Elements (x, x) ∈
Lc are called exact. We sometimes use the tuple (x, y) and
the interval [x, y] interchangeably. The precision ordering on
L2 is defined as (x, y) ≤p (u, v) if x ≤ u and v ≤ y. In
case (u, v) is consistent, this means that (x, y) approximates
all elements approximated by (u, v), or in other words that
[u, v] ⊆ [x, y]. If L is a complete lattice, then 〈L2,≤p〉 is also
a complete lattice.

AFT studies fixpoints of lattice operators O : L → L
through operators approximating O. An operator A : L2 →
L2 is an approximator ofO if it is≤p-monotone, andO(x) ∈
A(x, x) for all x ∈ L. Approximators map Lc into Lc.
As usual, we restrict our attention to symmetric approxima-
tors: approximators A such that for all x and y, A(x, y)1 =
A(y, x)2. DMT [2004] showed that the consistent fixpoints
of interest (defined below) are uniquely determined by an ap-
proximator’s restriction to Lc, hence, sometimes we only de-
fine approximators on Lc.

AFT studies fixpoints of O using fixpoints of A. The A-
Kripke-Kleene fixpoint is the ≤p-least fixpoint of A and has
the property that it approximates all fixpoints of O. A partial
A-stable fixpoint is a pair (x, y) such that x = lfp(A(·, y)1)
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and y = lfp(A(x, ·)2), where A(·, y)1 denotes the operator
L → L : x 7→ A(x, y)1 and analogously for A(x, ·)2. The
A-well-founded fixpoint is the least precise partial A-stable
fixpoint. An A-stable fixpoint of O is a fixpoint x of O such
that (x, x) is a partial A-stable fixpoint. This is equivalent
to the condition that x = lfp(A(·, x)1). A-stable fixpoints
are minimal fixpoints of O. The A-Kripke-Kleene fixpoint of
O can be constructed by iterative applications of A, starting
from (⊥,>). For the A-well-founded fixpoint, a similar con-
structive characterization has been worked out.

Definition 4.1. An A-refinement of (x, y) is a pair (x′, y′) ∈
L2 satisfying one of the following two conditions:
• (x, y) ≤p (x′, y′) ≤p A(x, y), or
• x′ = x and A(x, y′)2 ≤ y′ ≤ y.

An A-refinement is strict if (x, y) 6= (x′, y′).

Definition 4.2. A well-founded induction of A is a sequence
(xi, yi)i≤β with β an ordinal such that
• (x0, y0) = (⊥,>);
• (xi+1, yi+1) is an A-refinement of (xi, yi), for all i < β;
• (xλ, yλ)=

∨
≤p
{(xi, yi)|i < λ} for limit ordinals λ ≤

β.
A well-founded induction is terminal if its limit (xβ , yβ) has
no strict A-refinements.

Denecker and Vennekens [2007] showed that all terminal
A-inductions converge to the A-well-founded fixpoint of O.

Logic Programming For logic programming, DMT
showed that Fitting’s immediate consequence operator ΨP
[Fitting, 2002] is an approximator of TP , that the ΨP -well-
founded fixpoint is the well-founded model of P [Van Gelder
et al., 1991] and that ΨP -stable fixpoints are the stable
models of P [Gelfond and Lifschitz, 1988].

5 Safe Inductions and AFT
In this section, we study how (safe)O-inductions relate to the
fixpoints studied in AFT.

Theorem 5.1. Let O be an operator and A an approxima-
tor ofO. TheA-well-founded fixpoint approximates the safely
defined point by O.

The proof makes use of the following proposition.

Proposition 5.2. Let O be an operator and A an approxima-
tor ofO. Let (xi, yi)i≤β be anA-well-founded induction. The
following claims hold:
(1) (xi)i≤β is a safe O-induction, and
(2) for each i ≤ β and eachO-inductionN = (zj)j≤α with

z0 = xi, it holds that zα ≤ yβ

Proof of Theorem 5.1. Let z denote the safely defined point
of O and let (xβ , yβ) denote the A-well-founded fixpoint of
O. For any terminal A-well-founded induction (xi, yi)i≤β ,
it holds that xβ ≤ z by the first point of Proposition 5.2.
Furthermore, by the second point of Proposition 5.2 it holds
that any O-induction stays under yβ ; hence z ≤ yβ .

Theorem 5.1 has several consequences.

Corollary 5.3. If the A-well-founded fixpoint of O is exact,
i.e., equal to (x, x) for some x ∈ L, then O is complete and
safe(O) = x.

Corollary 5.4. Let O be an operator and A an approximator
of O. The A-Kripke-Kleene fixpoint of O approximates the
safely defined point by O.

Corollary 5.5. If the A-Kripke-Kleene fixpoint of O is exact,
i.e., equal to (x, x) for some x ∈ L, then O is complete and
safe(O) = x.

Safe O-inductions identify a unique lattice point of inter-
est. Since an operator can have multiple stable fixpoints, we
cannot expect a strong link between the safely defined point
and stable fixpoints. However, we do find the following rela-
tion between stable fixpoints and O-inductions.

Theorem 5.6. Let A be an approximator of O. If x is an
A-stable fixpoint of O, then x is the limit of a terminal O-
induction.

Sketch of the proof. If x is an A-stable fixpoint of O, then
x = lfp(A(·, x)1). The clue to proving this proposition is to
show that monotone inductions of A(·, x)1 are O-inductions.
The result then easily follows.

Example 5.7. Consider the logic program

P = { p← ¬q, q ← ¬p }

It holds that {p} is a stable model of P (a ΨP -stable fixpoint
of TP ). Also, {p} is the limit of the TP -induction (∅, {p}).
This induction is not safe since (∅, {q}) is also a TP -induction
and {p} 6≤ TP({q}) ∨ ∅ = {q}. N

The limit of a terminal O induction is not always a stable
fixpoint of O (for some approximator A), as we show below.

Example 5.8. Consider the logic program

P =

{
p← p, p← q,
q ← ¬p, q ← q

}
In this case (∅, {q}, {q, p}) is the unique terminal TP -
induction. It can be verified that this is a safe induction
and that TP is complete. The safely defined point is a non-
minimal fixpoint of TP , hence it is also non-grounded (see
[Bogaerts et al., 2015]) and not an A-stable fixpoint for any
approximator A of TP . In the well-founded model of P , all
atoms are unknown. N

6 Safe Inductions and Autoepistemic Logic
Recently Bogaerts et al. [2016] exposed a problem in several
semantics of autoepistemic logic (AEL). They showed that
for very simple, stratified theories, the well-founded and other
semantics fail to identify the intended model. They solved
this problem by defining, algebraically, a new constructive
semantics that is based on a refined notion of approximations
of a lattice point (more refined than intervals, i.e., elements
of L2). In this section, we show that safe inductions provide
a direct solution to the aforementioned problem without the
need for any approximation. First, we recall some background
on AEL.
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6.1 AFT and Autoepistemic Logic
AEL is a non-monotonic logic for modeling the beliefs or
knowledge of a rational agent with perfect introspection ca-
pabilities [Moore, 1985].

Let L be the language of propositional logic based on a set
of atoms Σ. Extending this language with a modal operator
K, which is read “I (the agent) know”1, yields a language
LK of modal propositional logic. An autoepistemic theory is
a set of formulas in LK . A crucial assumption about such
theories that distinguishes this logic from the standard modal
logic S5 is that all of the agent’s knowledge is encoded in the
theory: it either belongs to the theory, or can be derived from
it. Levesque [1990] called this the “all I know assumption”.

A modal formula is a formula of the formKψ; an objective
formula is a formula without modal subformulas. If ϕ is a
formula, At(ϕ) denotes the set of all atoms that occur in ϕ
and AtO(ϕ) the set of all atoms that occur objectively in ϕ,
i.e., outside of the scope of an operator K.

An interpretation is a subset of Σ. A possible world struc-
ture is a set of interpretations. A possible world structure can
be seen as a Kripke structure in which the accessibility rela-
tion is total. The set of all possible world structures is denoted
WΣ; it forms a lattice with the knowledge order ≤k such that
Q ≤k Q′ iff Q ⊇ Q′. A possible world structure Q is a
mathematical object to represent all situations that are possi-
ble according to the agent: interpretations q ∈ Q represent
possible states of affairs, i.e., states of affairs consistent with
the agent’s knowledge, and interpretations q 6∈ Q represent
impossible states of affairs, i.e., states of affairs that violate
the agent’s knowledge.

If ϕ is a formula in LK , Q is a possible world structure
and I is an interpretation, satisfaction of ϕ with respect to Q
and I (denoted Q, I |= ϕ) is defined as in the modal logic S5
by the standard recursive rules of propositional satisfaction
augmented with one additional rule:

Q, I |= Kϕ if Q, I ′ |= ϕ for every I ′ ∈ Q.
In this formula, Q represents the belief of the agent and I
represents the actual state of the world. Modal formulas are
evaluated with respect to the agent’s belief, while objective
formulas are evaluated with respect to the state of the actual
world. We furthermore define Q |= Kϕ (ϕ is known in Q)
if Q, I |= ϕ for every I ∈ Q. Moore [1985] associated with
every theory T an operator DT onWΣ as follows:

DT (Q) = {I ∈ WΣ | Q, I |= T }.
The intuition behind this operator is that DT (Q) is a revi-
sion of Q consisting of all worlds that are consistent with the
agent’s current beliefs (Q) and the constraints in T .

DMT [2003] defined approximators for DT and showed
that AFT induces all main and some new semantics for AFT.

Monotonically Stratified AEL Theories Following Ven-
nekens et al. [2006], we call an autoepistemic theory T
stratifiable2 w.r.t. a partition (Σi)0≤i≤n of its alphabet if

1Or, following DMT [2011] “My knowledge entails”.
2As mentioned in the introduction, we restrict to finite stratifica-

tions here.

there exists a partition (Ti)0≤i≤n of T such that for each i,
AtO(Ti) ⊆ Σi and At(Ti) ⊆

⋃
0≤j≤i Σj . This notion of

stratification significantly extends the notion from Marek and
Truszczyński [1991]. A stratification is modally separated if
for every modal subformula Kψ of Ti, either At(ψ) ⊆ Σi or
At(ψ) ⊆

⋃
0≤j<i Σj .

Let Σ1 and Σ2 be two disjoint vocabularies. If Q1 and Q2

are possible world structures over Σ1 and Σ2 respectively,
then the extension ofQ1 byQ2 is the possible world structure
over Σ1∪Σ2 defined asQ1⊕Q2

def
= {I1∪I2 | I1 ∈ Q1∧I2 ∈

Q2}. If Q is a possible world structure over Σ1 ∪ Σ2, the
restriction of Q to Σ1 is Q|Σ1

def
= {I ∩ Σ1 | I ∈ Q}.

DMT [2011] have made strong arguments in favor of a con-
structive semantics for AEL. Bogaerts et al. [2016], however,
showed that the two constructive semantics induced by AFT
(well-founded and Kripke-Kleene semantics) are too weak
for AEL. They gave the following example.

Example 6.1. Consider the autoepistemic theory

T = {q ⇔ ¬Kp, r ⇔ ¬Kq}.

The informal reading of this theory is as follows: I (an in-
trospective autoepistemic agent) only know the following: q
holds iff I do not know p and r holds iff I do not know q.

Since p does not occur objectively in T , an agent who only
knows T does not have any information about p. Thus, in
the intended model, it knows neither p nor ¬p, i.e., ¬Kp and
¬K¬p must hold in the intended model. The first sentence
then entails q, hence Kq must hold. Now, the last sentence
implies ¬r; the intended model is thus {{p, q}, {q}}, the
unique possible world structure in which ¬Kp,¬K¬p,Kq,
and K¬r hold. N

Bogaerts et al. [2016] showed that the well-founded se-
mantics (for any approximator) fails to identify the intended
model in the above example. They generalized this example
to the class of monotonically stratified theories and defined a
notion of perfect model for them.

Definition 6.2. We say that T is monotonically stratified with
respect to a partition (Σi)0≤i≤n of its alphabet if there is a
modally separated stratification (Ti)0≤i≤n of T such that all
subformulas Kψ of Ti with At(ψ) ⊆ Σi occur negatively (in
the scope of an odd number of negations) in Ti.

The construction of the perfect model of an autoepistemic
theory is as follows. In a monotonically stratified theory, each
theory Ti defines knowledge of the symbols in Σi in terms
of knowledge of symbols in lower strata (Σj with j < i).
The last condition guarantees that for a fixed interpretation of
the knowledge of lower strata, DTi is a monotone operator
and hence its intended fixpoint is clear. The perfect model of
T is then constructed by iterated monotone inductions, each
of them computing the knowledge of symbols in Σi based
on the knowledge of symbols in lower strata. In the example
above, first ignorance of p is established; next, knowledge of
q is established and in the final stage, knowledge of ¬r is
concluded. This construction was formalized as follows.

Proposition 6.3 (Proposition 3.3 from Bogaerts et al. [2016]).
Let (Ti)0≤i≤n be a monotonic stratification of T w.r.t.
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(Σi)0≤i≤n. For some i, let Qi−1 be a possible world struc-
ture over

⋃
j<i Σj . The operator Di : WΣi → WΣi : Q 7→

DTi(Q⊕Qi−1)|Σi is monotone.

Definition 6.4. Let T be a monotonically stratified autoepis-
temic theory and (Ti)0≤i≤n a monotonic stratification of T .
The perfect model of T (denoted pm(T )) is defined by in-
duction on n.
• If n = 0, then DT is monotone and the perfect model of
T is the least fixpoint of DT .
• Otherwise, let Qn−1 denote pm(

⋃
j<n Tj) and let Dn

be as in Proposition 6.3; in this case we define pm(T )
as lfp(Dn)⊕Qn−1.

In general, the construction of the perfect model may not
always work as expected. Bogaerts et al. [2016] defined a cri-
terion that guarantees that this construction behaves nicely,
called weak permaconsistency.

Definition 6.5. An autoepistemic theory T is called weakly
permaconsistent if for every possible world structureQ, there
is at least one I such that Q, I |= T .

This resulted in a “sanity criterion” for semantics of au-
toepistemic logic as follows.

Definition 6.6. We say that a semantics for autoepistemic
logic respects stratification if all weakly permaconsistent
monotonically stratified theories have exactly one model,
namely their perfect model.

6.2 AEL and Safe Inductions
Here, we show that the safely defined point of DT manages
to identify the fixpoint of interest for Example 6.1 and that
this result generalizes: the safely defined semantics (defined
formally below) respects stratification. This result shows that
safe inductions can identify the perfect model, without prior
information on the stratification and without the need for any
form of approximation. Even stronger, the perfect model con-
struction is a terminal safe induction.

Definition 6.7. The safely defined semantics is given by
Q |=sd T if Q = safe(DT ) and DT is complete.

The condition that DT is complete has as effect here that
the safely defined model of T must be a fixpoint of DT . In
other words, the knowledge of the agent must be such that it
can no longer be revised by the revision operator.

Example 6.8 (Example 6.1 continued). A first observation
is that there are no possible world structures Q such that
DT (Q) |= Kp or DT (Q) |= K¬p. Hence, if N = (Qi)i≤β
is a DT -induction in ⊥ = 2{p,q,r}, it also has the property
that Qi 6|= Kp and Qi 6|= K¬p for each i. For each Qi,
it then holds that DT (Qi) |= Kq. From this it follows that
Qq := {{p, q}, {q}, {p, q, r}, {q, r}}, the ≤k-least possible
world structure in which Kq holds, is safely derivable from
⊥. Now, for every possible world structureQ ≥k Qq , it holds
that DT (Q) |= K¬r. Thus, this also holds for all possible
world structures in a DT -induction from Qq . Hence, it fol-
lows that {{p, q}, {q}} is safely derivable fromQq . Since this
is a fixpoint of DT , the safe DT -induction

(⊥, Qq, {{p, q}, {q}})

is terminal and hence also safe-terminal. Thus, the perfect
model of T is indeed the safely defined point by DT . N

We now give a sketch of the proof that the above example
is not a coincidence, i.e., that it generalizes to the class of
monotonically stratified theories.

Theorem 6.9. The safely defined semantics respects stratifi-
cation. That is: for each monotonically stratified theory T :
if T is weakly permaconsistent, then DT is complete and
safe(DT ) is the perfect model of T .

The proof of this theorem makes use of the following two
results.

Lemma 6.10. Suppose (Ti)0≤i≤n is a monotone stratifica-
tion of T w.r.t. (Σi)0≤i≤n. Let Σ′i denote

⋃
j≤i Σj for each i.

For every possible world structure Q it holds that

DT (Q) =
⊕

0≤i≤n

DTi(Q|Σ′
i
)|Σi

.

Lemma 6.11. Suppose T is monotonically stratified w.r.t.
(Σi)0≤i≤n. Furthermore suppose T is weakly permaconsis-
tent. Let Σ′i denote

⋃
j≤i Σi for each i. If Q1 and Q2 are two

possible world structures such thatQ1|Σ′
i

= Q2|Σ′
i
, then also

DT (Q1)|Σ′
i

= DT (Q2)|Σ′
i
.

Lemma 6.10 shows how DT is composed from the various
DTi . Lemma 6.11 states that if two possible world structures
agree on the lower strata, then so does their image under DT
for any weakly permaconsistent theory T . In other words:
the knowledge of symbols in a given stratum in DT (Q) only
depends on the knowledge of symbols of smaller (or equal)
strata in Q.

Sketch of the proof of Theorem 6.9. The central idea in this
proof is to turn the construction of the perfect model into a
safe DT -induction. To show that it is a DT -induction and to
show that it is safe, we repeatedly exploit the fact that if Q
agrees with pm(T ) on all strata below i, so does DT (Q).

Completeness follows from the fact that we find a safe DT
induction whose limit is the perfect model of T . Since this
model is a fixpoint of DT , this induction is terminal and DT
is indeed complete.

7 Conclusion
In this paper, we presented the notions of O-inductions and
safe O-inductions for a lattice operator O. We studied how
they relate to various fixpoints of O studied in AFT. We stud-
ied the semantics induced by these inductions in the context
of autoepistemic logic, where we find that the safely defined
point has interesting properties for a class of operators. It
is a topic of future work to study the semantics induced by
safe inductions for other application domains of AFT, such
as abstract argumentation [Dung, 1995] and active integrity
constraints [Flesca et al., 2004; Cruz-Filipe, 2016], where we
conjecture that safe inductions will prove helpful to tackle the
problems with the well-founded semantics such as Example
18 of Cruz-Filipe [2016].
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