
Handling Non-local Dead-ends in Agent Planning Programs

Lukáš Chrpa
Charles University in Prague &

Czech Technical University
Prague, Czech Republic

chrpaluk@fel.cvut.cz

Nir Lipovetzky
University of Melbourne

Melbourne, Australia
nir.lipovetzky@unimelb.edu.au

Sebastian Sardina
RMIT University

Melbourne, Australia
sebastian.sardina@rmit.edu.au

Abstract

We propose an approach to reason about agent
planning programs with global information. Agent
planning programs can be understood as a network
of planning problems, accommodating long-term
goals, non-terminating behaviors, and interactive
execution. We provide a technique that relies on
reasoning about “global” dead-ends and that can
be incorporated to any planning-based approach to
agent planning programs. In doing so, we also in-
troduce the notion of online execution of such plan-
ning structures. We provide experimental evidence
suggesting the technique yields significant benefits.

1 Introduction
Conforming with an actor’s view of a planning system [Ghal-
lab et al., 2014], several extended planning-based frameworks
have been proposed in the literature, such as Dal Lago et
al. [2002]’s EAGLE language, De Giacomo et al. [2010;
2016]’s Agent Planning Programs, and Shivashankar et
al. [2012]’s Hierarchical Goal Networks (HGN). Loosely
speaking, such frameworks propose, in some way or another,
“programming with goals” approaches for specifying and
synthesizing behavior that better caters for integration with
a real-world executor and is more amenable for knowledge
engineering. Here, we contribute to this line of work with
a simple but effective technique to help solve (and execute)
agent planning programs.

Agent Planning Programs (APPs) are a novel approach
to represent and synthesize complex behaviors based on se-
quences of goals, user decisions, and repetition of tasks for
continuous long-term operation. Roughly speaking, APPs
are directed graphs, where nodes represent the states of the
program and edges (transitions) stand for planning problems.
Importantly, which path in such a graph is to be taken is ex-
ternal to the APP: it is determined by its user at run-time. The
framework was firstly proposed by De Giacomo et al. [2010],
together with a computational technique via synthesis of a
carefully designed GR(1) specification [Bloem et al., 2012],
a fragment of LTL with significant lower complexity than full
LTL synthesis [Pnueli and Rosner, 1989]. Then an alternative
approach using automated planners “off-the-shelf” was pro-

posed and evaluated experimentally [Gerevini et al., 2011;
De Giacomo et al., 2016]

The experiments carried out in the above contributions
confirm that, while the planning-based approach outperforms
the synthesis one, solving APPs remains difficult. The prob-
lem of the state-of-the-art approach is that it relies heavily on
backtracking at the “meta-planning” level, searching for al-
ternative plans to realize a transition in the APP whenever a
subsequent transition in the APP is found not to admit any so-
lution. As already recognized by De Giacomo et al. [2016],
such (expensive) backtracking is often the result of reasoning
too “locally,” by solving each transition planning problem in
isolation, without considering the rest of the planning prob-
lem in the APP. The challenge is that planning engines are
designed to solve single planning problems (i.e., with only
one goal), whereas an APP requires solving several inter-
dependent planning problems.

So, to address this, we propose a principled approach to
incorporate some “global reasoning” features when solving
each (local) planning problem in an APP. The idea is to ex-
tract global knowledge—by leveraging on recent work on
reasoning about local dead-ends [Lipovetzky et al., 2016]—
to prune those world states that are known to be in “conflict”
with any potential “future” planning problem when the APP
is to be executed. In addition, we present an online alternative
execution model for APPs (as opposed to the offline models
from previous contributions). When solving an APP online,
extracting and using global information about the whole APP
becomes even more crucial for finding successful runs.

To evaluate our proposal, we designed experiments using
six planning domains from the International Planning Com-
petition. The results provide evidence that reasoning about
“global” dead-ends is able to, often significantly, improve
the performance, in terms of the number of solved APPs, of
the state-of-the-art offline approach [Gerevini et al., 2011;
De Giacomo et al., 2016] as well as of the naive, baseline,
online approach, which does not reason about “global” dead-
ends. Importantly, the proposed technique is “modular,” in
that it can be incorporated into any planning system that can
(be adapted to) make use of information about dead-ends.

2 Agent Planning Programs
Automated Planning seeks to find a plan to achieve a given
goal from an initial world state relative to a model of the en-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

971



p0 p1

p2

(at agent work)

(at agent home)
(at car home)

(at agent pub)(at agent home)
(at car home)

(had agent drinks)

Figure 1: An APP for the daily routine of an academic, meant to be
solved relative to a given planning domain (not shown).

vironment [Ghallab et al., 2004]. Classical planning, in par-
ticular, assumes a deterministic and fully observable environ-
ment; a solution plan amounts to a sequence of actions. Tech-
nically, a planning domain is a tupleD = 〈L,O〉, where L is
the set of propositional atoms used to describe the world state
(set of propositions from L that are true), and O is the set of
operators (or actions). An operator is a tuple o = (name(o),
pre(o), del(o), add(o)), where name(o) is a unique operator
name, and pre(o), del(o), and add(o) are sets of atoms from
L representing o’s precondition, delete, and add effects, re-
spectively. An operator o is applicable (or executable) in
a world state s if and only if pre(a) ⊆ s. Application of
operator o in state s (if possible) yields the successor world
state (s \ del(a)) ∪ add(a). A planning problem is a tuple
P = 〈D, I, G〉, where D is a planning domain, I is the ini-
tial world state, and G is the goal condition, generally in the
form of a set of propositions. A solution plan (for a planning
problem P) is a sequence of operators such that their consec-
utive execution starting in the initial world state I results in
a world state s, where s ⊇ G. Let o1, . . . , on be a sequence
of operators and s0, s1, . . . , sn be a sequence of world states
such that for all 1 ≤ i ≤ n, oi is applicable in si−1 and si is
the resulting world state of application of oi in si−1. Then,
we say that s0, s1, . . . , sn is a state trajectory of o1, . . . , on.

A Network of Goals and Planning Problems While pow-
erful, planning problems by themselves have limitations
when it comes to capturing many complex situated behaviors.
Firstly, a complex behavior cannot generally be expressed in
terms of achieving a single goal. In a cyber-physical emer-
gency management domain, for example, the support system
may first aim to deploy an emergency team to the disaster
zone, and once that is achieved, plan to assess the situation,
and then to rescue the victims. Thus, an agent will typically
go through a sequence of goals. Secondly, which goal comes
next in such a sequence may depend on factors external to
the system. The decision whether, once at the location, the
emergency support system should plan for transporting the
victims, saving property, or just mitigating danger may come
from a human domain expert (in the deployed team). That
is, we want behavior that is “interactive.” Finally, complex
systems are often meant to run continuously, and not just ter-
minate after goal achievement.

Agent Planning Programs (APPs) aim to accommodate
these features while remaining in the realms of automated
planning [De Giacomo et al., 2010; 2016]. Essentially, APPs

are high-level representations of complex behavior in a given
domain. Technically, they are transition systems, with nodes
representing decision points and transitions representing pos-
sible goals via triples consisting of a guard, a maintenance
goal, and an achievement goal.

Definition 1. An agent planning program over a planning
domain D = 〈L,O〉 is a tuple A = 〈L, V, v0, s0, δ〉, where:
• V is the finite set of program states;
• v0 ∈ V is the initial program state of A, and s0 ∈ 2L is

the initial world state; and
• δ is the transition relation of A, where
〈v, 〈γ, ψ, φ〉, v′〉 ∈ δ, written v

γ:ψ,φ−→ v′ in A,
stating that whenever the guard condition γ over L
holds, A may legally move from its state v to state v′ by
“achieving φ while maintaining ψ” (in the domain).

Thus, a transition in an APP corresponds to a planning
problem over the same shared domain D such that a guard
(γ) must hold in the current world state – the initial state, an
achievement goal (φ) is the goal. Solution plans for such a
planning problem must comply with a maintenance goal (ψ).
That is, ψ holds in each world state in the state trajectory of a
“complying” solution plan. Figure 1 depicts a simplified APP
for an academic everyday-life routine with only achievement
goal transitions (example taken from [De Giacomo et al.,
2010]. Note that the APP only mentions (goal) conditions—
no actions—over propositions in L. What actions are avail-
able and how they affect those conditions will be given by
some planning domain D (not shown here). Also observe the
difference between program states and world states; the for-
mer corresponds to the “program counter” of the APP, while
the latter is the usual state of the environment (specified by
domain D) the APP is running over.

At any point in time, the system is in a certain program
state of the APP, and the user (e.g., the academic) issues a
transition goal request, among the possible ones in such a
state. In our example, the academic can at the start only
aim to be at work (transition from p0 to p1). The system
then deploys a plan that achieves the requested goal, and the
APP then evolves to its next program state; in our case node
p1. After that, the user is able to issue the next goal request.
Now, from program state p1, the academic may request to re-
turn back home (transition p1 to p0) or alternatively aim to go
to the pub with colleagues (transition p1 to p2). Once again,
depending on the goal requested, the system is meant to de-
ploy an adequate plan, always. As one can see, each goal
decision choice is decided at run-time, by an external “user”
of the APP (e.g., a human expert or another software). Im-
portantly, the system ought to be prepared to meet any legal
sequence of goals. Observe also that these sequences are un-
bounded as the APP is cyclic and encodes repetition of tasks,
thus accounting for continuous behavior. In the example, the
academic always comes back to home, and if the car has been
used, it also must be back at home by the end of the day.

Solving Agent Planning Programs A solution to an
APP—called a realization of the APP—is a strategy guar-
anteeing successful plans as goal-transitions are requested by

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

972



the user [De Giacomo et al., 2016]. More precisely, a real-
ization is a policy σ(v, s, g) that maps a program state v of
the APP, a world state s, and a transition with an achievement
goal g to a plan π that will achieve goal g from s (relative to
the shared planning domainD), and will leave the agent ready
to realize, once again, any possible next goal in the APP. In-
tuitively, plans in a realization solution ought to be “synchro-
nized”. I.e., the world state resulting from the execution of
a plan for a transition τ in the APP should be a legal initial
world state for (all) the planning problems corresponding to
the directly outgoing transitions (from the program state τ
moves into). This implies that, unfortunately, solutions do
not simply amount to assigning plans to APP’s transitions,
as a transition may require different plans for different initial
world states. As a matter of fact, checking realizability of an
APP is hard: it is EXPTIME-complete even under determin-
istic domains [De Giacomo et al., 2016].

Two approaches have been developed to check (and com-
pute) existence of realizations. The first approach was pro-
posed in [De Giacomo et al., 2010] and resorts to reactive
synthesis techniques for GR(1) specification [Bloem et al.,
2012]. While very powerful in that it outputs universal so-
lutions containing all possible realizations, it can be very de-
manding computationally. The second approach was first pro-
posed by Gerevini et al. [2011] and leverages state-of-the-art
planning systems to find a realization, thus being able to take
advantage of recent and future advances in automated plan-
ning. While it does not produce universal solutions, it has
been shown to scale up better [De Giacomo et al., 2016].
Moreover, the technique is conceptually simple and leaves
room for further optimizations. Because of this we are inter-
ested, in this paper, in pushing such technique further.

Roughly speaking, the idea behind the planning approach
to APPs is as follows. Consider an APPA = 〈L, V, v0, s0, δ〉
over a planning domain D. Assume that A is maintenance

free,1 so its transitions are of the form v
γ:true,φ−→ v′, which we

shall write as v
γ:φ−→ v′. So, at each step, a planner is used,

off-the-shelf, to find a solution plan for the planning problem
corresponding to a particular transition in A. At the start, for
every initial transition (i.e., for every γ0, G0 and v1) of the

form v0
γ0:G0−→ v1 in A for which condition γ0 holds true in

world state s0, a corresponding planning problem 〈D, s0, G0〉
is solved. Suppose that π is the solution plan found for one
of such initial transitions, and that s1 is the world state re-
sulting from executing π from s0. The next step involves
synthesizing successful plans for all the planning problems
corresponding to (applicable from s1) transitions arising from
state v1 in A and the initial world state s1. So, for every tran-

sition (i.e., for every γ1, G1 and v2) of the form v1
γ1:G1−→ v2 in

A for which γ1 holds in world state s1, the planning problem
〈D, s1, G1〉 ought to be solved. This process is repeated until
all transitions inA have been “covered” (for every world state
in which such transition may apply). If, at any stage, no plan
solution is found for any of such problems, then backtracking
is triggered to the previous transition, for an alternative plan
that leaves the world in another, hopefully better, state.

1Maintenance can be compiled away, e.g., [Edelkamp, 2006].

To make this iterative process more efficient, Gerevini et
al. [2011] exploit plan generation techniques with preferred
end-states and tabu end-states. The authors used the LPG
planning system [Gerevini et al., 2003], which supports both
features. The idea is to bias each planning instance to a world
state from where solution plans are known (for the subsequent
goals in the successor program state), and to forbid world
states in which we know no solutions can be found for future
goals. For example, suppose that the solver is required, at
some stage, to find a plan for planning task 〈D, s,G〉 in order

to fulfill a transition v
γ:G−→ v′ inA. Suppose further that plans

have already been constructed, in previous iterations, for all
planning tasks corresponding to transitions arising from A’s
state v′ and world states in some subset Sv′ . Then, the idea is
to bias the planner solving goal G from world state s towards
a solution plan that will eventually leave the world into one of
the states in Sv′ . If that happens, no planning is required for
transitions arising from APP state v′, they have already been
constructed (and stored). In turn, if the solver has previously
failed to find a successful plan for some transitions arising
from v′ in some world state s′, then s′ is treated as a tabu state
when solving 〈D, s,G〉 for APP state v. Notice, thought, that
it may take several (expensive) meta-level backtracking steps
(i.e., backtracking at the APP level) for the solver to be aware
of such “bad” states.

Below, we show how to further enhance the just described
planning-based approach by using dead-end detection formu-
las as global information about future possible planning prob-
lems when solving each “local” problem, so that meta-level
backtracking is mitigated.

3 Handling Non-local Dead-ends in APPs
Intuitively, dead-ends are branches of the search tree that do
not lead to any goal state. So, world states from which the
goal cannot be achieved are dead-end states for that goal.

We call a dead-end state “local” if the current goal is un-
reachable. In the context of APPs, we are interested in avoid-
ing non-local dead-ends instead, i.e., world states where fu-
ture possible goals belonging to other planning problems are
unreachable. Indeed, our intention is to compile global infor-
mation to solve planning problems that avoid future unsolv-
able problems. Relevant to our aim, Lipovetzky et al. (2016)
proposed a new approach to characterize dead-end states as
a k-DNF trap, namely, a formula in disjunctive normal form
whose terms have at most k literals. A trap is a conditional
invariant of the planning problem, i.e., once a state is reached
that satisfies the trap formula, the trap is also satisfied by all
its reachable states. A trap that is mutually exclusive with the
goal characterizes a dead-end trap formula, as it is true only
in dead-end states. Intuitively, a dead-end trap is a disjunc-
tion of partial states that capture a region of the search space
from which the goal is unattainable. The algorithm to com-
pute k-DNF dead-end traps is exponential on the k parameter
(i.e., O(nk), where n is the number of atoms describing the
environment), and can be used as a preprocessing stage (prior
to planning). For a sufficiently large k, all dead-ends are cap-
tured. The resulting traps can be used with any search algo-
rithm by pruning any state that satisfies the formula [Lipovet-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

973



zky et al., 2016].
As hinted above, global information such as dead-end traps

can be crucial for solving an APP, as it requires much more
than solving each local planning problem in it (or otherwise
its complexity would be PSPACE). The fact is that a solution
plan σ1 for the planning problem P1 encoded in given transi-
tion of the APP may not be part of a complete solution for the
APP, because it precludes, for example, solutions for a subse-
quent planning problem P2 in the network. The insight here
is that for that to happen the world state produced by execut-
ing plan σ1 has to be a dead-end state for the goal of P2. Let
us show this with an example.

Example 1. Suppose that, in our academic example, the
agent successfully achieves the goals of being at work, then
at the pub by driving his/her car, and having some drinks
there. Doing so, however, will later preclude his/her meet-
ing the transition from program state p2 to program state p0:
the agent is law-abiding and it is prohibited to drive intoxi-
cated, so driving home from the pub is not acceptable and the
agent will not be able to take the car home as required. This
means that the agent should be smart enough to either go to
work by public transport (and leave the car home), or drive
the car back home in case s/he decides to go to the pub for a
couple of drinks. �

In this example, if the agent goes to work and then to the
pub by car and drinks, the agent becomes “trapped” in a dead-
end state with respect to a subsequent goal, namely, being at
home with the car at home. In other words, the agent must
avoid “dead-end traps,” i.e., being intoxicated while not hav-
ing his/her car at home, to have any chance to solve the APP.

Theorem 1. Let A = 〈L, V, v0, s0, δ〉 be an APP over a
planning domainD and σ be a partial policy forA such that:
• there exists a sequence of transitions v0

g1−→ · · · gk−→
vk

gk+1−→ · · · gn−1−→ vn−1
gn−→ vn in A for some n ≥ 1;

• there exists a sequence of world states s0, . . . , sk (1 ≤
k ≤ n) such that for all i ∈ {0, . . . , k − 1}: (i) gi+1’s
guard condition holds in state si; and (ii) si+1 is a
possible resulting world state after execution of plan
σ(vi, si, gi+1); and
• there exists a world state s∗ in the state trajectory of
σ(vk−1, sk−1, gk) that is a dead-end state for goal gn.

Then, σ cannot be part of any realization for A in D.

Proof (Sketch). Consider a sequence of world states
sk, sk+1, . . . , sn−1 such that for all i ∈ {k, . . . , n − 1}:
(i) guard condition of gi+1 holds true in si; and (ii) si+1

is a possible resulting world state after execution of plan
σ(vi, si, gi+1). Now, because world state s∗ is a dead-end
state for gn, and sk, sk+1, . . . , sn−1 represents a legal evolu-
tion of A (for some sequence of legally executed operators),
it is not hard to see that si is a dead-end state for gn, for
all i ∈ {k, . . . , n − 1}. So sn−1 is a dead-end state for gn,
and hence a planning problem P ′, where sn−1 and gn are
the initial and goal world states, admits no solution. This
implies that for σ(vn−1, sn−1, gn) there does not exist any
plan achieving goal gn, from where it can be proved that the
partial policy σ cannot be part of a realization for A. �

Algorithm 1 Online APP realization with dead-end filtering.
Input: APP A=〈P, V, v0, δ〉, max steps M , initial world state s0
1: v ← v0; s← s0; steps← 0
2: while 〈v, 〈γ, ψ, φ〉, v′〉∈δ such that s |= γ and steps < M do
3: select t = 〈v, 〈γ, ψ, φ〉, v′〉 such that γ holds in s
4: ψ ← ψ∪ ¬Traps(A, v′, s, {})
5: π ← Plan(s, φ, ψ)
6: if undefined π then
7: return failure
8: end if
9: s← apply(s, π); v ← v′; steps← steps+ 1

10: end while
11: return success

12: function TRAPS(A, v, s, visited)
13: traps← {}
14: for each t = 〈v, 〈γ, ψ, φ〉, v′〉 & t 6∈ visited do
15: visited← visited ∪ {t}
16: traps← traps∪FindTraps(s,φ)∪Traps(A, v′, s, visited)
17: end for
18: return traps
19: end function

So, if a given strategy “falls” into a dead-end s∗ of any
potential possible goal gn, then such a strategy cannot be
a solution for the APP of concern. However, the reasoner
is aware of the agent possible future goals—the APP is
known a priori—so one should be able to prevent falling into
such traps. In our example, knowing that his/her car can-
not be in other location than home before the agent starts
having drinks forces the agent to make “smart” plans, for
example, driving his/her car back home before going to
pub for drinks. In other words, dead-end states contain
atoms 〈(had agent drinks) and (at car work)〉, or
〈(had agent drinks) and (at car pub)〉. Technically
speaking, prior to planning towards the currently selected
goal, the agent has to determine dead-end states with respect
to his/her possible future goals. These dead-end states have
to be avoided during the planning process.

Ideally, if the domain model involved in an APP have
no operators with irreversible effects then, in principle, ev-
ery solution plan for a transition could be part of a realiza-
tion. In contrast, and as expected, it is precisely on instances
with dead-ends that the planning-based approach proposed
by Gerevini et al. [2011] has major difficulties, as demon-
strated empirically by De Giacomo et al. [2016]. The reason
is that the APP solver will experience higher backtracking (at
the APP level) in the presence of dead-ends, as it discovers
that a plan found for a previous goal G1 precludes solutions
for a future goalG2. This suggests that it could be highly ben-
eficial to be able to account for dead-end states of G2 while
achieving goal G1. By doing so, we aim to reason about fu-
ture goals in each local planning problem, hence encoding
global constraints as local ones. This is indeed the core idea
of our proposal.

3.1 Online Realization of APPs
In contrast to the aforementioned (off-line) approach that pre-
computes plans for all transitions in APPs, the online ap-
proach alternates planning for the next goal (transition) and

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

974



execution of the plan. That is, starting in the initial program
state and the initial world state, the online approach selects
one applicable transition, plans towards the transition goal,
and finally executes such a plan and moves to the next pro-
gram state.

Definition 2. An online realization of an APP A =
〈P, V, v0, s0, δ〉 over a planning domain D is a sequence
(s0, v0)t1π1(s1, v1)t2π2 · · · (sn−1, vn−1)tnπn(sn, vn), for
n ≥ 0, such that:

• s0 = s0 – the execution begins in the initial world state;

• for each i ≤ n, ti = vi−1
γi:ψi,φi

−→ vi in A such that
si−1 |= γi (i.e., the transition is applicable), and v0 = v0
• πi is a solution plan for problem 〈D, si−1, φi〉 such that

application of πi in si−1 results in the world state si (s.t.
si |= φi) while ψi holds hold for every world state in the
state trajectory of πi.

Observe that only local requirements are imposed on the
action sequence in each plan πi: it should bring about the
goals of the current transition ti. This implies that looka-
head reasoning may be necessary at each program transition,
since the plan deployed may preclude the realization of future
APP transitions. Thus, unlike offline realizations, an online
realization may get stuck. In our example, if the agent gets in-
toxicated after going to the pub by car, then s/he cannot bring
his/her car back home after that.

Robustness of online realizations of APPs can be (consid-
erably) improved by incorporating a “global” dead-end rea-
soning technique that prior to the planning phase identifies
dead-end traps for all possible future goals and encodes them
as maintenance formulas. Algorithm 1 shows how the “on-
line realizing” loop (Lines 2–10) is enhanced by identify-
ing dead-end traps for potentially future goals. Notice that
selection of t (Line 3) can be done externally (by a user).
The function Traps identifies dead-end traps for all potential
future goals from a given program state v. Each transition
t = 〈v, 〈γ, ψ, φ〉, v′〉 that has not yet been analyzed is a sub-
ject for i) identifying dead-end traps with respect to the goal φ
from state s (the FindTraps function) and ii) identifying dead-
end traps for future goals that can be reached from the pro-
gram state v′ (a recursive call of the Traps function). These
dead-end traps are then combined (Line 16). The k-DNF for-
mula representing the dead-end traps for all future goals is
negated and added to the maintenance formula ψ (Line 4),
so the corresponding dead-end states are avoided during the
planning process (Line 5). Clearly, if the planning phase fails
to find a plan, then the realization of A fails. On the other
hand, if a “leaf” program state is reached or the maximum
number of iterations has been performed, then the realiza-
tion of A is successful. It should be noted that specifying the
maximum number of iterations M is for “escaping” loops in
APPs, i.e., the online realization terminates after M planning
episodes, otherwise the online realization of APPs might be
infinite. Alternatively, the terminating condition can be spec-
ified differently (e.g., the agent in Example 1 has to return
home 5x).

Fl
oo

rt
ile

L
og

is
tic

s

G
lu

ed
-B

w

M
at

ch
in

g-
B

w

A
ir

po
rt

W
oo

dw
or

ki
ng

To
ta

l

O
nl

in
e

Naive (LPG) 4 0 0 0 15 0 19
Naive (DFS+) 8 1 1 1 17 3 31
Naive (LmCut) 8 16 0 0 17 2 43
Traps (DFS+) 16 4 20 20 13 20 93
Traps (LmCut) 18 19 20 18 13 20 108

O
ffl

in
e

Plain (LPG) 10 7 1 3 16 14 51
Plain (DFS+) 8 1 1 1 17 8 36
Plain (LmCut) 9 15 1 2 16 11 54
Traps (DFS+) 17 4 20 12 13 13 79
Traps (LmCut) 19 19 20 11 13 9 91

Table 1: The number of solved APPs of the naive and “dead-end
traps” enhanced online approaches as well as plain and “dead-end
traps” enhanced offline approaches.

3.2 Unsolvability of APPs
Although for online realization we need only a partial policy
that corresponds with the selected path in an APP, we assume
that an APP is solvable if and only if there exists a realization
for all possible paths in the APP.

A (classical) planning problem is unsolvable if and only if
the initial world state is a dead-end state with respect to the
goal. For APPs, if the initial world state is a dead-end state
for at least one future goal, then the APP is unsolvable (as
formalized in the following proposition).

Proposition 1. Let A be an APP, v0 be the initial program
state, and s0 be the initial world state. If s0 is a dead-end
state with respect to φ for some transition 〈v, 〈γ, ψ, φ〉, v′〉
such that v is reachable from v0, then A is unsolvable.

The proposition provides an indication that our approach
can in some cases determine unsolvability of APPs before any
planning episode (the Plan function as in Line 5 will trivially
fail to find a plan if the initial world state belongs to a trap).

Notice that the opposite implication of the proposition does
not hold. Dead-end states might also occur with respect to se-
quences of goals. For example, driving to certain destinations
requires some amount of fuel, for each destination we obvi-
ously cannot have less fuel than required; however, if we need
to visit these destinations in sequence we need to have enough
fuel for the whole trip.

4 Experimental Evaluation
The purpose of the experimental evaluation is to demonstrate
that reasoning about non-local (or global) dead-ends is im-
portant and improve performance (in terms of solved APPs)
of both offline and online approaches for realizing APPs.

4.1 Domains
In the Airport domain, a planner has to control the ground
traffic at the airport, i.e., navigating planes to gates or run-
ways. Here, the APPs consist of sequences of goals, where

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

975



each of them is either to park a plane at a certain gate, or nav-
igate a plane to take off. It might happen that some parked
plane blocks another plane going to the runway.

In the Floortile domain, a set of robots paints floor tiles to
either black or white. Robots can move only on non-painted
tiles. Here, we consider two types of APPs. The first type
consists of sequences of goals, where each goal is to paint
a line of tiles (in the grid) with selected colors (per tile). In
the second type, tiles are painted consecutively, where each
tile is painted with a color selected just before painting it.
Painting the tiles in a wrong order, or “trapping” robots in a
“surrounded” area (by painted tiles) might cause dead-ends.

“Glued” BlocksWorld is a variant of the well known
BlocksWorld domain [Slaney and Thiébaux, 2001], where af-
ter a block is stacked on another block, it cannot be unstacked.
Here, the APPs consist of sequences of goals that represent
the elementary steps to be taken to build a stack of blocks.
We consider two types of APPs, where elementary goals are
ordered correctly (from bottom to top), or randomly. Notice
that if blocks are “wrongly” stacked, i.e., if the stack is being
built from the “middle” some blocks will become inaccessi-
ble (lie beneath the “stacked” blocks).

Matching BlocksWorld is another variant of BlocksWorld,
where blocks have either positive or negative polarity and
there are two robotic hands, one with positive and one with
negative polarity. When a robotic hand with an opposite po-
larity is used to carry a block, the block will become damaged
and no other block can be stacked on top of it. Here, the APPs
consist of loops of various configurations of blocks.

In the Logistics domain, packages have to be transported by
planes between cities and by trucks within cities. The APPs
consider three cities (A, B and C) such that each city is reach-
able from A and B but no city is reachable from C (i.e., planes
are “trapped” in C). We have two types of APPs. In the first
type, we initially require some packages to be delivered to
city C, then we have a loop where we deliver the remaining
packages between cities A and B. In the second type, we con-
sider a sequence of goals where each goal is to deliver several
packages into random cities but never from C to either A or
B. Planes are initially in A or B.

The Woodworking domain simulates the works in a wood-
working workshop, where wood parts have to be cut, treated
and colored as required. Here, the APPs represent a manufac-
turing process of wood pieces such that pieces are manufac-
tured one by one while having three options, each consisting
of two “requirement” goals, of how a piece can be manufac-
tured. Noticeably, some “requirements” might preclude each
other and for fulfilling one requirement we might need to take
decisions influencing other possible requirements.

4.2 Settings
For each domain, we have generated 20 APPs as we believe
that this number is representative to determine relative per-
formance of the techniques in particular domains. Also, for
all APPs, guards are always true, so any transition can be
chosen from the current program state (in our experiments,
we do so randomly in order to simulate external user’s de-
cisions). We have chosen LPG [Gerevini et al., 2003], Lm-
cut [Helmert and Domshlak, 2009] and DFS+ [Lipovetzky

and Geffner, 2014] as benchmark planners, since they in-
corporate different high performance planning techniques.
Moreover, Lm-cut guarantees optimal solutions (minimum
plan length or total action cost). Lm-cut and DFS+ are avail-
able with the “trapper” tool since both are integrated in the
LAPKT toolkit [Ramirez et al., 2015] in which “trapper”
is implemented (notice that LPG is not implemented in the
LAPKT toolkit). Furthermore, LPG was already used to
showcase the high performance of classical planners in offline
APPs realization [De Giacomo et al., 2016]. We compute
2-DNF dead-end traps since they provide reasonable “per-
formance/cost” ratio, that is, the number of identified traps
vs time spent on finding them, as observed by Lipovetzky et
al. [2016]. The maxsteps parameter was set to “infinity” for
acyclic APPs (the realization is successful if a leaf program
state is reached), i.e, for Airport, Floortile, “Glued”-Bw and
Woodworking, and to 10 for APPs with cycles, i.e., Logistics
and Matching-Bw, in order to assure that every cycle has been
performed at least twice.

Since LPG is a randomized planner and thus with different
runs solution plans might differ even for the same planning
problem, we performed 20 runs for each APP. In Woodwork-
ing, where the structure of APPs allows different realizations
(depending on chosen branches), 20 runs for each APP were
performed for all configurations (including LPG). Notice that
we consider an APP as solved if all 20 runs were success-
ful – this provides a reasonable confidence for determining a
successful online realization of an APP.

With regards to the offline method, we have used a “hy-
brid” approach, that is, using LPG when planning to preferred
states (these are required, for example, for “closing” loops
in cyclic APPs). The reason is that the Lm-cut and DFS+
planners, integrated in the LAPKT toolkit, do not fully sup-
port reasoning with preferred states. Consequently, no global
dead-end reasoning is applied for such planning episodes,
since LPG is not implemented in the LAPKT toolkit in which
the “trapper” tool is implemented.

All the experiments were run on i7-7700 3.6 Ghz CPU with
16GB of RAM. Notice that a time limit of three hours (10800
seconds) was applied.

4.3 Results
Table 1 shows the number of solved APPs (out of 20 in-
stances) per each domain and planner by i) the naive online
approach, and ii) the “dead-end traps” enhanced online ap-
proach, iii) the state-of-the art offline approach [De Giacomo
et al., 2016], and iv) the “dead-end traps” enhanced offline
approach. The results clearly indicate that reasoning about
non-local dead-ends increases the overall robustness, i.e., the
number of solved APPs is higher. Remarkably, despite no
theoretical guarantee of identifying all dead-end states the re-
sults indicate a high success rate of the non-local dead-end
reasoning enhanced approaches.

In the online approach, the impact of non-local dead-end
reasoning could be better isolated. In other words, better
coverage (i.e., more solved APPs) is due to avoiding non-
local dead-ends, since the naive online approach fails when
a current planning problem is unsolvable (i.e., while solving
any of the previous planning problem a dead-end state for

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

976



the current problem has been reached). However, non-local
dead-end reasoning comes with a “tax” of additional compu-
tational time. Although finding 2-DNF dead-end traps is of
quadratic complexity with respect to the number of atoms de-
scribing the world states, when the number of atoms is very
high the “tax” of non-local dead-end reasoning can be very
high too. That was manifested in the Airport domain, where
more complex APPs had 100000s atoms, resulting in failing
to solve them in the given time limit (while these APPs were
solved by the naive approach). Noticeably. the time limit
was also exceeded for two APPs in Matching-bw for Lm-cut
since some of the planning problems were too complex for
the Lm-cut planner.

The “plain” offline approach [De Giacomo et al., 2016]
can benefit from backtracking, that is, generating a different
plan for a previous planning problem if the current problem
has shown to be unsolvable. When compared to the naive on-
line approach, the performance of the plain offline approach
improves in the Woodworking domain and/or when the LPG
planner is used. In Woodworking, we do not have to back-
track “far” and, therefore, the chance for recovering from
non-local dead-ends is higher than in the other domains. LPG
usually generates plans faster than Lm-cut and DFS+ and thus
it has better chance to eventually escape non-local dead-ends.
Non-local dead-end reasoning, unsurprisingly, improves the
performance of the offline approach. On the other hand, the
total number of solved APPs is less than for the “traps” on-
line approach because of relatively poor performance of the
“traps” offline approach in Matching-Bw and Woodworking.
In those domains, the offline approach has to reason with pre-
ferred states and since we use the “hybrid” approach (as men-
tioned above) we cannot fully exploit the “trapper” tool. Also,
in Woodworking, the offline approach has to compute a pol-
icy for every possible path in an APP, which, clearly, is much
more time consuming than in the online case where just one
path has to be explored.

Considering runtime, i.e., how long it takes for a particular
technique to realize an APP, the naive (or plain) approach usu-
ally outperforms the non-local dead-end reasoning enhanced
approach in APPs where both approaches are successful. This
is, however, not very surprising, since reasoning about non-
local dead-ends in such cases just costs time as we elaborated
earlier. The offline approach is slower than the online ap-
proach in APPs with branching (e.g., Woodworking) since it
has to consider all alternatives.

Particular planning problems vary from very easy, that is,
plans consist of a few actions, to more complex, that is, plans
consist of tens of actions. Since Lm-cut is an optimal planner,
plans generated by it were often shorter than those produced
by DFS+ (although in terms of runtime, DFS+ unsurprisingly
outperformed Lm-cut). It should be noted that Lm-cut can
guarantee optimality of plans with respect to non-local dead-
ends – these plans might be longer than in a “standard” case
in order to avoid dead-end states for possible future goals. For
example, in Glued-Bw we might want to achieve goals (on
a b) and (on b c) in this order from the initial world
state, where all blocks are on the table. In the naive approach,
the block a will just be stacked on the block b making the
subsequent goal (on b c) unachievable. With non-local

dead-end reasoning (e.g. identifying dead-end traps) it can
be found out that for keeping (on b c) achievable nothing
has to be stacked on b unless it is already on c. Hence, the
“traps” approach when achieving (on a b) would stack b
on c and then a to b (even if an optimal planner is used).
Then (on b c) is trivially achieved by an empty plan.

5 Conclusions
The overarching contribution of this work lies on bringing
research from classical planning on local dead-ends into a
higher formalism of APPs to handle global (or non-local)
dead-ends. Concretely, we devised a way to handle non-local
dead-ends, which are the main cause behind the poor perfor-
mance of current techniques [De Giacomo et al., 2016]. To
that end, we leveraged on recent work on reasoning about
dead-ends in planning [Lipovetzky et al., 2016] and encoded
global dead-ends into each local planning steps. We showed
(Theorem 1) that doing so is always correct. In addition,
we proposed an alternative online execution model for APPs
(Algorithm 1) that is arguably more realistic, and for which
avoiding non-local dead-ends is crucial, as the executor can-
not resort to meta-level backtracking. The experiments re-
ported, which involve a variety of well-known planning do-
mains from the International Planning Competition, demon-
strate that reasoning about global (or non-local) dead-ends
has, in terms of the number of solved APPs, a consider-
ably positive impact on both (i) the state-of-the-art offline
approach [De Giacomo et al., 2016] as well as (ii) the on-
line approach. Hence, the results demonstrated that identi-
fying non-local dead-ends prior to the planning episode can,
often considerably, increase robustness of the approach for
online realization of APPs, which is naturally prone to get-
ting “trapped” in non-local dead-ends.

Agent Planning Programs appear as a promising principled
elaboration of planning that accounts for features required in
many real-world control scenarios, such as sequential goals,
external decisions, and repeating tasks. Also, APPs can serve
as a source of challenging benchmarks for the planning com-
munity, while the agents community can benefit from the
topic of dead-end detection. For future work, we would like
to investigate theoretical guarantees of k-DNF traps with re-
spect to given domains to improve the robustness of the online
approach for realizing APPs. We are also interested in ex-
ploiting APPs with global dead-end reasoning to solve (clas-
sical) planning problems, by decomposing them in sub-goals,
as done by Vernhes et al. [2013], but mitigating backtracking
when some subsequent goals become not achievable.

Acknowledgements
We thank the reviewers for their suggestions and acknowl-
edge the support of the Czech Science Foundation (project
no. 17-17125Y), the Marie Curie project “Semdata”, the Aus-
tralian Research Council (DP120100332) and DST.

References
[Bloem et al., 2012] Roderick Bloem, Barbara Jobstmann,

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

977



of reactive(1) designs. Journal of Computer and System
Sciences, 78(3):911–938, 2012.

[Dal Lago et al., 2002] Ugo Dal Lago, Marco Pistore, and
Paolo Traverso. Planning with a language for extended
goals. In Proceedings of the National Conference on Arti-
ficial Intelligence (AAAI), pages 447–454, 2002.

[De Giacomo et al., 2010] Giuseppe De Giacomo, Fabio Pa-
trizi, and Sebastian Sardina. Agent programming via plan-
ning programs. In Proceedings of the International Con-
ference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 491–498, 2010.

[De Giacomo et al., 2016] Giuseppe De Giacomo, Alfonso
Gerevini, Fabio Patrizi, Alessandro Saetti, and Sebastian
Sardina. Agent planning programs. Artificial Intelligence,
231:64–106, 2016.

[Edelkamp, 2006] Stefan Edelkamp. On the compilation
of plan constraints and preferences. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), pages 374–377, 2006.

[Gerevini et al., 2003] Alfonso Gerevini, Alessandro Saetti,
and Ivan Serina. Planning through stochastic local search
and temporal action graphs. Journal of Artificial Intelli-
gence Research (JAIR), 20:239 – 290, 2003.

[Gerevini et al., 2011] Alfonso Gerevini, Fabio Patrizi, and
Alessandro Saetti. An effective approach to realizing plan-
ning programs. In Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS),
pages 323–326, 2011.

[Ghallab et al., 2004] Malik Ghallab, Dana S. Nau, and
Paolo Traverso. Automated planning, theory and practice.
Morgan Kaufmann, 2004.

[Ghallab et al., 2014] Malik Ghallab, Dana S. Nau, and
Paolo Traverso. The actor’s view of automated plan-
ning and acting: A position paper. Artificial Intelligence,
208:1–17, 2014.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel
Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Proceedings of the
International Conference on Automated Planning and
Scheduling (ICAPS), pages 162–129, 2009.

[Lipovetzky and Geffner, 2014] Nir Lipovetzky and Héctor
Geffner. Width-based algorithms for classical planning:
New results. In Proceedings of the European Conference
in Artificial Intelligence (ECAI), pages 88–90, 2014.

[Lipovetzky et al., 2016] Nir Lipovetzky, Christian J. Muise,
and Hector Geffner. Traps, invariants, and dead-ends.
In Proceedings of the International Conference on Auto-
mated Planning and Scheduling (ICAPS), pages 211–215,
2016.

[Pnueli and Rosner, 1989] Amir Pnueli and Roni Rosner. On
the synthesis of an asynchronous reactive module. In Pro-
ceedings of the International Colloquium on Automata,
Languages and Programming (ICALP), pages 652–671,
1989.

[Ramirez et al., 2015] Miquel Ramirez, Nir Lipovetzky, and
Christian Muise. Lightweight Automated Planning
ToolKiT. http://lapkt.org/, 2015. Accessed: 2016-11-1.

[Shivashankar et al., 2012] Vikas Shivashankar, Ugur Kuter,
Dana S. Nau, and Ronald Alford. A hierarchical goal-
based formalism and algorithm for single-agent plan-
ning. In Proceedings of the International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 981–988, 2012.

[Slaney and Thiébaux, 2001] John K. Slaney and Sylvie
Thiébaux. Blocks world revisited. Artificial Intelligence,
125(1-2):119–153, 2001.

[Vernhes et al., 2013] Simon Vernhes, Guillaume Infantes,
and Vincent Vidal. Problem splitting using heuristic search
in landmark orderings. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages
2401–2407, 2013.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

978


