
Semantics for Active Integrity Constraints Using Approximation Fixpoint Theory∗

Bart Bogaerts† and Luı́s Cruz-Filipe‡
† KU Leuven, Department of Computer Science

Celestijnenlaan 200A, Leuven, Belgium
‡ University of Southern Denmark, Department of Mathematics and Computer Science

Campusvej 55, Odense, Denmark
bart.bogaerts@cs.kuleuven.be, lcfilipe@gmail.com

Abstract
Active integrity constraints (AICs) constitute a for-
malism to associate with a database not just the
constraints it should adhere to, but also how to
fix the database in case one or more of these
constraints are violated. The intuitions regarding
which repairs are “good” given such a description
are closely related to intuitions that live in various
areas of non-monotonic reasoning.
In this paper, we apply approximation fixpoint the-
ory, an algebraic framework that unifies seman-
tics of non-monotonic logics, to the field of AICs.
This results in a new family of semantics for AICs,
of which we study semantics and relationships to
existing semantics. We argue that the AFT-well-
founded semantics has some desirable properties.

1 Introduction
One of the key components of modern-day databases are in-
tegrity constraints: logical formulas that specify semantic re-
lationships between the data being modeled that have to be
satisfied at all times. When the database is changed (typ-
ically by updating), it is necessary to check if its integrity
constraints still hold; in the negative case, it must be repaired.

Database repairs have been an important topic of research
for many years [Abiteboul, 1988]. There are two major prob-
lems when deciding how to repair an inconsistent database:
finding possible repairs and choosing which one to apply.
Indeed, there are typically several ways to fix an inconsis-
tent database, and several criteria to choose the “best” one
have been proposed over the years. Among the most widely
accepted criteria are minimality of change [Winslett, 1990;
Eiter and Gottlob, 1992] – change as little as possible – and
the common-sense law of inertia [Przymusinski and Turner,
1997] – do not change anything without a reason to do it.

A typical implementation of integrity constraints in
database systems is by means of event-condition-action
rules [Teniente and Olivé, 1995; Widom and Ceri, 1996],

∗Bart Bogaerts is a postdoctoral fellow of the Research Foun-
dation – Flanders (FWO). Luı́s Cruz-Filipe was partially supported
by the Danish Council for Independent Research, Natural Sciences,
grant DFF-1323-00247.

which specify update actions to be performed when a particu-
lar event (a trigger) occurs and specific conditions hold. How-
ever, these rules do not have a declarative semantics, making
their joint behavior hard to understand.

The formalism of active integrity constraints (AICs)
[Flesca et al., 2004] was inspired by a similar idea. AICs
express database dependencies through logic programming-
style rules that include update actions in their heads. They
come with a set of declarative semantics [Caroprese and
Truszczyński, 2011] that identifies several progressively
more restricted classes of repairs, which can be used as cri-
teria to select a preferred repair. These repairs can be com-
puted by means of tree algorithms[Cruz-Filipe et al., 2013;
Cruz-Filipe et al., 2015].

It is striking that many intuitions about “good” repairs,
such as minimality of change, are similar to intuitions that
surfaced in other domains of non-monotonic reasoning, such
as logic programming [van Emden and Kowalski, 1976] and
default logic [Reiter, 1980]. Still, it has been hard to find sat-
isfying semantics for AICs. As shown by Cruz-Filipe et al.
[2013], the semantics of founded repairs [Caroprese et al.,
2006] unexpectedly fails to respect the common-sense law
of inertia, while the more restricted semantics of justified re-
pairs [Caroprese and Truszczyński, 2011] forbids natural re-
pairs. That work proposed the operational semantics of well-
founded repairs, which however is not modular [Cruz-Filipe,
2014] and therefore restricted in its practical applicability.

In this paper, we define a new class of semantics for AICs
that are natural counterparts of existing semantics in vari-
ous non-monotonic reasoning domains. To be precise, we
define semantics for AICs based on approximation fixpoint
theory (AFT) [Denecker et al., 2000], an abstract algebraic
framework that unifies semantics of logic programming, de-
fault logic, autoepistemic logic [Moore, 1985], abstract ar-
gumentation frameworks [Dung, 1995] and abstract dialec-
tical frameworks [Brewka and Woltran, 2010], as shown by
Denecker, Marek and Truszczyński [2000; 2003] and Strass
[2013]. In order to do so, we continue the work of Cruz-Filipe
[2016], who defined a semantic operator for AICs and used
it to study the grounded fixpoint semantics [Bogaerts et al.,
2015a] of AICs. In this paper, we define an approximating
operator of Cruz-Filipe’s semantic operator. From this oper-
ator, approximation fixpoint theory immediately provides us
with (i) a supported fixpoint semantics, (ii) a well-founded

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

866

fixpoint semantics, (iii) a (partial) stable fixpoint semantics,
(iv) a Kripke-Kleene fixpoint semantics, and (v) a (partial)
grounded fixpoint semantics. We study properties of these
new semantics and study how they compare to existing se-
mantics. We argue that the AFT-style well-founded semantics
is valuable. Indeed, we show that this semantics can be com-
puted in polynomial time, and that, on practical examples, it
corresponds to the intuitions underlying database repairs, pro-
viding natural upper and lower bounds on the set of accept-
able repairs (formally: the AFT-style well-founded model ap-
proximates all justified, stable and grounded repairs).

Besides defining a new class of interesting semantics,
our work provides solid foundations for transferring work
from the non-monotonic reasoning domain to AICs. For
instance, we can now directly apply existing results from
AFT, such as modularity results [Vennekens et al., 2006;
Bogaerts et al., 2016] or predicate introduction results [Ven-
nekens et al., 2007a; 2007b]. Following Caroprese and
Truszczyński [2011], our work also paves the way to applying
AFT to revision programming.

2 Preliminaries
Active Integrity Constraints We assume a fixed set At of
atoms. An interpretation or database is a subset of At . A
literal is an atom a or its negation ¬a. We say ¬a and a are
dual literals and denote the dual of a literal l by lD. The satis-
faction relation between databases DB and literals is defined
as usual: DB |= a if a ∈ DB and DB |= ¬a if DB 6|= a.

An update action has the form +a or −a with a ∈ At . We
call +a and −a dual actions and use αD to denote the dual
action of α. Update actions represent changes to the database:
+a transforms DB to DB ∪ {a} and −a transforms DB to
DB \ {a}. A set of update actions U is consistent if it does
not contain an action and its dual. A consistent set of up-
date actions U acts on a database DB by executing all its
actions simultaneously; we denote the result of this operation
by U(DB). Following Cruz-Filipe [2016], we define an op-
eration

⊎
on consistent sets of update actions:

U1
⊎
U2 = (U1 ∪ {α ∈ U2|αD 6∈ U1}) \ {α ∈ U1|αD ∈ U2}.

This operation has the property that: if every action in U1
changes DB and every action in U2 changes U1(DB), then(

U1
⊎
U2
)
(DB) = U2(U1(DB)).

Literals and update actions are related by mappings lit and
ua, where lit(+a) = a, lit(−a) = ¬a and ua is the inverse of
lit. These mappings naturally extend to sets of literals/actions.
Definition 2.1. An active integrity constraint (AIC) is a rule
r of the form

l1 ∧ · · · ∧ ln ⊃ α1 | · · · | αk (1)

such that lit(αDi) ∈ {l1, . . . , ln} for each i. We call l1 ∧ · · · ∧
ln the body of r, denoted body(r), and α1 | · · · | αk the head
of r, denoted head(r).

The informal reading of the above rule is: “If each of the
li holds in DB , then DB is inconsistent. An allowed fix is to

execute one or more of the αi.” A set of AICs represents con-
straints a database should adhere to and, in addition, which
atoms can be changed in order to fix it. Intuitively, atoms can
only be changed if there is some rule that allows it.

An AIC is normal if k = 1. The normalization of an AIC
of the form (1) is the set of AICs

{l1 ∧ · · · ∧ ln ⊃ αi | 1 ≤ i ≤ k}.

It follows from the informal explanation above that we ex-
pect normalization to preserve semantics. This is the case for
most semantics of AICs (the notorious exception being the
semantics of justified repairs [Caroprese and Truszczyński,
2011], which poses several other problems [Cruz-Filipe et al.,
2013]). In the current paper, we assume all AICs are normal.
Extensions of the semantics we define for non-normal AICs
can then be obtained through normalization, if needed.

Definition 2.2. A set of update actions U is a weak repair for
DB and a set η of AICs (shortly, for 〈DB, η〉) if:
• every action in U changes DB , and
• U(DB) 6|= body(r) for each r ∈ η.

A ⊆-minimal weak repair is called a repair.

(Weak) repairs do not take the head of AICs into account,
and thus allow arbitrary changes to the database. We now
review semantics for AICs that have been defined with the
intention to allow only changes allowed by one of the AICs.

Definition 2.3 ([Caroprese et al., 2006]). A set of update
actions U is founded with respect to 〈DB, η〉 if, for each
α ∈ U , there is a rule r ∈ η with α ∈ head(r) and such
that U ′(DB) |= body(r), where U ′ = U \ {α}. A founded
(weak) repair is a (weak) repair that is founded.

Definition 2.4 ([Cruz-Filipe et al., 2013]). A (weak) repair
U for 〈DB, η〉 is well-founded if there exists a sequence of
actions α1, . . . , αn such that U = {α1, . . . , αn} and, for each
i ∈ {1, . . . , n}, there is a rule ri such that Ui−1(DB) |=
body(ri) and αi ∈ head(ri), where Ui−1 = {α1, . . . , αi−1}.
Definition 2.5 ([Caroprese and Truszczyński, 2011]). Let U
be a set of update actions and 〈DB, η〉 a database.
• The no-effect actions with respect to DB and U ,

neffDB (U), are the actions that change neither DB , nor
U(DB).
• The set of non-updatable literals of an AIC r, nup(r),

contains all body literals of r that do not occur in the
head of r.
• U is closed under η if for each r ∈ η, ua(nup(r)) ⊆ U

implies head(r) ∩ U 6= ∅.
• U is a justified action set if it is a minimal superset of

neffDB (U) closed under η.
• U is a justified (weak) repair if it is a (weak) repair and
U ∪ neffDB (U) is a justified action set.

Although the notion of closed set of actions does not take
the database into account, its role in the definition of justified
weak repairs is as part of the definition of justified action set –
where all actions that do not change the database are included.

Marek and Truszczynski [1998] defined in the context of
revision programming the shifting property; this property was
later transferred to active integrity constraints [Caroprese and

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

867

Truszczyński, 2011]. Intuitively, a semantics for AICs pos-
sesses the shifting property if uniformly replacing some liter-
als with their duals preserves the semantics at hand.

Definition 2.6. Let S ⊆ At be a set of atoms and l a literal.
The shift of l with respect to S is defined as

shiftS(l) =

{
l if l 6∈ S
lD otherwise

The shift function is extended to sets of literals, update ac-
tions and AICs in the straightforward manner.

Definition 2.7. We say that a semantics for AICs has the
shifting property if: for all 〈DB, η〉 and all S ⊆ At , U is
a repair of 〈DB, η〉 accepted by the semantics if and only if
shiftS(U) is a repair of 〈shiftS(DB), shiftS(η)〉 accepted by
the semantics.

If a semantics has the shifting property, then we can reduce
any situation to the case DB = ∅ by taking S = DB .

Lattices, Operators and Fixpoints A partially ordered set
(poset) 〈L,≤〉 is a set L equipped with a partial order ≤, i.e.,
a reflexive, antisymmetric, transitive relation. As usual, we
write x < y as abbreviation for x ≤ y∧x 6= y. If S is a subset
of L, then x is an upper bound, respectively a lower bound of
S if for every s ∈ S, it holds that s ≤ x, respectively x ≤ s.
An element x is a least upper bound (respectively greatest
lower bound of S) if it is an upper bound that is smaller
than every other upper bound (resp. a lower bound that is
greater than every other lower bound). If S has a least up-
per bound (resp. a greatest lower bound) we denote it lub(S)
(resp. glb(S)). As is custom, we sometimes call a greatest
lower bound a meet, and a least upper bound a join and use
the related notations

∧
S = glb(S), x ∧ y = glb({x, y}),∨

S = lub(S) and x ∨ y = lub({x, y}). We call 〈L,≤〉 a
complete lattice if every subset of L has a least upper bound
and a greatest lower bound. A complete lattice has both a
least element ⊥ and a greatest element >.

Since we apply our results to (finite) databases, for the sake
of simplicity we assume L to be finite in this text. All pre-
sented results easily generalize to the infinite setting as well.

An operator O : L → L is monotone if x ≤ y implies
that O(x) ≤ O(y). An element x ∈ L is a fixpoint of O
O(x) = x. Every monotone operator O in a complete lattice
has a least fixpoint, denoted lfp(O), which is the limit (the
least upper bound) of the increasing sequence (xi)i∈N defined
by x0 = ⊥ and xi+1 = O(xi).

Bogaerts et al. [2015a] called a point x ∈ L grounded
for O if, for each v ∈ L such that O(v ∧ x) ≤ v, it holds
that x ≤ v. Later, they generalized this notion to partial
grounded fixpoints [Bogaerts et al., 2015b]. They explained
the intuition underlying these concepts under the assumption
that the elements of L are sets of “facts” of some kind and
the ≤ relation is the subset relation between such sets: in this
case, a point x is grounded if it contains only facts that are
sanctioned by the operator O, in the sense that if we remove
them from x, then the operator will add at least one of them
again.

Approximation Fixpoint Theory Given a lattice L, ap-
proximation fixpoint theory (AFT) [Denecker et al., 2000]
uses the bilattice L2. We define two projection functions
for pairs as usual: (x, y)1 = x and (x, y)2 = y. Pairs
(x, y) ∈ L2 are used to approximate elements in the interval
[x, y] = {z | x ≤ z ∧ z ≤ y}. We call (x, y) ∈ L2 consistent
if x ≤ y, that is, if [x, y] is non-empty, and use Lc to de-
note the set of consistent elements. Elements (x, x) ∈ Lc are
called exact; they constitute the embedding of L in L2. We
sometimes abuse notation and use the tuple (x, y) and the in-
terval [x, y] interchangeably. The precision ordering on L2 is
defined as (x, y) ≤p (u, v) if x ≤ u and v ≤ y. In case (u, v)
is consistent, this means that (x, y) approximates all elements
approximated by (u, v), or in other words that [u, v] ⊆ [x, y].
If L is a complete lattice, then 〈L2,≤p〉 is also a complete
lattice.

AFT studies fixpoints of lattice operators O : L → L
through operators approximating O. An operator A : L2 →
L2 is an approximator of O if it is ≤p-monotone, and has
the property that A(x, x) = (O(x), O(x)) for all x. Ap-
proximators are internal in Lc (i.e., map Lc into Lc). As
usual, we often restrict our attention to symmetric approxima-
tors: approximators A such that, for all x and y, A(x, y)1 =
A(y, x)2.Denecker et al. [2004] showed that the consis-
tent fixpoints of interest (supported, stable, well-founded) are
uniquely determined by an approximator’s restriction to Lc,
hence, sometimes we only define approximators on Lc.

AFT studies fixpoints of O using fixpoints of A.
• The A-Kripke-Kleene fixpoint is the ≤p-least fixpoint of
A, and it approximates all fixpoints of O.
• A partial A-stable fixpoint is a pair (x, y) such that
x = lfp(A(·, y)1) and y = lfp(A(x, ·)2), where A(·, y)1
denotes the operator L → L : x 7→ A(x, y)1 and analo-
gously for A(x, ·)2.
• The A-well-founded fixpoint is the least precise partial
A-stable fixpoint.
• An A-stable fixpoint of O is a fixpoint x of O such that
(x, x) is a partial A-stable fixpoint. This is equivalent to
the condition that x = lfp(A(·, x)1).

The A-Kripke-Kleene fixpoint of O can be constructed as
the limit of any monotone induction of A. For the A-well-
founded fixpoint, a similar constructive characterization has
been worked out by Denecker and Vennekens [2007]:

Definition 2.8. An A-refinement of (x, y) is a pair (x′, y′) ∈
L2 satisfying one of the following two conditions:

(i) (x, y) ≤p (x′, y′) ≤p A(x, y), or

(ii) x′ = x and A(x, y′)2 ≤ y′ ≤ y.

An A-refinement is strict if (x, y) 6= (x′, y′).

We call the first type (i.) of refinements application refine-
ments and the second type (ii.) unfoundedness refinements. If
(x′, y′) is an A-refinement of (x, y) and A is clear from the
context, we often write (x, y)→ (x′, y′).

Definition 2.9. A well-founded induction of A is a sequence
(xi, yi)i≤n with n ∈ N such that
• (x0, y0) = (⊥,>);
• (xi+1, yi+1) is an A-refinement of (xi, yi), for all i < n.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

868

A well-founded induction is terminal if its limit (xn, yn) has
no strict A-refinements.

A well-founded induction is an algebraical generaliza-
tion of the well-founded model construction defined by Van
Gelder et al. [1991]. The first type of refinement corresponds
to making a partial structure more precise by applying Fit-
ting’s immediate consequence operator; the second type of
refinement corresponds to making a structure more precise by
eliminating an unfounded set. All terminal well-founded in-
ductions of A have the A-well-founded fixpoint as limit [De-
necker and Vennekens, 2007].

When we introduce semantics for AIC based on AFT in the
next section, we provide examples of the different construc-
tions considered here.

3 AFT-style Semantics for AICs
A Semantic Operator for AICs Recall that in this paper,
we only consider normal AICs.

Given a fixed database DB , the sets of update actions U
that are of interest to us are those such that (i) U is consis-
tent and (ii) each action in U modifies DB . As argued by
Cruz-Filipe [2016], the set of such sets is isomorphic to 2At .
Hence, from now on, we identify such a set with a subset of
At (the atoms whose value is changed by U). If a ∈ At and
DB is a database, we define ch a to be the update action +a if
a 6∈ DB and−a if a ∈ DB . Thus, in the above identification,
a set of atoms U ⊆ At is identified with the set

U = {ch a | a ∈ U}

of update actions. Usually, we omit the bar, and simply write
U for the subset of At as well.

Following the principle of minimality of change [Winslett,
1990; Eiter and Gottlob, 1992], we prefer smaller sets of up-
dates. The lattice we are interested in is thus 〈2At ,⊆〉, where
smaller elements correspond to “better” repairs.

Now consider a set of AICs η. Cruz-Filipe associated with
such a set a semantic operator Tη : 2At → 2At such that

Tη(U) = U
⊎
{head(r) | r ∈ η ∧ U(DB) |= body(r)}.

Cruz-Filipe argued that a semantics for AICs based on
grounded fixpoints of Tη coincides with the intuitions on a
large set of examples and that it solves problems with several
previously existing semantics. In the following paragraph,
we define an approximator for Tη and hence, obtain a set of
AFT-based semantics for AICs, based on similar intuitions.

An Approximator for Tη A partial action set is a mapping
U : At → {t, f ,u}. A partial action set U is two-valued if
U(At) ⊆ {t, f}; in this case, we identify U with the action set
{ch a | U(a) = t}. The intended reading of such a mapping
is that U(a) is true if a is changed by U, it is false if a is not
changed by U and it is unknown if U leaves it open whether
or not a is changed. Alternatively, a partial action set is iden-
tified with an element of (2At)c (as standard). The set of all
partial action sets is denoted P . The truth order ≤t on three-
valued truth values is defined by f ≤t u ≤t t. The inverse of
a truth value is f−1 = t, t−1 = f ,u−1 = u.

A partial database is a mapping DB : At → {t, f ,u}. The
intended reading is that DB(a) is true if a is in the database,
DB(a) is false if a is not in the database and DB(a) is un-
known otherwise.

If U is a partial action set and DB is a (regular) database,
then we define U(DB) to be the partial database such that

U(DB) : a 7→

 DB(a) if U(a) = f
DB(a)−1 if U(a) = t
u otherwise,

where DB(a) = t if a ∈ DB and DB(a) = f otherwise.
Definition 3.1. Given a partial database DB, a set of AICs
η and an update action α, we define the support of α with
respect to 〈DB, η〉 as

suppDB,η(α) = max
≤t

{nup(r)DB | r ∈ η ∧ head(r) = α},

where nup(r)DB refers to the standard three-valued truth
evaluation of the formula1 nup(r) in the partial interpretation
DB based on Kleene’s truth tables [Kleene, 1938].

Using this notion, we define two additional values.
Definition 3.2. If a ∈ At , U is a partial set of update actions
and 〈DB , η〉 as before, we define

suppchDB,η,U(a) = suppU(DB),η(ch a)

suppkeepDB,η,U(a) = suppU(DB),η((ch a)
D)

As before, we often drop DB and η from the notation if
they are clear from the context. Intuitively, suppchU (a) is true
if there is support for changing a after updating the database
with U, i.e., if at least one rule r with head(r) = ch a has
nup(r)U(DB) = t; suppchU (a) is unknown if it is not true
and there is at least one rule r with head(r) = ch a that has
nup(r)U(DB) = u; otherwise suppchU (a) is false. Similarly,
suppkeepU (a) expresses the support for keeping a as it is in the
database (hence the name choice).
Example 3.3. Consider DB = ∅ and the following set η:

¬a ∧ b ⊃ +a a ∧ c ∧ d ⊃ −a.

Consider U = {a 7→ t, b 7→ t, c 7→ t, d 7→ u}. Then
suppchDB,η,U(a) = t and suppkeepDB,η,U(a) = u. N

Definition 3.4. Given DB and η, we define an operator
T〈DB,η〉 : P → P , as follows:
• If U(a) = f , then T〈DB,η〉(U)(a) = suppchU (a).

• If U(a) = t, then T〈DB,η〉(U)(a) = suppkeepU (a)−1.
• Otherwise (i.e., if U(a) = u):

– if suppchU (a) = t and suppkeepU (a) = f , then
T〈DB,η〉(U)(a) = t;

– if suppkeepU (a) = t and suppchU (a) = f , then
T〈DB,η〉(U)(a) = f ;

– otherwise, T〈DB,η〉(U)(a) = u.
When DB is clear from the context, we write Tη for T〈DB,η〉.

1Technically, nup(r) is a set of literal; we identify it with its
conjunction here.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

869

Definition 3.4 is motivated as follows. Assume U is a par-
tial update set containing information on the intended update.
In this case Tη(U) represents a revised update, using the AICs
in η. In the case where U(a) = f , a is not an element of the
(partial) update set at hand. The only way to add a to the up-
date is if some rule supports changing a, which is captured
by suppch. The case for U(a) = t is completely symmetrical,
in this case the only reason for removing a from the update
at hand is if there is some rule that supports keeping a. In
the last case, where U(a) = u, we have no information what
the update does to a yet. In this case, we can derive that a
must be in the update if we already have support for ch a and
we are sure that there is no support for keeping a (for ch aD).
Similarly, we can derive that a must not be in the update if we
have support for ch aD but not for ch a. In all other cases, we
derive nothing about a being in the update or not.
Proposition 3.5. Tη is an approximator of Tη .

Proof. (Sketch) The first step is to show that Tη is ≤p-
monotone. Since Kleene-valuation is ≤p-monotone, the
functions that map U to suppchU (a) and suppkeepU (a) for each
a ∈ At are also ≤p-monotone. Monotonicity of Tη then fol-
lows from case analysis on the definition of Tη(U)(a).

The second step is to show that Tη and Tη coincide on two-
valued sets, which again can be established by case analysis
on the definition of Tη(U)(a).

Since Tη is an approximator, it defines a family of seman-
tics for AICs.
Definition 3.6. Let 〈DB, η〉 be a database.
• A partial stable repair of 〈DB, η〉 is a partial update set
U such that U is a partial Tη-stable fixpoint. A stable
repair is a partial stable repair that is two-valued.
• The AFT-well-founded repair of 〈DB, η〉 is the Tη-well-

founded fixpoint (in general, this is a partial update set).
• The Kripke-Kleene repair of 〈DB, η〉 is the Tη-Kripke-

Kleene fixpoint (in general, this is a partial update set).
• A partial grounded repair of 〈DB, η〉 is a partial up-

date set U such that U is a partial Tη-grounded fixpoint
[Bogaerts et al., 2015b]. A grounded repair is a partial
grounded repair that is two-valued.

The terminology in the above definition uses “repairs” for
certain classes of fixpoints of a semantic operator. It follows
easily that all two-valued update sets that are called “repair”
in the the above definition, indeed are repairs according to
AIC terminology. This paper is the first work that studies
partial (non-two-valued) repairs.

The well-founded semantics induced by AFT can in gen-
eral differ from the existing well-founded semantics for AICs,
as we show in Example 3.13. To distinguish the two, we use
the term AFT-well-founded semantics.

Grounded repairs were defined previously by Cruz-Filipe
[2016]. All other classes of repairs defined in Definition 3.6
are newly introduced semantics by the current paper. We now
illustrate these semantics by means of some examples.
Example 3.7. Consider the following set η of AICs:

¬a ⊃ +a ¬a ∧ ¬b ∧ ¬c ⊃ +c

a ∧ ¬b ⊃ +b a ∧ c ∧ b ⊃ −b

with DB = ∅. The Tη-well-founded fixpoint can be com-
puted as the limit of the following well-founded induction:

U0 : a 7→ u, b 7→ u, c 7→ u.

U1 = Tη(U0) : a 7→ t, b 7→ u, c 7→ u

U2 : a 7→ t, b 7→ u, c 7→ f

U3 = Tη(U2) : a 7→ t, b 7→ t, c 7→ f ,

where U2 is an unfounded refinement of U1 and all other re-
finements are application refinements. Note that unfounded-
ness refinements serve to minimize repairs. N

Example 3.8. Consider the following set η of AICs:

a ∧ ¬b ⊃ +b ¬a ∧ b ⊃ +a

¬a ∧ ¬b ∧ ¬c ⊃ +c

with DB = ∅. Intuitively, we expect +c to be an element
of “good” repairs, and (following the minimality of change
principle), no other actions to be in “good” repairs.

The Tη-well-founded fixpoint can be computed as the limit
of the following well-founded induction:

U0 : a 7→ u, b 7→ u, c 7→ u.

U1 : a 7→ f , b 7→ f , c 7→ u.

U2 = Tη(U1) : a 7→ f , b 7→ f , c 7→ t.

Here, the first refinement is an unfoundedness refinement. In
can be verified that U0 is a fixpoint of Tη and hence is the
Kripke-Kleene repair. Again, the AFT-well-founded repair is
two-valued and corresponds to the intuitions. N

As can be expected, not every set of AICs has a two-valued
well-founded repair. That would simply be too much to ask.
It would mean that for every set of AICs we can unambigu-
ously identify a single repair. The following example illus-
trates that this is indeed not always the case. It also illustrates
that (for this specific example), Tη-stable repairs provide a
solution that corresponds to the intuitions.
Example 3.9. Consider the following set η of AICs:

¬a ∧ ¬b ⊃ +a ¬a ∧ ¬b ⊃ +b

a ∧ ¬c ⊃ +c

with DB = ∅. Intuitively, η has two “good” repairs. The first
two rules state that a or b should be added in order to “fix” the
violated constraint ¬(¬a∧¬b). Depending on that choice, the
last rule determines whether or not c should be repaired. The
two intended repairs are thus {+a,+c} and {+b}. In can be
verified that these two intended repairs are indeed stable and
that the AFT-well-founded repair maps all atoms to u (hence
it approximates the two intended repairs). N

Properties of AFT-Style Semantics We now show that all
of these semantics are nicely invariant under shifting.
Proposition 3.10. Tη , and hence also Tη , is invariant under
shifting, i.e., for each set S ⊆ At:

T〈DB,η〉 = T〈shiftS(DB),shiftS(η)〉

Corollary 3.11. All AFT-style semantics for AICs have the
shifting property.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

870

Proposition 3.12. If the AFT-well-founded repair is two-
valued, it is also well-founded (as defined by Cruz-Filipe et
al. [2013]).

Example 3.13. The converse of Proposition 3.12 does not
hold. Consider for instance the following set η of AICs (based
on Example 18 of Cruz-Filipe [2016])

¬a ⊃ +a ¬a ∧ ¬b ⊃ +b

¬b ∧ ¬c ⊃ +c

and DB = ∅. In this case, the AFT-well-founded repair is
UAFT : a 7→ t, b 7→ f , c 7→ t. This is clearly the intended re-
pair. Indeed, the first rule dictates that a needs to be changed
(here: added) no matter what. The second rule then becomes
void (there is never a reason to add b) and the last rule dictates
that also c must be added. However, a 7→ t, b 7→ t, c 7→ f
is also a well-founded repair, obtained by first applying the
second rule and then the first one. N

Proposition 3.14. All Tη-stable repairs are justified.

Example 3.15. The converse of Proposition 3.14 does not
hold. Consider the following set η of AICs.

¬a ⊃ +a a ∧ ¬b ⊃ +b

a ∧ ¬b ⊃ −a

with DB = ∅. In this case {+a,+b} is a justified repair
of 〈DB, η〉, but not a stable repair. To see that it is not a
stable repair, recall that we identify a partial action set with
an element of (2At)c, e.g., {a 7→ u, b 7→ u} is identified
with (∅, {a, b}). It now suffices to note that Tη(∅, {a, b}) =
(∅, {a, b}) and hence lfpTη(·, {a, b})1 = ∅ 6= {a, b}.

To see that it is a justified repair, note that {+a,+b} is the
least set closed under η. N

While the converse of Proposition 3.14 does not hold in
general, for a broad class of active integrity constraints, it
does hold. We first define this class and then prove that this
is indeed the case.

Definition 3.16. A set of AICs η is called unipolar if there
are no rules r, r′ ∈ η with head(r) = head(r′)D.

Unipolar AICs make sense in practice, for example if there
are tables from which removing data is never an option.

Proposition 3.17. If η is unipolar, then each justified repair
of 〈DB, η〉 is Tη-stable.

Using Lemma 19 of Cruz-Filipe [2016], which states that
all justified repairs are grounded, we easily find how justified
repairs and the AFT-well-founded repair relate.

Corollary 3.18. The AFT-well-founded repair and the
Kripke-Kleene repair approximate all justified repairs.

4 Complexity Analysis
We begin this section by stating an observation about the
complexity of computing Tη . All complexity results are in
terms of the size of the database, 〈DB, η〉.
Proposition 4.1. Tη is computable in polynomial time.

As a consequence, we get the following complexity results.

Proposition 4.2. The Kripke-Kleene repair for 〈DB, η〉 is
computable in polynomial time.
Proposition 4.3. The ATF-well-founded repair for 〈DB, η〉
is computable in polynomial time.
Proposition 4.4. The task of checking if a database 〈DB, η〉
has a stable repair is NP-complete.

For each of our semantics, complexity is the same as the
complexity of its counterpart in (normal) logic programming.
This illustrates that the added expressivity (allowing AICs
that are not unipolar) does not result in added complexity.

5 Conclusion
In this paper, we defined an approximator in the domain of
active integrity constraints. The result is a family of seman-
tics for AICs based on existing intuitions in various domains
of non-monotonic reasoning. We studied properties of our in-
duced semantics. In particular the AFT-well-founded seman-
tics possesses desirable properties: it approximates all repairs
of various families (stable, justified, grounded) and hence can
be used for approximate skeptical query-answering with re-
spect to any of these semantics. Furthermore, the AFT-well-
founded repair can be computed in time polynomial in the
size of the database.

Our study is far from finished. In the context of approxima-
tion fixpoint theory, ultimate approximators have been stud-
ied by Denecker et al. [2004]. They showed that with each
two-valued operator, we can associate a canonical approx-
imator. The ultimate approximator induces another family
of semantics for AICs. In other domains, e.g., in logic pro-
gramming, semantics based on ultimate approximators have
some very desirable properties, but in general come at the
cost of a higher computational complexity than their “stan-
dard” variants. It remains to be researched if the same holds
in the context of AICs. In this paper, we showed that the
class of justified repairs is situated in between the classes
of stable and of grounded repairs. It is known from AFT
that the class of ultimate stable fixpoints also falls in be-
tween the classes of stable fixpoints (for any approximator)
and grounded fixpoints. Hence, an interesting research ques-
tion would be to verify if justified repairs coincide with ulti-
mate stable fixpoints in this domain, and if not, how they re-
late. Another topic with potential for interesting future work
are inconsistencies. Consider for instance the set of AICs
{¬a ⊃ +a, a ⊃ −a}; intuitively, we expect a semantic op-
erator to derive an inconsistency from any partial action set;
in standard AFT this is not possible. However, extensions
of AFT that accommodate this have been defined [Bi et al.,
2014]; it would be interesting to see how AICs fit in this gen-
eral theory. Another AFT-based topic of interest could be to
study what safe inductions [Bogaerts et al., 2017] yield in the
context of AICs and whether they can fix problems with the
well-founded semantics. One last topic on which more ex-
tensive research might be needed is the domain of revision
programming [Marek and Truszczynski, 1998]. Caroprese
and Truszczyński [2011] showed structural correspondences
between semantics for AICs and semantics for revision pro-
grams. Our paper now paves the way to applying AFT to
revision programming as well.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

871

References
[Abiteboul, 1988] Serge Abiteboul. Updates, a new frontier. In

Marc Gyssens, Jan Paredaens, and Dirk van Gucht, editors,
ICDT, volume 326 of LNCS, pages 1–18. Springer, 1988.

[Bi et al., 2014] Yi Bi, Jia-Huai You, and Zhiyong Feng. A gen-
eralization of approximation fixpoint theory and application. In
Proceedings of RR, pages 45–59, 2014.

[Bogaerts et al., 2015a] Bart Bogaerts, Joost Vennekens, and Marc
Denecker. Grounded fixpoints and their applications in knowl-
edge representation. AIJ, 224:51–71, 2015.

[Bogaerts et al., 2015b] Bart Bogaerts, Joost Vennekens, and Marc
Denecker. Partial grounded fixpoints. In Proceedings of IJCAI,
pages 2784–2790, 2015.

[Bogaerts et al., 2016] Bart Bogaerts, Joost Vennekens, and Marc
Denecker. On well-founded set-inductions and locally mono-
tone operators. ACM Trans. Comput. Logic, 17(4):27:1–27:32,
September 2016.

[Bogaerts et al., 2017] Bart Bogaerts, Joost Vennekens, and Marc
Denecker. Safe inductions: An algebraic study. In Proceedings
of IJCAI, 2017. (to appear).

[Brewka and Woltran, 2010] Gerhard Brewka and Stefan Woltran.
Abstract dialectical frameworks. In Proceedings of KR, pages
102–111, 2010.

[Caroprese and Truszczyński, 2011] Luciano Caroprese and
Mirosław Truszczyński. Active integrity constraints and revision
programming. TPLP, 11(6):905–952, 2011.

[Caroprese et al., 2006] Luciano Caroprese, Sergio Greco, Cristina
Sirangelo, and Ester Zumpano. Declarative semantics of produc-
tion rules for integrity maintenance. In Proceedings of ICLP,
pages 26–40, 2006.

[Cruz-Filipe et al., 2013] Luı́s Cruz-Filipe, Graça Gaspar, Patrı́cia
Engrácia, and Isabel Nunes. Computing repairs from active in-
tegrity constraints. In TASE 2013, pages 183–190. IEEE Com-
puter Society, 2013.

[Cruz-Filipe et al., 2015] Luı́s Cruz-Filipe, Michael Franz, Ar-
tavazd Hakhverdyan, Marta Ludovico, Isabel Nunes, and Peter
Schneider-Kamp. repAIrC: A tool for ensuring data consistency
by means of active integrity constraints. In Proceedings of KMIS,
volume 3, pages 17–26, 2015.

[Cruz-Filipe, 2014] Luı́s Cruz-Filipe. Optimizing computation of
repairs from active integrity constraints. In Proceedings of FoIKS,
pages 361–380, 2014.

[Cruz-Filipe, 2016] Luı́s Cruz-Filipe. Grounded fixpoints and ac-
tive integrity constraints. In Technical communications of ICLP,
pages 11.1–11.14, 2016.

[Denecker and Vennekens, 2007] Marc Denecker and Joost Ven-
nekens. Well-founded semantics and the algebraic theory of
non-monotone inductive definitions. In Proceedings of LPNMR,
pages 84–96, 2007.

[Denecker et al., 2000] Marc Denecker, Victor Marek, and
Mirosław Truszczyński. Approximations, stable operators, well-
founded fixpoints and applications in nonmonotonic reasoning.
In Logic-Based Artificial Intelligence, Springer, volume 597,
pages 127–144, 2000.

[Denecker et al., 2003] Marc Denecker, Victor Marek, and
Mirosław Truszczyński. Uniform semantic treatment of default
and autoepistemic logics. AIJ, 143(1):79–122, 2003.

[Denecker et al., 2004] Marc Denecker, Victor Marek, and
Mirosław Truszczyński. Ultimate approximation and its ap-
plication in nonmonotonic knowledge representation systems.
Information and Computation, 192(1):84–121, July 2004.

[Dung, 1995] Phan Minh Dung. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. AI, 77(2):321 – 357, 1995.

[Eiter and Gottlob, 1992] Thomas Eiter and Georg Gottlob. On the
complexity of propositional knowledge base revision, updates,
and counterfactuals. AIJ, 57(2-3):227–270, 1992.

[Flesca et al., 2004] Sergio Flesca, Sergio Greco, and Ester
Zumpano. Active integrity constraints. In Proceedings of SIG-
PLAN, pages 98–107, 2004.

[Kleene, 1938] Stephen Cole Kleene. On notation for ordinal num-
bers. The Journal of Symbolic Logic, 3(4):150–155, 1938.

[Marek and Truszczynski, 1998] V. Wiktor Marek and Miroslaw
Truszczynski. Revision programming. Theor. Comput. Sci.,
190(2):241–277, 1998.

[Moore, 1985] Robert C. Moore. Semantical considerations on
nonmonotonic logic. AIJ, 25(1):75–94, 1985.

[Przymusinski and Turner, 1997] Teodor C. Przymusinski and
Hudson Turner. Update by means of inference rules. Journal of
Logic Programming, 30(2):125–143, 1997.

[Reiter, 1980] Raymond Reiter. A logic for default reasoning. AIJ,
13(1-2):81–132, 1980.

[Strass, 2013] Hannes Strass. Approximating operators and seman-
tics for abstract dialectical frameworks. AIJ, 205:39–70, 2013.

[Teniente and Olivé, 1995] Ernest Teniente and Antoni Olivé. Up-
dating knowledge bases while maintaining their consistency.
VLDB Journal, 4(2):193–241, 1995.

[van Emden and Kowalski, 1976] Maarten H. van Emden and
Robert A. Kowalski. The semantics of predicate logic as a pro-
gramming language. J. ACM, 23(4):733–742, 1976.

[Van Gelder et al., 1991] Allen Van Gelder, Kenneth A. Ross, and
John S. Schlipf. The well-founded semantics for general logic
programs. J. ACM, 38(3):620–650, 1991.

[Vennekens et al., 2006] Joost Vennekens, David Gilis, and Marc
Denecker. Splitting an operator: Algebraic modularity results
for logics with fixpoint semantics. ACM Trans. Comput. Log.,
7(4):765–797, 2006.

[Vennekens et al., 2007a] Joost Vennekens, Maarten Mariën, Johan
Wittocx, and Marc Denecker. Predicate introduction for logics
with a fixpoint semantics. Part I: Logic programming. Funda-
menta Informaticae, 79(1-2):187–208, September 2007.

[Vennekens et al., 2007b] Joost Vennekens, Maarten Mariën, Johan
Wittocx, and Marc Denecker. Predicate introduction for logics
with a fixpoint semantics. Part II: Autoepistemic logic. Funda-
menta Informaticae, 79(1-2):209–227, September 2007.

[Widom and Ceri, 1996] Jennifer Widom and Stefano Ceri, editors.
Active Database Systems: Triggers and Rules For Advanced
Database Processing. Morgan Kaufmann, 1996.

[Winslett, 1990] Marianne Winslett. Updating Logical Databases.
Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1990.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

872

