
Streaming Multi-Context Systems∗

Minh Dao-Tran and Thomas Eiter
Institute of Information Systems, Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
{dao,eiter}@kr.tuwien.ac.at

Abstract
Multi-Context Systems (MCS) are a powerful frame-
work to interlink heterogeneous knowledge bases
under equilibrium semantics. Recent extensions of
MCS to dynamic data settings either abstract from
computing time, or abandon a dynamic equilibrium
semantics. We thus present streaming MCS, which
have a run-based semantics that accounts for asyn-
chronous, distributed execution and supports obtain-
ing equilibria for contexts in cyclic exchange (avoid-
ing infinite loops); moreover, they equip MCS with
native stream reasoning features. Ad-hoc query an-
swering is NP-complete while prediction is PSpace-
complete in relevant settings (but undecidable in
general); tractability results for suitable restrictions.

1 Introduction
Rooted in McCarthy’s seminal work [1993], multi-context
systems (MCS) model knowledge bases (KBs) interlinked
by bridge rules, cf. [Giunchiglia et al., 1994; Ghidini et al.,
2001; Brewka et al., 2007; Bikakis et al., 2010]; in partic-
ular, Brewka and Eiter [2007] provided a powerful generic
framework to interlink heterogeneous information sources in
an equilibrium semantics. Towards handling dynamic data,
MCS have recently been extended to reactive MCS (rMCS)
[Brewka et al., 2014] and evolving MCS (eMCS) [Goncalves
et al., 2014] which feature sequences of equilibria obtained
synchronously, and to asynchronous MCS (aMCS) [Ellmau-
thaler and Pührer, 2015] in which controllers trigger local KB
to update and to output rules to push beliefs to other contexts.

However, no extension of MCS has features for handling
streaming data [Della Valle et al., 2009; Arasu et al., 2006;
Heintz, 2010]. In contrast to processing (sequences of) static
data, data stream processing deals with continuous computa-
tion, which typically requires some explicit reference to time.
Example 1 Fig. 1 depicts two robots R1 (at node 3) and R2

(at node 9), in an indoor environment (e.g., department store).
They must deliver packages P1 (at node 9) and P2 (at node 4)
to destinations D1 (node 7) and D2 (node 1), resp. Only R1

can travel from 6 to 7, so he could take the path 3-4-5-8-9 to
∗This research has been supported by the Austrian Science Fund

(FWF) project P26471.

3R1 4

5 6 7 D1

89R2

2 1 D2P2

P1

4

Figure 1: Robot scenario

pick up P1 and then deliver via 9-8-6-7. Similarly, R2 would
take 9-8-5-4-2-1. To minimize the combined travel distance,
they can coordinate and alternatively pick up the packages
close by and exchange them at node 5. Reaching an agreement
may be challenging when they are already moving, and e.g. a
link is not usable as too many people were recently observed
on it. This may be inferred from a time-based window of a
stream with position data of people. �

To reason over such asynchronous information exchange
systems, communication and local computation time must
be considered, and only recently sent/received data will be
relevant. Moreover, in general no stable state of information
exchange may be achieved, e.g. an agreement on a meeting
point for the robots. In the static case, but also in rMCS and in
eMCS, computing equilibria is considered to be timeless; in
our dynamic setting, however, data (also new requests) keep
streaming while any computation is ongoing; this may render
the result upon completion invalid. While aMCS account for
controlled information exchange, physical computation and
transfer time are disregarded and no baseline mechanism to
achieve an equilibrium is considered.

To tackle these issues, we introduce Streaming Multi-
Context Systems (sMCS), with the following contributions.
• To equip MCS for data streams, we base sMCS on managed
MCS (mMCS) [Brewka et al., 2014] and extend bridge rules
with window atoms for snapshots of input streams at contexts.
Although it is possible extending rMCS/eMCS to emulate win-
dow atoms, having them as first-class citizens in the formalism
allows sMSC while add streaming features to MCS, still retain
MCS’ principles, namely: bridge rules are simple to import
knowledge and contexts are abstract. We discuss this issue in
more detail in Section 6.
• Our framework models transfer time of data between and
computation time at contexts, to reflect the asynchronous be-
havior that arises in general, and has an internal execution
control at the contexts.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1000

• We define a run-based semantics of sMCS as special se-
quences of states. In that, we introduce feedback equilibria,
which are a non-trivial lifting of the key notion of MCS equi-
libria to the asynchronous setting, by which local stability in
runs can be enforced. They provide semantic middle-ware to
overcome potentially infinite loops; e.g., if the robots in Ex. 1
would mutually send proposals and keep adjusting them, they
may never agree on a meeting point.
• Finally, we consider reasoning in sMCS and characterize
the complexity of ad-hoc queries and prediction. To our knowl-
edge, the latter has not been considered for MCS so far.

2 Streams
To set up a streaming environment, we borrow some formal
notions from the LARS framework [Beck et al., 2015]. We
assume an underlying set A of ground (propositional) atoms.

Definition 1 A stream S = (T, υ) consists of a timeline T ,
which is a closed interval T ⊆ N of integers called time points,
and an evaluation function υ : N 7→ 2A.

Intuitively, a stream S associates with each time point a set of
atoms. If S = (T, υ) and S′ = (T ′, υ′) are streams such that
T ′⊆T and υ′(t′)⊆ υ(t′) for all t′ ∈T ′, we write S′⊆S and
call S′ a substream or window of S.

We call streams that provide input also data streams. To
cope with large input volume, one usually considers only
recent atoms by applying window mechanisms on streams.

Definition 2 (Window Function) Any (computable) func-
tion w that returns, given a stream S = (T, υ) and a time
point t ∈ T , a substream S′ of S is called a window function.

Prominent are time-based window functions, which select the
atoms of the latest k time points. Formally, the (sliding) time-
based window of size k is τ(k)(S, t) = (T ′, υ|T ′), a substream
of S, where S=(T, υ) is any stream and t any time point in
T=[t1, t2] and T ′ = [t′, t] such that t′ = max{t1, t− k}.

To express formulas on streams, LARS offers window and
temporal operators. For sMCS, we borrow plain LARS window
atoms (briefly window atoms), of the form (a ∈ A and t′ ∈ N):

α ::= �w@t′a | �w3a | �w2a . (1)

A streaming atom is either an atom or a window atom. Entail-
ment of a streaming atom from a stream S = (T, υ) at a time
point t is defined as follows, where S′ = (T ′, υ′) = w(S, t):

S, t
 a iff a ∈ υ(t) and t ∈ T
S, t
 �w3a iff a ∈ υ′(t′) for some t′ ∈ T ′
S, t
 �w2a iff a ∈ υ′(t′) for all t′ ∈ T ′
S, t
 �w@t′a iff a ∈ υ′(t′) and t′ ∈ T ′

For a streaming atom α, S, t
 notα iff S, t 6
 α. Further-
more, let S, t
 > for all t ∈ T , where > is a special atom.
For convenience, we abbreviate �τ(k) with �k.

Example 2 Let block(X,Y) states that a link (X,Y) is
blocked; then �32block(a, b) holds at t if the link (a, b) has
been always blocked in the last 3 time units. �

For any window atom α of form (1), let at(α) be the ordinary
atom extracted from α, that is, at(α) = a.

3 Streaming Multi-Context Systems
We now define streaming Multi-Context Systems as a general-
ization of mMCS [Brewka et al., 2011] to handle streaming
data. The main idea is that contexts, interlinked by bridge rules,
continuously receive input from neighbors, compute, and then
send output to other contexts. To govern data flows coming to
contexts, we extend bridge rules with window atoms.

To better highlight the issues relevant for this paper, we
confine to mMCS in which (1) each context has a single logic
rather than a logic suite, (2) the management functions are
deterministic. An extension to arbitrary mMCS is not difficult
but technically somewhat involved.

First, we recall the notion of logics and contexts in mMCS.
A logic L is a triple 〈KBL,BSL,ACCL〉, where KBL is

the set of admissible knowledge bases (KBs) of L, BSL ⊆
2BSL is the set of possible belief sets over a set of beliefsBSL,
and ACCL : KBL → 2BSL represents the semantics of L by
assigning to each kb ∈ KBL a set of acceptable belief sets.

Without loss of expressiveness, we consider a setting in
which beliefs are ordinary ground atoms.

A context has the form C = 〈L, ops ,mng〉, where L is a
logic, ops is a set of operations, and mng : 2ops ×KBL →
KBL is a management function. For an indexed context Ci
we write Li, opsi, and mng i to denote its components.

Important in a streaming environment are sensors that
continuously emit readings: this can be modeled by sensor
logics of the form LD=〈{∅},BSD,ACCD〉, where ∅ is a
dummy local KB, D is a value domain (possible readings)
and BSD={s ⊆ D | |s| ≤ 1}, ACCD(∅)=BSD. Intuitively,
either the empty set or a set with a single value from D can be
an acceptable belief set of LD.

We now extend bridge rules with streaming bridge atoms.
Definition 3 Let C = 〈C1, . . . , Cn〉 be a tuple of contexts. A
streaming bridge rule r for Ci over C is of the form

op← β1, . . . , βj , not βj+1, . . . not βm, (2)

where op∈ opsi and each β` = (c`:α`) is a bridge atom where
c` ∈{1, . . . , n} and α` is a streaming atom for Cc` , i.e.,
α` ∈BSLc`

or at(α`)∈BSLc`
. We denote by H (r) = op the

head and by B(r) = {β1, . . . , βj , not βj+1, . . . , not βm}
the body of r.
Sensor contexts are contexts with sensor logics, no bridge
rules, no operation, and the management function satisfying
that mng(∅, ∅) = ∅. We can now define streaming multi-
context systems.
Definition 4 A streaming multi-context system (sMCS) M =
〈C,BR,KB〉 consists of
• a tuple C = 〈C1, . . . , Cn〉 of contexts,
• a tuple BR = 〈br1, . . . , brn〉 of sets br i of streaming

bridge rules for Ci over C,
• a tuple KB = 〈kb1, . . . , kbn〉 of KBs kbi ∈ KBLi

.
Example 3 Fig. 2 shows Ex. 1 as sMCS M = (C1, . . ., C6):
• Ci, 4≤ i≤ 6, is a sensor context that feeds data to Ci−3;
C4 (resp. C5) tells the current position pos(X,Y, L) of robot
R1 (R2), meaning it is at L% on the way from X to Y . C6

provides data n(X,Y,N) that N people were sensed on the
link (X,Y).

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1001

ACCplanning

update(pos(X,Y, L) ← (4 : pos(X,Y, L))

update(block(X,Y)) ← (3 : block(X,Y))

remove(block(X,Y)) ← not (3 : �32block(X,Y)), (1 : block(X,Y))

C1
ACCplanning

update(m1(X)) ← (1 : m(X))

update(pos(X,Y, L)) ← (5 : pos(X,Y, L))

update(block(X,Y)) ← (3 : block(X,Y))

remove(block(X,Y)) ← not (3 : �32block(X,Y)), (2 : block(X,Y))

C2

block(X,Y) ← cr(X,Y)

update(cr(X,Y)) ← (6 : �82n(X,Y,N)), N > 10

C3C4
C5C6

Figure 2: Modeling the Robot Scenario with sMCS

• C3 takes the sensor data from C6, reasons about blocked
links and sends this information to C1 and C2.
• C1 (resp. C2) aims to find a shortest route from R1 ’s (resp.

R2 ’s) position to its destination respecting blocked links and
in C2 possible meeting points m(X).
Focusing on the streaming aspects, we omit the details of
the local planning logics at C1, C2 , except a notice that if
a new plan proposes the same meeting point as the previous
plan, then this information is not resent to the other context.
ACCplanning in C1 can either remember the latest proposed
meeting point on its own, or self-import this information by
adding the following bridge rule into br1:

update(mold(X)← (1 : m(X))).

We now give a brief explanation on the bridge rules. Intuitively,
update(p(X)) drops the facts of predicate p and then adds a
new ground fact p(X), while remove(p(X)) removes p(X).
The bridge rules of br1 and br2 with remove in the head
drop blocking information for a link (X,Y), if it was not
continuously reported blocked in the last 3 time units.

The bridge rule in br3 informs kb3 about crowded links
using facts cr(X,Y). To keep C3’s local reasoning simple for
the moment, such links are viewed as blocked. �

3.1 Semantics of Streaming MCS
We define the semantics of sMCS in terms of runs, which
are sequences of states with constraints on the information
exchange between contexts and their local semantics, as well
as on the time spent for that. Before going into the details
of the semantics, we recall two important aspects of stream
processing, namely execution modes and execution policies.

In stream processing, there are two execution modes:
• Pulling: an engine periodically executes, e.g. every 5

seconds, regardless of when input arrives; this amounts
to time-driven evaluation.
• Pushing: an engine executes immediately when input

arrives; this is also known as eager mode, and amounts
to data-driven resp. event-driven evaluation.

However, an engine might still be busy with a current compu-
tation while an execution should be triggered according to its
execution mode, for example, when the time reaches a period
in pulling mode or when a new input arrives in pushing mode.

An engine can follow either the ignore or restart policy in
such situations. The former means that the engine continutes
its computation while the latter means that it abandons the

current computation and starts with a new one according to
the respective execution mode.

The combination of “pushing” and “ignore” can lead to
situations in which an execution is carried out immediately
after a previous execution finished because some input arrived
during the previous execution. That is, the actual start of an
execution is different from the intention to start it according to
the execution mode. We introduce in the following the notion
of states to model such situation.
States. A state of context Ci is a triple si=(si, oi, kbi) where

• si⊆{IE ,SE} is the execution status: IE means an in-
tent to start an execution, either proactively (pulling), or
reactively on new input (pushing); SE means a computa-
tion actually starts. Sensor contexts always have status
{IE , SE};
• oi ∈ BSLi∪{ε} is the output, which is streamed to other

contexts, unless oi = ε (meaning that nothing will be
sent to other contexts);
• kbi ∈ KBLi is the local KB (which can evolve).

A (global) state ofM is any tuple s = (s1, . . . , sn) of states si
of context Ci, 1 ≤ i ≤ n. By si(t

′) = (si(t
′), oi(t

′), kbi(t
′))

we denote the state of Ci at time t′. Towards runs, we define:

Definition 5 Given a timeline T , a state sequence of M up
to t ∈ T is any sequence s = s(0), . . . , s(t) of global states
s(t′) = (s1(t′),. . . , sn(t′)).

Arbitrary state sequences may not align belief output with
respective KB evaluation. For that, input from bridge rules
must be respected, as well as the actual start of computations:
if an intent arises while Ci is busy, it may (by some policy)
restart the computation or ignore the intent until the current
computation ends. Runs will enforce these conditions to faith-
fully capture the evolution of sMCS. We next address the issue
of input.
Input streams of contexts. Any state sequence s =
s(0), . . . , s(tend) naturally induces an output stream
Sk = (T, υk) of Ck, where T = [0, tend] and υk(t)=ok(t)
for all t∈T . However, due to transfer time this output is
not immediately available as input at other contexts Ci. To
simplify presentation, we assume in our basic model that this
transfer takes ∆ki units of time. This can be generalized to
functions with different parameters, e.g., the time point t or
the size of ok(t). We define input streams as follows.

Suppose that Ci accesses Ck, i.e., some bridge rule r ∈ br i
has some atom (k:α) in the body. Then the input stream of Ci

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1002

from Ck at time t based on s is Ss,t
ki = (T, ιυs,tki), where

ιυs,tki (tin)=

{
∅ if tin < ∆ki or tin > t

υk(tin−∆ki) otherwise.
(3)

Intuitively, due to the delay ∆ki, no output of Ck can be
expected at Ci from time points 0 to ∆ki; for further time
points up to t, Ci receives the output from Ck with delay.

We also omit s and/or t if clear from the context.
Example 4 (cont’d) Consider contexts C1, C2, C3, and C6

with output streams Si = ([0, 20], υi), where υ3(10) =
{block(5, 6)}, υ1(2) = {m(5)}, υ1(14) = {m(6)} and
υ6(t′) = {n(5, 6, 15)} for t′ ∈ {4, . . . , 8}. Let t= 20; then
• for ∆12=1, S12 has ιυ12(3)={m(5)}, ιυ12(15)={m(6)};
• for ∆31=1, S31 has ιυ31(11) = {block(5, 6)};
• for ∆63=1, S63 has ιυ63(t′)={n(5, 6, 15)}, 5≤ t′≤ 9.

A bridge rule r ∈ br i is applicable wrt. a state sequence s at t
(in symbols, s
it r), if Ski, t
 α for every (k :α) ∈ B(r)
and Ski, t 6
 α for every not (k :α) ∈ B(r). We denote
with appi(s, t)={H (r) |r∈br i ∧ s |=i

tB(r)} the heads of all
applicable bridge rules of Ci wrt. s at t.
Evaluation time. As for asynchronous execution, we adopt
that besides the transfer times ∆ki, functions fi measure the
time that Ci needs to (1) evaluate the bridge rules, (2) run
the management functions for local KB update, and (3) evalu-
ate the updated KBs. Clearly, such functions may depend on
various parameters, and different levels of detail are possible.
As a baseline, we assume that fi assigns each pair (br i, kbi)
a natural number. This can be generalized with further pa-
rameters (e.g., time) and/or intervals bounding the evaluation
times; the latter allows us to express uncertainty and reduces
to the baseline via all induced point measurements. Alterna-
tively, probabilistic estimations can be considered. For sensor
contexts, we simply may adopt fi=0.
From state sequences to runs. Given a state sequence s, a
context Ci, and a time point t, the latest time point when Ci
was triggered to execute is denoted by (max ∅ = −1):

tr(s, Ci, t) = max{t′ ≤ t | SE ∈ si(t
′)}.

Runs are state sequences where context output stems from its
local KB and the input at the closest triggered time. Formally,
Definition 6 A run for an sMCS M is a state sequence
s=(s0, . . . , stend) such that oi(0) = ε, kbi(0) = kbi, and
for all t ∈ [1, tend]:

oi(t) 6= ε iff oi(t) ∈ ACCi(kbi(t)), (4)
where:

(i) kbi(t) = mng i(appi(s, tex), kbi(tex)),
(ii) tex = tr(s, Ci, t),

(iii) t = tex + fi(br i, kbi(tex)),
(iv) kbi(t

′) = kbi(tex) for all t′∈(tex , t).
Intuitively, when a context Ci produces some output oi(t) at a
time point t, this output must be computed on (i) the updated
local KB based on input stream at (ii) the closest triggered
time point tex . Furthermore, the distance from tex to t must
be (iii) the computation time of the respective input. Finally,
during computation, the update of the local KB is hidden to
the outside of the context (iv).

Example 5 (cont’d) Fig. 3 illustrates a run of the sMCS
where subscript i denotes output of Ci, i = 1, 2 (we focus
on the robots). We have ∆12=∆31=1 and ∆ij=0 otherwise;
f1(br1, kb1)=2, f2(br2, kb2)=4, and f3(br3, kb3)=1 for all
kbi ∈ KBLi

. Contexts C1, C2, C3 operate in pushing mode;
C1 ignores new input if it is busy, while C2 and C3 restart.

The sensor contexts C4, C5 stream data at times 5k, k≥ 0,
C6 streams data at each time point. As ∆41=∆52=0, C1 and
C2 receive input and intend to start execution at times 5k.

At t= 2, C1 finds a plan to meet at node 5. This arrives
at C2 at t=3, and C2 restarts its computation. At t=5, the
contexts start executions wrt. new incoming data. C2 again
aborts its previous computation. At t=7 and t=9, resp., the
contexts come up with plans to meet at node 5.

Assume C3 sends block(5, 6) at t = 10, which C2 receives
at 10 and C1 at 11 (both started to execute at 10). C1 ignores
block(5, 6) at time 11 and starts executing with this input at
time 12; this results in a new plan of C1 at t= 14 to meet
at node 6. A respective request arrives at C2 at t= 15. C1

and C2, with input from C4, C5, start executions at t= 15 that
end at time 17, resp. 19, and yield plans to meet at node 6. �

To capture step-wise runs with equilibria semantics in the
sense of rMCS and eMCS, we need to model an idealized
setting in which contexts have unlimited power to compute
equilibria between two consecutive time points (akin to flip-
flops in clocked hardware circuits). We can achieve this with a
computation time so small such that the ACC function can be
run finitely often (as an algorithm to compute an equilibrium
will do) between two consecutive time points. Formally, we
let the transferring time be 0 and the computation time be
an infinitesimally small value ε such that (i) t < t + ε and
(ii) ε+ ε = ε; thus t+ n× ε = t+ ε, for each integer n > 0.

We now adapt the definition of input streams Ss,t
ki to Ss,t,ε

ki
with ε by adapting Equation (3) with ∆ki = 0 as follows:

ιυs,t,εki (tin) =

{
ok(tin), if tin < t,

ok(tin + ε), if tin = t.
(3’)

Moving output ok(tin + ε) to ιυs,t,εki (tin) is just a technique
to respect the cyclic dependency between contexts in defining
equilibria. Another approach that “shifts” the time line with ε
is possible but more cumbersome (as non-integer time lines
must be introduced) and thus not further considered here.

Then, we adapt the applicability relationship
it to
it,ε by
substituting Ss,t

ki with Ss,t,ε
ki , and respectively, adapt appi(s, t)

to appεi (s, t). Finally, idealized runs can be defined as follows:
Definition 7 An idealized run for an sMCS M is a state se-
quence s = (s0, . . . , stend) such that oi(0) = ε, kbi(0) = kbi,
and for all t ∈ [0, tend):

oi(t+ 1) = oi(t+ ε) and kbi(t+ 1) = kbi(t+ ε), where

• oi(t+ ε) ∈ ACC(kbi(t+ ε)) and
• kbi(t+ ε) = mng i(app

ε
i (s, t), kbi(t)).

Intuitively, at t+ ε we have infinite power to respect the cyclic
dependency and thus to compute equilibria. The result at this
step is then placed at the next time point t+ 1.

Note that simply setting ∆ki = fi = 0 in Definition 6 does
not help us defining idealized runs from runs, as the latter are

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1003

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ISE1,2 {m(5)}1 ISE2 ISE1,2 ∅1 ∅2 ISE1,2 IE1 SE1 {m(6)}1 ISE1,2 ∅1 ∅2

Figure 3: Run trace (ISE1,2 = {IE1,SE1, IE2,SE2}, ISE2 = {IE2,SE2})

0 1 2 3 4 5 6 7

ISE1,2 ISE1,2 ISE1,2{m(5)}1 {m(6)}1
{m(6)}2 {m(5)}2

Figure 4: Communication loop (ISE1,2 = {IE1,SE1, IE2,SE2})

stateful with changing local KBs. Here, the introduction of
ε is necessary as it fulfills the intuition that even in idealized
settings computation still takes time, but infinitesimally small
so that one can compute equilibria between to consecutive
time points.

Our sMCS relate to mMCS, eMCS and rMCS as follows.
First, sMCS generalize mMCS.
Proposition 1 Let M be an sMCS where contexts run in
pulling mode and bridge rules have no window atoms. Then
M can be viewed as an mMCS Mm that outputs in idealized
runs at each time an equilibrium obtained by Mm.

Given an rMCS (resp. eMCS) M , we can construct a cor-
responding sMCS M s by turning sensors (resp. observation
contexts) into sensor contexts and their observations into re-
spective output streams. This allows one to capture rMCS.
Proposition 2 The runs of an rMCS M [Brewka et al., 2014]
amount to the idealized runs of its corresponding sMCS M s.

For eMCS, however, this construction needs some condition.1

Proposition 3 Let M be an eMCS such that op(a)←B is in
bri iff next(op(a))←B is in bri. Then, the evolving equilib-
ria of M amount to idealized runs of the sMCS M s.

Here, next(op(a)) belongs to the evolving operational formu-
las introduced in eMCS. Intuitively, such operations update
the local KBs while operations op(a) are only used to provide
the KB for computing the equilibria at a single step.

4 Feedback Equilibria
As shown in Prop. 1, traditional mMCS equilibria can only
be achieved with idealized runs, which impose extreme condi-
tions. Yet they apply if the stream granularity is significantly
larger than evaluation and transfer time at resp. between con-
texts, such that an equilibrium computation can be carried
out between two consecutive time points. Asynchronous runs
are closer to practice. However, total asynchrony can evoke
uncomfortable situations if contexts depend on each other.
Example 6 (cont’d) Suppose also C2 suggests a meeting
point and C1 has a further bridge rule update(m2(X)) ←
(2:m(X)) to import the suggestion to kb1. Moreover, the
local planning logic checks whether the suggestions of the

1Extending sMCS to fully capture eMCS is not difficult but rather
technically involved (by introducing streaming bridge rules with the
next operator and keeping two local KB states as in eMCS). This is,
however, not the main goal of this paper.

two robots match; if not, another round of planning is carried
out and new suggestions are sent. Then if f1(br1, kb1)=2,
f2(br2, kb2) = 3 for all kbi ∈ KBLi

(i = 1, 2), ∆12 = 1,
and all other costs are 0, the contexts might get stuck in a loop
just to agree on a meeting point, as depicted in Figure 4. �

In practice, it is important to avoid that subsystems of an
sMCS run into a (possibly infinite) loop due to asynchronous
information exchange. For this we may want to obtain stability,
i.e., a local equilibrium of such subsystems; however, how to
accomplish this is not straightforward.

The key idea is to respect that an equilibrium is intrinsically
timeless, and to dispense streaming data from outside for its
computation; this is a trade-off for success, comparable to
ignoring requests during fast interrupt handling in CPUs.

We consider strongly connected components (SCCs) in
an sMCS M , i.e., in the graph G(M) whose nodes are the
contexts Ci of M and with edges Ci → Cj if Ci accesses Cj .
We extend the run semantics of sMCS as follows:
(?) Ci can request stability of the SCC in which it occurs,
denoted Ci. When Ci raises this request at time t = tex + ∆
after it started execution at tex , the system restarts all other
contexts in Ci to compute with their input at tex and allows
them to disclose output in Ci until reaching an equilibrium.
(??) Later at tout ≥ t, Ci reports an equilibrium, or restarts its
contexts with input at time tout if no equilibrium exists.

From t to tout , the contexts in Ci are in an internal solv-
ing mode and output no beliefs to contexts outside Ci; the
latter still run asynchronously, unless stability is requested
elsewhere. If simultaneous stability requests arise in Ci, one is
nondeterministically followed. We formalize this as follows.
Definition 8 Let C = {Ci1 , . . . , Ci`} be an SCC of an sMCS
M . A belief state of C is a tuple (BS i1 , . . . ,BS i`) of belief
sets BS ij ∈ BSij , 1≤ j≤ `; it is an feedback equilibrium of
C wrt. a run s of M at time t if for all j ∈ [1, `] :

BS ij ∈ ACCij (mng ij (appεij (s, t), kbij (t))).

Intuitively, a feedback equilibrium of C at t is achieved by
running its contexts in idealized mode with ε computation
time. Thus, input to C is fixed at t, and cyclic information flow
inside C is respected.

Based on this, we define stability of runs as follows where
a special atom ρ denotes a stability request and a new status
EQ the equilibrium computation mode.
Definition 9 Given an SCC C={Ci1 , . . . , Ci`} of an sMCS
M , a run s of M on a timeline T = [0, tend] is locally stable
wrt. C, if whenever at time t, the set req(C, t) := {Cij∈C |
ρ ∈ oij (t)} is nonempty, then either
(?) tout ≥ t and tex = tr(s, Cij , t) exist, whereCij∈req(C, t)
such that

(i) C has at tex wrt. s either (a) a feedback equilibrium
(BS i1 , . . . ,BS i`) such that oij (tout) =BS ij for j ∈

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1004

[1, `], or (b) no feedback eq. and sij (t′)={SE}, for
j∈[1, `], and

(ii) for all t′′ ∈ (t, tout) and ij ∈{i1, . . . , i`}, we have
sij (t′′) = {EQ} and oij (t′′) = ε;

or
(??) for all t′′ ∈ (t, tend] and ij ∈ {i1, . . . , i`}, we have
sij (t′′) = {EQ} and oij (t′′) = ε.

Furthermore, s is locally stable, if it is locally stable wrt.
every SCC of M .

Example 7 (cont’d) Reconsider Fig. 4. In a locally stable
run, C1 realizes at t= 3 that C2’s suggestion does not match
his sent at t= 2. It can request local stabilization for its SCC
C1={C1, C2} to find an equilibrium wrt. the input to C1
at tex = 0. At some tout > 3, an equilibrium is computed
which guarantees an agreed meeting point, e.g. at node 6. �

In practice, we may bound tout such that the SCC C will be
reset at tout the latest: if stabilization takes too long, the result
may be outdated (in particular, for reasoning on recent data).

5 Reasoning with Streaming MCSs
For reasoning from an sMCS M=(C1, . . . , Cn), we assume
sensor contexts are D=Cj , . . . , Cn. A reading for M up to t
is a state sequence r=r(0), . . . , r(t) such that or

i (t′) = ∅ for
all i ∈ [1, j) and t′ ∈ [0, t]. Models are defined as follows.
Definition 10 Given an sMCS M with sensor contexts D, a
run s for M is a model wrt. a reading r up to t, if |s| = |r| and
os
i (t
′) = or

i (t′) for all Ci ∈ D and t′ ∈ [0, t].

We consider brave reasoning: given M , a reading r up to t, a
context Ci and an atom a, decide if a is true at time t in some
model s of M wrt. r, i.e., a ∈ os

i (t) holds; we denote this by
M, r |=b Ci(a). Model existence (consistency) and cautious
reasoning easily reduce to this problem resp. its complement.
Setting. We assume that (a) each Ci periodically decides
in constant time, by looking at its input stream, whether to
execute, and is in permanent ignoring or restarting mode;
(b) algorithms are available (given as code) to evaluate the
bridge rules br i, to update the local kbi by the management
function mng i, and to compute some BSi ∈ ACCi(kbi)
(where each possible BSi may result); unless stated otherwise,
the algorithms for br i and mng i run in polynomial time. The
instance size is dominated by the sizes of r, all bri and kbi,
and of the underlying atom set A (which is part of the input).

For reasoning with ordinary runs, we can show:
Theorem 1 Deciding M, r |=b Ci(a) is NP-complete, and
NP-hard even ifM is acyclic, the br i are not-free and without
window atoms, and one of the following is not bounded by a
constant: (i) |M |, (ii) the size of the input streams Ski, (iii)
the size of the local KBs kbi.

Informally, we can guess a model s for r that witnesses
M, r |=b Ci(a) and simulate the run from 0 up to t matching
s, using the algorithms for bri, mng i and ACCi: naturally
the streaming time maps to physical time by a (constant) factor.
Note that the precise KB formats (propositional, non-ground)
is here irrelevant. The NP-hardness is shown by various reduc-
tions from SAT. For determined contexts, tractability results.

Proposition 4 Deciding M, r |=bCi(a) is in P, if M is deter-
ministic, i.e., |ACCi(kbi)| ≤ 1 holds for all Ci and kbi.

Locally stable runs. We denote by M, r |=bs Ci(a) the re-
striction of M, r |=b Ci(a) to locally stable models. As com-
puting locally stable runs requires to recognize given accept-
able belief sets, we suppose that deciding BSi ∈ ACCi(kbi)
has complexity in C. We then obtain the following result.

Theorem 2 Deciding M, r |=bs Ci(a) is in NPNPC

. It is
NPNP-complete for M in which the contexts use (normal)
logic programs with supported resp. stable model semantics.

Intuitively, local stability forces us to know for a correct reset
that no equilibrium BSC exists for a SCC C; as this rises de-
pending on the guessed prefix of the run, we resort to an oracle
for coNPC = NPC in the general setting (which proceeds
with guess and check for an equilibrium). The NPNP-hardness
is shown by a reduction from QBF solving.

However, the following setting is tractable for x∈{b, bs}
(“small” is bounded by a constant):

Theorem 3 Deciding M, r |=x Ci(a) is in P, if (i) |M | is
small, (ii) the input streams Ski are accessed via small-length
windows, (iii) bri, mng i, and ACCi(kbi) are in logspace
where |ACCi(kbi)| is polynomially bounded, and (iv) any
kbi(t

′) results as mng i(chg, kbi(0)) for some small-size chg.

Simple simulation does not work here. Informally, we can
reduce the problem to reachability in a graph in polynomial
time, whose nodes describe possible (adorned) states of a run.
Further restrictions in (ii) allow to achieve NLSpace.

In the setting above, we have assumed that some algorithm
to compute BSi ∈ACCi(kbi) is available. Alternatively, one
could assume that, as for locally stable runs, only an oracle for
deciding BSi ∈ACCi(kbi) is available. However, tractabil-
ity gets lost resp. becomes unknown even for deterministic
MCS and a LSpace oracle, as variants of integer factorization
can be expressed via ACCi(kbi) such that problems in the
class UP that are unknown to be in P can be solved.

5.1 Prediction
An important further reasoning task is prediction, i.e., to rea-
son about the future states of an sMCS. We may ask whether
M, r′ |=b Ci(a) holds for some extension r′ of r up to a given
time point t′ ≥ t, i.e., |r′|= t′+1 and r′|≤t = r|≤t; we denote
this by M, r |=t′

x Ci(a), for x ∈ {b, bs}. Then

Proposition 5 Deciding M, r|=t′

bsCi(a) is in NExpTimeC

and deciding M, r|=t′

b Ci(a) isNExpTime-complete.

A witnessing model s for a suitable extension r′ of r is ex-
ponentially bounded in t′, which can be guessed and verified.
For locally stable runs, an SCC C has single exponential many
candidate equilibria BSC , which can be checked with the C
oracle one by one; this yields NExpTimeC membership. The
NExpTime-hardness is via a Turing machine encoding.

Whether M, r |=t′

xCi(a) holds for some arbitrary t′≥ t, de-
noted by M, r |=∞x Ci(a), is clearly undecidable. This is
because (U1) the local KBs and (U2) the data streams can
increase unboundedly; (U3) pathologic window functions

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1005

w(S, t) resp. management functions mng i({op(t)}, kbi) can
exploit the time argument t to run unbounded computations.

Decidability thus requires tailored restrictions; without spe-
cific logics and contexts, the (traditional) generic nature of
MCS permits only abstract computational conditions.

The following assumptions are practical: for (U1), the size
of each kbi(t

′) is polynomial in |kbi(0)| (this limits storing
actual time stamps in kbi); for (U2), the bridge rules use
windows to recent input; and for (U3), absolute time t to
evaluate window resp. management functions is not crucial.

Capturing the latter is nonobvious, as time should still play
a role for evaluating windows and storing data in the kbi.
Fortunately, we can identify benign practical conditions.

A window function w(S, t) is regular, if (i) w(S, t)(t′), i.e.,
the data in the window w(S, t) at time t′, depends only on
S from t′, t′+1 etc. onwards, and (ii) for some l ≥ p ≥ 0
polynomial in |kbi(0)|, we have w(S, t) = w(S′, t + p) for
every time t and streams S, S′ that coincide on the past (future)
l time points around t resp. t+p having data. Informally, (i)
enables us to drop past data; in (ii), p reflects that w is periodic
and l is a limit for evaluation. Time-based but also other
common windows (e.g., based on tuples) are regular.

However simply memorizing the data within the limit with
their actual time points is not feasible under a space constraint
wrt. |kbi(0)|. For schematic bridge rules as in the running
example, where time reference is confined to the evaluation
time (�0@Z>), or with a fixed offset os to it (Z±os), which
we call plain, this can be avoided.

Lemma 1 If br i is plain and any window occurring in it
is regular, a sufficient fragment of each input stream Ski to
evaluate br i can be maintained in polynomial space.

We consider each Ci has only timeless operators, schematic
operators have only few (constantly many) variables.

Theorem 4 Deciding M, r |=µ
x Ci(a) is PSpace-complete

for µ∈{t′,∞}, if (i) each kbi always has polynomial size,
(ii) context evaluation (i.e., of br i, mng i, ACCi) is in poly-
nomial space, and (iii) all bridge rules br i are plain.

Informally, the problems are in PSpace as a witnessing model
s can be stepwise guessed and verified by simulating a run
in polynomial space, using windows on the various streams.
Equilibrium computation is also feasible in polynomial space.
PSpace-hardness is immediate by a Turing machine encoding.
We note that the results above are unaffected if one changes
from the setting with an algorithm to compute some BSi ∈
ACCi(kbi) to an oracle for BSi ∈ ACCi(kbi) in PSpace.

6 Related Work
As already mentioned, rMCS [Brewka et al., 2014], eMCS
[Goncalves et al., 2014] and aMCS [Ellmauthaler and Pührer,
2015] define semantics via sequential application of static log-
ics on stepwise evolving KBs and observations; rMCS and
eMCS can model logical time, which synchronously increases
if a global equilibrium is reached; hence neither computa-
tion nor transfer time is considered, different from the asyn-
chronous model of sMCS. Asynchrony in aMCS is due to
peculiar output rules and controllers (abstract components to

handle computation and transfer times) which decide when
computation starts at a context.

Streaming bridge rules with window operators as first-class
citizens equip sMCS with light-weight, dedicated stream rea-
soning. To emulate this feature, rMCS, eMCS would require
non-trivial extensions in either bridge rules or the local logic:
• To do it on the bridge rules, exchanged beliefs first need
to be tagged with timestamps, that is, ordinary MCS beliefs
of the form b(c) should now be b(c, t) where t represents a
timestamp. Streaming atoms with time-based window opera-
tors of the form (i : �kb(c)) in sMCS can be emulated by an
auxiliary bridge rule:

wb(c)← (i : b(c, t)), (o : now(tnow)), tnow − t ≤ k,

where o is a special observation that sends out the clock ticks
at every time point.
For tuple-based window operators [Beck et al., 2015], a more
involved translation with three auxiliary bridge rules are re-
quired [Beck et al., 2017].
Moreover, this approach requires rMCS, eMCS to split bridge
rules into two kinds: those whose heads are imported to the
local KB and those whose heads are just used to emulate the
window operators (thus called auxiliary bridge rules). This
creates further complication in defining the applicability of
bridge rules, and somehow departs from the original idea of
bridge rules as a means for quick filtering of neighbor beliefs
into contexts.

• Another approach is to keep bridge rules as in rMCS, eMCS,
but introduce the window mechanism in the local logic. This
works straightforwardly with ASP semantics as one can simply
take e.g. contexts with LARS [Beck et al., 2015] as the local
logic. However, for other logics such as description logics, an
extension with window operators has not been investigated
and is non-trivial. In other words, this approach is limited in
the sense that not every existing logic can be readily put in
such as streaming setting. It also interferes with the local logic
of the contexts, which departs from the principle of MCS to
keep the setting as abstract as possible.
Still, the capacity of management functions can be exploited
to do the stream handling. However, from the implementation
point of view this approach pushes all functionalities into the
contexts; having window operators at the bridge rule level sep-
arates streaming features from reasoning features into different
layers of an architecture. This makes implementing and main-
taining sMCS easier, and moreover stream management (as
needed e.g. in local equilibrium computation, or when contexts
are busy) can be done more transparently and effectively.
Finally, we have provided feedback equilibria and local stabil-
ity, which have no counterpart in related MCS extensions.

Clearly scenarios similar to the running example can be
modeled as multi-agent systems. However, one will need to
specify a suitable negotiation protocol among agents to achieve
an equilibrium. The ensuing communication need and effort
can be saved with an sMCS, as obtaining a (local) equilibrium
is provided as primitive at a low level in the system.

Ameloot et al. [2015] used distributed Datalog under sta-
ble model semantics to describe the semantics of distributed

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1006

systems (e.g., replicated databases) with asynchronous com-
munication of indefinite delay between nodes, which are mod-
eled as stratified datalog programs on fact bases. They gave
an operational counterpart and refined the Dedalus approach
[Alvaro et al., 2010]. However, neither streaming aspects (e.g.,
windowing) were an issue, nor heterogeneity (e.g., KB seman-
tics with multiple possible outputs); furthermore, no equilibria
were considered. Alternatively one can model (distributed)
state transition systems using temporal logics and assess prop-
erties via model checking. However, temporal logics are typi-
cally propositional; thus efficient modeling of sMCS in them
with its features of (arbitrary) window operators, local KBs
in expressive logics, asynchronous computation and feedback
equilibria is a challenging issue, and remains for future work.

7 Conclusion
We have introduced streaming MCS as an extension of man-
aged MCS with window operators as first-class citizens in the
bridge rules. sMCS have a run-based semantics that accounts
for asynchronous, distributed execution. For this setting, we
defined the notion of equilibria, a central and key notion in
MCS which has not been investigated in aMCS. We have pre-
sented the complexity of reasoning in sMCS: ad-hoc query an-
swering is NP-complete while prediction is PSpace-complete
in relevant settings, but undecidable in general.

For future work, we would like to (i) explore other refined
notions of feedback equilibria, for example, equilibria that can
be constructively computed in an operational way, (ii) study
uniformed complexity of reasoning with sMCS, (iii) imple-
ment a prototype of sMCS based on the DMCS system [Dao-
Tran et al., 2015] for MCS evaluation, and (iv) investigate
the transferability of some notions (computation/transfer time,
feedback equilibria) into the aMCS framework.

Acknowledgment
We are grateful to the reviewers for their comments, which
helped to improve this paper.

References
[Alvaro et al., 2010] Peter Alvaro, William R. Marczak, Neil

Conway, Joseph M. Hellerstein, David Maier, and Russell
Sears. Dedalus: Datalog in time and space. In Datalog
Reloaded - First International Workshop, Datalog 2010,
Oxford, UK, March 16-19, 2010. Revised Selected Papers,
LNCS, pages 262–281, 2010.

[Ameloot et al., 2015] Tom J. Ameloot, Jan Van Den Buss-
che, William R. Marczak, Peter Alvaro, and Joseph M.
Hellerstein. Putting logic-based distributed systems on
stable grounds. TPLP, FirstView:1–40, 12 2015.

[Arasu et al., 2006] Arvind Arasu, Shivnath Babu, and Jen-
nifer Widom. The CQL continuous query language: seman-
tic foundations and query execution. VLDB J., 15(2):121–
142, 2006.

[Beck et al., 2015] Harald Beck, Minh Dao-Tran, Thomas
Eiter, and Michael Fink. LARS: A Logic-based Framework
for Analyzing Reasoning over Streams. In AAAI, 2015.

[Beck et al., 2017] Harald Beck, Thomas Eiter, and Christian
Folie. Ticker: A System for Incremental ASP-based Stream
Reasoning. Manuscript, 2017.

[Bikakis and Antoniou, 2010] Antonis Bikakis and Grigoris
Antoniou. Defeasible contextual reasoning with arguments
in ambient intelligence. IEEE Transactions on Knowledge
and Data Engineering, 22(11):1492–1506, 2010.

[Brewka and Eiter, 2007] Gerhard Brewka and Thomas Eiter.
Equilibria in heterogeneous nonmonotonic multi-context
systems. In AAAI, pages 385–390, 2007.

[Brewka et al., 2007] Gerhard Brewka, Floris Roelofsen, and
Luciano Serafini. Contextual default reasoning. In In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI’07), pages 268–273, 2007.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter,
Michael Fink, and Antonius Weinzierl. Managed
Multi-Context Systems. In IJCAI, pages 786–791, 2011.

[Brewka et al., 2014] Gerhard Brewka, Stefan Ellmauthaler,
and Jörg Pührer. Multi-Context Systems for Reactive Rea-
soning in Dynamic Environments. In ECAI, pages 159–164,
2014.

[Dao-Tran et al., 2015] Minh Dao-Tran, Thomas Eiter,
Michael Fink, and Thomas Krennwallner. Distributed
Evaluation of Nonmonotonic Multi-Context Systems.
Journal of Artificial Intelligence Research, 52:543–600,
2015.

[Della Valle et al., 2009] Emanuele Della Valle, Stefano Ceri,
Frank van Harmelen, and Dieter Fensel. It’s a Streaming
World! Reasoning upon Rapidly Changing Information.
IEEE Intelligent Systems, 24:83–89, 2009.

[Ellmauthaler and Pührer, 2015] Stefan Ellmauthaler and
Jörg Pührer. Asynchronous Multi-Context Systems. In
Advances in Knowledge Representation, Logic Program-
ming, and Abstract Argumentation - Essays Dedicated to
Gerhard Brewka on the Occasion of His 60th Birthday,
pages 141–156, 2015.

[Ghidini and Giunchiglia, 2001] Chiara Ghidini and Fausto
Giunchiglia. Local models semantics, or contextual rea-
soning = locality + compatibility. Artificial Intelligence,
127(2):221–259, 2001.

[Giunchiglia and Serafini, 1994] Fausto Giunchiglia and Lu-
ciano Serafini. Multilanguage hierarchical logics or: How
we can do without modal logics. Artificial Intelligence,
65(1):29–70, 1994.

[Gonçalves et al., 2014] Ricardo Gonçalves, Matthias Knorr,
and João Leite. Evolving Multi-Context Systems. In ECAI,
pages 375–380, 2014.

[Heintz et al., 2010] Fredrik Heintz, Jonas Kvarnström, and
Patrick Doherty. Stream-Based Reasoning in DyKnow. In
Cognitive Robotics, 21.02. - 26.02.2010, volume 10081 of
Dagstuhl Seminar Proceedings, 2010.

[McCarthy, 1993] John McCarthy. Notes on formalizing con-
text. In International Joint Conference on Artificial Intelli-
gence (IJCAI’93), pages 555–562, 1993.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1007

