Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Lazy-Grounding for Answer Set Programs with External Source Access

*

Thomas Eiter, Tobias Kaminski, and Antonius Weinzierl
Institut fiir Informationssysteme, Technische Universitit Wien
Favoritenstrafle 9-11, A-1040 Vienna, Austria
{eiter, kaminski, weinzierl } @kr.tuwien.ac.at

Abstract

HEX-programs enrich the well-known Answer Set
Programming (ASP) paradigm. In HEX, prob-
lems are solved using nonmonotonic logic pro-
grams with bidirectional access to external sources.
ASP evaluation is traditionally based on ground-
ing the input program first, but recent advances
in lazy-grounding make the latter also interesting
for HEX, as the grounding bottleneck of ASP may
be avoided. We explore this issue and present a
new evaluation algorithm for HEX-programs based
on lazy-grounding solving for ASP. Nonmonotonic
dependencies and value invention (i.e., import of
new constants) from external sources make an ef-
ficient solution nontrivial. However, illustrative
benchmarks show a clear advantage of the new al-
gorithm for grounding-intense programs, which is
a new perspective to make HEX more suitable for
real-world application needs.

1 Introduction

HEX-programs [Eiter et al., 2005; 2016a] enrich answer set
programs [Gelfond and Lifschitz, 1991] with the possibility
to exchange information with external sources in a bidirec-
tional way. This greatly increases the problem solving capac-
ity of Answer Set Programming (ASP) [Brewka et al., 2016],
as in the plugin-architecture of HEX-solvers like DLVHEX,
arbitrary sources can be accessed via an API style inter-
face called external atom. For example, an external atom
&prop[con fig](P) might be used in a configuration prob-
lem to retrieve from a property checker each property P of a
candidate solution, given by selected components in the pred-
icate con fig. External atoms have been fruitfully exploited
for a wide range of applications (see [Erdem et al., 2016;
Eiter et al., 2016d]).

Efficient evaluation of HEX-programs is challenging, due
to the generic (sometimes black-box) nature of external atoms
and value invention, i.e., the import of new constant symbols
from the sources into the program. Advanced algorithms have

*This research has been supported by the Austrian Science Fund
(FWF) projects P27730 and W1255-N23.

been developed [Eiter et al., 2016a] which roughly speak-
ing rewrite a given HEX-program into an ordinary ASP pro-
gram, solve the latter using an ASP solver, and finally check
whether the obtained answer sets are compatible with the ex-
ternal sources.

By this approach, HEX-programs inherit the well-known
grounding bottleneck of state-of-the-art ASP solving (as e.g.
by CLINGO [Gebser et al., 2011al) which may show up in
the grounding phase, i.e. during the computation of a propo-
sitional program equivalent to the input program, and can
cause an exponential blowup. This makes ASP and likewise
HEX incapable of solving a number of real-world problems
with larger data volume. To mitigate this problem, several
advanced optimization methods and techniques have been de-
veloped, cf. [Kaufmann et al., 2016], but the grounded pro-
gram can still be (too) large. For HEX-programs, grounding
is due to external atoms an even bigger challenge, which has
been tackled with sophisticated program decomposition and
component grounding techniques [Eiter et al., 2016al. How-
ever, decomposition has a trade-off with efficient solving, and
without decomposition exponentially many inputs to an ex-
ternal atom may have to be considered during grounding, e.g.
for the external atom &prop|con fig](P) from above, if prop-
erties nonmonotonically depend on the input configuration.
Hence, novel evaluation algorithms are an issue.

To overcome the grounding bottleneck of ASP, lazy-
grounding algorithms were devised, that ground rules on-the-
Sy [Palu et al., 2009; Lefevre and Nicolas, 2009a; 2009b;
Dao-Tran et al., 2012; Lefévre et al., 2017]. In an interleaved
grounding and solving process, only rules are grounded that
are currently useful and thus space explosion is avoided. In
this way, problems can be solved that traditional ASP solv-
ing cannot handle. Recent advances in lazy grounding, avail-
able in prototype solvers, suggest to explore this approach
for evaluating HEX-programs. However, an extension to this
setting is non-trivial, due to nonmonotonic dependencies of
external atoms on absent information, and in particular due to
unknown constants from value invention.

Our main contributions are briefly summarized as follows:

e we introduce a novel external source interface to incre-
mentally extend a HEX-program grounding, where new
output terms may appear during solving (Sec. 3);

e we give a novel evaluation algorithm for HEX-programs
that exploits a lazy-grounding ASP solver (Sec. 4); and

1015

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

e we show experimental results which confirm the benefit
of the new algorithm on illustrative benchmarks (Sec. 5).

The unprecedented integration of lazy-grounding, external
source evaluation and value invention is a new perspective to
make HEX and ASP more suitable for real-world applications.

An extended version of this paper containing proofs of the
technical results is available [Eiter et al., 2017].

2 Preliminaries

We assume a finite set P of predicate symbols, a finite set C
of constant symbols and a set V of variables. Atoms a are of
the form p(t) withp € P and t = ¢y,...,¢, a list of terms
t; € CUV; ais ground if each ¢; is in C. A (signed) literal
is a positive or a negated ground atom Ta (intuitively, a is
true) or Fa (a is false). A nogood is a set {Ly,...,L,} of
literals L; of type Ta or Fa. A partial assignment A over the
Herbrand Base H B of all ground atoms is a set A of signed
literals of kind Ta, Fa and Ua (intuitively, a is unassigned)
such that for every a € HB, |A N {Ta,Fa,Ua}| = 1. We
call A complete, if no Ua occurs in it.

HEX-programs [Eiter et al., 2005; 2016a] extend ordinary
ASP programs by external atoms of the form &g[p](t), which
enable a bidirectional interaction of a program and external
computation sources. Here &g is an external predicate name,
P = pi,. .-, Pk 1s an input list of input parameters (predicate
names wlog.),and t = t1,...,t, € CUV are output terms; we
write p € p if p = p; for some 1 < 4 < k and analogous for
t € t. An external atom is ground, if t consists of constants.

We consider normal HEX-programs 11, i.e., sets of rules r

a4 by,...,by,n0t byyy1,...,n0t by

where a is an (ordinary, potentially absent) atom and each b;
is either an ordinary or an external atom. The body of r is
B(r)={b1,...,bm,n0t by41,...,n0t b, } and the positive
body is BY(r) ={b1,...,bn}. A rule r is safe, if each vari-
able occurring in r also occurs in B1(r). Every rule r in a
HEX-program IT must be safe. Moreover, to ensure external
atoms introduce only finitely many new constants, we assume
11 is liberal domain-expansion (lde) safe. The notion of lde-
safety allows to modularly combine syntactic and/or seman-
tic safety criteria to guarantee that a HEX-program is finitely
groundable (cf. [Eiter et al., 2016b] for more details), and
it is the most liberal safety notion that has been considered
wrt. the HEX formalism. The grounding grd(r) of r is the
set of all possible rules ro that result from r by applying a
(ground) substitution o :V — C; the grounding of program 11
is grd(I1) = J,.cry grd(r).

Semantics. We follow [Eiter et al., 2016c] for semantics
based on partial assignments. The semantics of a ground
external atom &g[p](c) with k input and ¢ output parame-
ters wrt. a partial assignment A is given by a 14+k+{-ary
three-valued oracle function fg, that is defined for all pos-
sible values of A, p and c. Thus, &g[p](c) is true, false
or unassigned relative to A, if the value of fg,(A,p,c) is
T, F or U, respectively. Moreover, if A is complete, then
fsqg(A,p,c)# U holds and as usual, fes(A, p,c) depends
only on the extension (in A) of predicates p € p.

A partial assignment A satisfies (or models) a ground atom
a, denoted A = a, if Ta € A; and it models a ground exter-
nal atom &g[p](c) if feq(A, p,c) = T. Satisfaction of ordi-
nary rules and ASP programs [Gelfond and Lifschitz, 1991]
wrt. complete assignments is naturally extended to HEX-rules
and programs. The answer sets of a ground HEX-program II
are defined as follows. Let the FLP-reduct of II wrt. a com-
plete assignment A be the set fII* = {r € I | A | b,
for all b € B(r)} of all rules whose body is satisfied by A,
and let for partial assignments A, Ao denote A; < A, that
{Ta € A;} C {Ta € Ay}. Then,

Definition 1. A complete assignment A is an answer set of a
ground HEX-program 11, if A is a <-minimal model of fTI*.!

The answer sets of a non-ground HEX-program II are those
of grd(II).

Example 1. Consider the program 11 = {< &size[p](0);
p(X)+d(X); a<+ notd(c); d(c)<+ nota} where the
external atom &size|p|(Z) computes the cardinality of p,
e, fasize(A,p,Z) = U if Up(X) € A for some X,
feuine(Ap.2) = T if [{p(X) | Tp(X) € A} = 7, and
fasize(A,p, Z) = F otherwise. The single answer set of 11
is {d(c),p(c)}, because it satisfies the first rule, which ex-
presses that the extension of predicate p must not be 0.

3 Evaluation of External Sources Based on
Partial Groundings

Lazy-grounding means that the grounding grd(II) of a pro-
gram II is computed lazily, i.e., only ground rules deemed
necessary are computed. In the following, let Gi; C HB de-
note the set of all atoms occurring in the grounding of II.
Then, partial assignments in the case of lazy-grounding are
given with respect to a set of ground atoms A C Gy C HB.

Definition 2. A partial assignment over a set A C HB of
atoms is a set A 4 of signed literals Ta, Fa, and Ua with
a € As.t. foreverya € A |AN{Ta,Fa,Ua}| =1, itis
complete (wrt. A), if no Ua occurs in it.

For partial assignments A 4, A’,, we call A’,, an extension
of A 4,denoted A’y, = A 4,if {Ta € Ay}U{Fa e As} C

'vand A C A, ie., some atoms a € 1B not present in
A 4 may be present in A’;, and some unassigned atoms in
A 4 may be flipped to true or false.

Lazy-grounding ASP solving is founded in the notion of
a computation sequence (cf. [Lefévre and Nicolas, 2009al),
which is a monotonically growing sequence (Ay,...,A,)
of partial assignments such that whenever a (lazily grounded)
rule of the input program fires at A;, it is guaranteed to fire
in all later assignments A, i.e., 0 < 7 < j < n. Further-
more, a grounded rule r only fires in A; if it is applicable,
which means that its positive body B (r) is completely true,
i.e., BY(r) C A,;. Given that ordinary ASP rules are safe,
the whole negative body of a ground rule is known once it
fires, such that focusing on positive rule bodies is sufficient
for completeness of solving under lazy-grounding. For exam-
ple, if the rule p(a) < ¢(a),not r(a) fires in a computation

'For ordinary II, these are Gelfond & Lifschitz’s answer sets.

1016

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

sequence at A;, then {Tq(a), Fr(a)} C A; and monotonic-
ity guarantees the same for all later A ;, i < j.

For (ground) external atoms, it is much harder to en-
sure that once an output becomes true, it will stay true
even for larger input. Eiter etal. [2016c] introduced the no-
tion of assignment-monotonic oracle-function to ensure this
in the case where the grounding of a program is gener-
ated prior to solving. Formally, a three-valued oracle func-
tion fggq is assignment-monotonic, if feg(Agy,p,c) = X,
X €{T,F}, implies fgq(Ag, ,p,c)=X for all partial as-
signments A’gH > Ag,. Intuitively, this guarantees that the
oracle-function cannot treat Ta ¢ Ag, as being equivalent
to Fa € Ag,. Observe that all atoms a € HB \ Gy must
be false in every answer set, simply because there is no rule
in the grounding of II whose head is a. As all assignments
for the latter program are over Gy, it is thus guaranteed that
each atom a relevant for the external source also occurs in
Ag,, cither as Ta, Fa, or Ua. For an A 4 with A C Gp
and a € Gry \ A, however, an oracle-function treats a as false,
i.e., A4 equals (AU{Fa}) gy} from the perspective of any
oracle-function, even for assignment-monotonic ones.

As oracle-functions are black-boxes, HEX cannot deter-
mine the relevant input of an assignment-monotonic oracle-
function, i.e.: if feq(A4,p,c)=T for an assignment A 4,
then, without knowing the set of ground atoms Gy that oc-
cur in the grounding of a HEX-program II, we cannot deter-
mine whether some atom a € Gpr \ A exists s.t. fgq((A U

{Ua})AU{a}7 p, C) 7é T.

Example 2. Reconsider 11 from Example 1. Assume that
Ta is guessed, before grounding the second rule. Then,
&size[p](0) is true under Ax = {Fd(c), Ta} with A =
{d(c),a}. However, guessing Td(c) and grounding the sec-
ond rule for X =c, yields Ay, = {Td(c),Fa,Tp(c)} with
A" = AU{p(c)}. Thus, fgsize(A'y,p,0) = F, which shows
that A 4 was insufficient for deciding the value of &size[p](0).

To address this issue, we must ensure that external atoms
are evaluated only with assignments being complete for their
input predicates. Intuitively, an assignment is input-complete
for a program, if it contains all relevant input to every external
atom; a ground atom that occurs in no answer set and is not an
input-predicate of any external atom is irrelevant for the truth
of external atoms and thus ignored. For a partial assignment
A 4, let its completion wrt. HBbe A4 = (AU {Fa | a €
HB\ A})yp. Then input-completeness is as follows:

Definition 3. A partial assignment A 4 is input-complete
for an external atom &j[p|(c) occurring in a ground HEX-
program 11, if f&g(AA, p,c) =T only if every answer set
Al of T sit. Al = Ao fulfills feq(A%yp p,c)=T,
where A ;= {Xa € A4 |a has predicate p € p} is the rele-
vant input to &g. A partial assignment A 4 is input-complete
wrt. a HEX-program 11, if it is input-complete for each exter-
nal atom &j[pl(c) occurring in grd(II).

Without restriction to answer sets, in Example 2 no input-
complete assignment A 4 on A C HB for &size[p](0) would
exist with fgsi.e(A,p,0)="T, as infinitely many constants
could be added to p’s extension if the grounding is extended.

Example 3 (cont’d). There is no partial assignment defined
over {d(c),a} that is input-complete for 11, but the partial
assignment {Td(c), Fa, Tp(c)} is input-complete for I1.

In the following, we characterize syntactically sets of
ground atoms that are sufficient for input-completeness, re-
sorting to nonmonotonic inputs to external atoms; mono-
tonic input cannot cause issues with atoms a € H3 \ A that
do not yet occur in an assignment A 4. Formally, an in-
put predicate p € p of an external atom &g[p](c) is mono-
tonic, if fgqg(A 4, p,c)="T implies fe,(A’y,,p,c)="T for
any A’y, = A 4 that augments a given A 4 only by atoms
with predicate p (cf. [Eiter et al., 2016b]). Then the follow-
ing proposition can be shown.

Proposition 1. Let &[p](c) be an external atom occurring
in a ground HEX-program 11 and let each p € p be mono-
tonic. Then, any partial assignment A 4 is input-complete

Jor &j[p](c).

Many external atoms have only monotonic input (e.g.,
string concatenation, dl-atoms, and the RDF atom in the
DLVHEX library). Regarding nonmonotonic input, the set
pwm(IT) contains all predicates occurring as not monotonic in-
put to some external atom in program I, i.e., pm(IT) = {p €
P | &g[p](c) occurs in II, p € p, p is not monotonic}.

Definition 4. For a HEX-program 11, a (finite) set ACHB
of ground atoms is an input-safe domain of 11, if it contains
each atom p(X) where p € pwm(Il) and Tp(X) € A for
some answer set A of 1.

Proposition 2. A partial assignment A 4 is input-complete
wrt. a HEX-program 11, if A is an input-safe domain of 11.

Notably, Definitions 4 and 3 are in semantic terms, relying
on answer sets of a given program. We capture those notions
syntactically by the relevant grounding G7¢, (p)@)((b) for a
not monotonic input predicate p of some external atom. To
this end, we compute a partial grounding of a given HEX-
program by only considering the subset of (non-ground) rules
that is relevant for obtaining all ground instances of p.

Definition 5. Given a predicate name p, a HEX-program I,
and a set S of predicate names, the relevant rules of II wrt.
pand S are relu(p, S) = U, e, {r} U {1’ € relu(p’,5") |
p' € PBT(r),p & S} where S’ = SU{p}, 11, contains all
rules of T where p occurs in the head, and PB™ (1) consists
of all predicate names that occur in B¥ (r) either as ordinary
atom predicate or as an input to an external atom. Further-
more, the relevant rules of IT wrt. p are defined by relr(p,).

In order to obtain all instances of a predicate possibly true
in some answer set of a program, we employ the following
monotone grounding operator Gy from [Eiter ef al., 2016b]:

Gu(l') = U, en{r6 | 31 € A(IV), 1 = B*(rf)},

where 76 is the ground instance of r under variable substitu-
tionf:V — C, I ={Ta|acl}U{Fa|acHB\I},
and A(IT') is the set of all ordinary ground atoms occurring
in IT'. The least fixpoint of G () contains all atoms that are
true in some answer set of II.

1017

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Example 4 (cont’d). We have G77, . 4(0)={d(c) <~ not a;
p(c) < d(c)}, and a partial assignment A 4 is input-complete

wrt. IL if A 2 {p(c)}. Note that in general, G35, ()

would not contain further rules on which p does not depend.

The rules in Gf,zln(p 0)

p that occur in the grounding grd (II) of II. Since all atoms
that occur in some answer set of II also occur in grd(II), the
relevant grounding thus indicates all such atoms.

Proposition 3. Let I1 be a HEX-program. If Tp(X) € A, for
some answer set A of I, then p(X) occurs in G7¢; .,) (D).

(@) contain all ground instances over

Considering the relevant grounding of those predicates p
that occur in II as a not monotonic input to some exter-
nal atom, i.e., considering the relevant grounding of all p €
pma(II), we can obtain an input-safe domain of II and thus
obtain input-complete partial assignments. More formally,

Theorem 1. A partial assignment A 4 is input-complete wrt.
a HEX-program 11 if for all p € pgz(IT) it holds that p(X) €

A whenever p(X) occurs in G72, . o)

4 Lazy-Grounding HEX-Evaluation
Algorithm

In this section, we present the new evaluation algorithm that
interleaves the steps taken by a lazy-grounding solver with the
evaluation of external sources, which incrementally introduce
new output constants into the program.

Given an input-safe domain A, the algorithm operates on
top of a transformation from a HEX-program II to an ordinary
logic program «(I1, .A), such that an ordinary lazy-grounding
solver for ASP can be employed as a host to incrementally
ground the rules in (11, .A). Moreover, via a novel interface
to external sources, lazy-grounding may import input-output
relations over external atoms in form of additional rules.

In the program transformation «(II, A), external atoms are
replaced by ordinary atoms, and the program is extended by
rules that allow to explicitly derive the negative extension of
a given input-safe domain of II.

Definition 6. Given a HEX-program 11 and an input-safe do-
main A of T1, the ordinary program «(I1, A) results from 11
by replacing each (non-ground) external atom &g[p](t) with
an ordinary (non-ground) replacement atom e g p) (t), and by
adding for each p € pm(Il) the rule

P(X) + pa(X),not p(X),
and for each p(X) € A a domain fact pg(X) .

Without loss of generality, we assume that atoms of form
e&qlp)(t), P(X) and pg(X) do not occur in TI, i.e. they are
fresh atoms.

The purpose of the program extension is twofold. On
the one hand, it ensures that each atom p(X) in A is either
derived to be true or explicitly false (via p(X)), so that in
the end, nonmonotonic external atoms are always evaluated
under complete assignments. On the other hand, enabling
guessing the values of atoms in .4 early during the solving
process potentially allows that outputs of nonmonotonic ex-
ternal atoms are derived earlier during search.

1018

Example 5 (cont’d). Reconsider 11 from Example 1. Given
A = {p(c)}, the first rule is replaced by < €gsze[p)(0) in
a(I1, A), and we add {p(X) + pa(X),not p(X); pa(c) <}

For interleaving the solving algorithm with the evaluation
of external sources, we first define a means for constructing
a partial assignment which is input-complete wrt. the given
program, from an assignment A derived by the ASP solver.

Values of atoms that are true wrt. A are taken directly and
false atoms are based on atoms of form p(X), which represent
falsity of p(X) according to Definition 6. All other atoms in
the domain are considered unassigned. Formally:

Definition 7. Given a partial assignment A and a domain A,
the corresponding external input assignment is the set

i(A, A) ={Tp(X) € A} U{Fp(X) | Tp(X) € A}U
{Up(X)[p(X) € A, TP(X) ¢ A, Tp(X) ¢ A}.

Intuitively, the construction of an external input assign-
ment from a given solver assignment ensures that atoms
which have not been assigned a truth value during solving
but which are in the given input-safe domain, are explic-
itly declared to be unassigned whenever an external source
is queried. This is necessary because the external source re-
quires information about all atoms which can potentially be-
come true in the search later on, in order to only yield outputs
that remain correct when the grounding is extended.

Note that if there is no atom p(X) s.t. Tp(X) € A and
Tp(X) € A, then i(A, A) is a partial assignment. We as-
sume that the previous holds for all external input assign-
ments used in the following.

Example 6. Consider the partial assignment A =
{Ta,Ub,Fe,Fd, Te} and domain A = {d,e, f}. The
corresponding external input assignment is (A, A) =
{Ta,Ud,Fe,Uf}. Observe that i(A,A) only depends on
the T-part of A and that i(A, A) is an assignment.

The external source interface amounts to a function that
yields rules representing the corresponding input-output rela-
tions of external atoms. These rules are added to the input
program processed by the solver. Accordingly, whenever an
output value is obtained based on a solver assignment, a rule
is generated that implies the ground replacement atom rep-
resenting the respective output value relative to the current
assignment of the relevant input atoms.

Definition 8. Given &j[p|, a partial assignment A and a
domain A, the external evaluation function 7 yields

U(&Q[PLZ(AaA)) =
{e&g[l)] (C) A BA7p | f&g(i(A7'A)7p7c) = T},

where Ba p = {p/(X) | Tp'(X) € A,p' € {p,p},p € P}
is a rule body corresponding to the external atom’s input.
We denote all possible such evaluations by n(II) = {r |
JA s.t. 7 € n(&g[p], i(A, HB)), &g[p] occurs in IT}.
Example 7. Consider 11 from Example I again. For input-
safe domain A = {p(c)} and A = {Td(c),Fa}, the
external input assignment i(A, A) = {Td(c),Up(c)} is
input-complete for 11, and n(&sizelp],i(A,A))=0. For

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

the partial assignment A'={Td(c),Fa,Tp(c)}, we ob-
tain i(A’, A)={Td(c), Fp(c)} and n(&size[p],i(A’, A)) =
{e&:size[p]<0) — ﬁ(c)}

Algorithm 1 allows us to evaluate a HEX-program using
lazy grounding. It is based on the lazy-grounding ASP solver
ALPHA, which incorporates ideas from OMIGA [Dao-Tran et
al., 2012; Weinzierl, 2017]. The algorithm combines conflict-
driven nogood-learning (CDNL) search [Gebser et al., 2012]
with lazy-grounding. CDNL applies techniques from SAT
solving to ASP, by translating a ground program into a set
of nogoods, corresponding to clauses in SAT solving, and
running a DPLL-style search algorithm. In every iteration
of the CDNL search procedure, deterministic consequences
are propagated first, and in case some nogood is violated, a
conflict nogood is added to the nogood store to avoid running
into the same conflict again and backjumping is performed.
Whenever no deterministic assignments are possible during
CDNL search, but the solver assignment is still incomplete,
an unassigned atom is guessed to be true or false.

Algorithm 1 receives as input an ordinary program con-
structed according to Definition 6 from a HEX-program II
and an input-safe domain of II. In practice, we obtain an
input-safe domain based on Definition 4 and Proposition 3,
by computing G5, 0)(9) for all p € pr(II). Note that
requesting an input-safe domain of the input program is not a
severe restriction on the class of programs that our approach
can handle, as an input-safe domain can be obtained for any
HEX-program. After initializing, Algorithm 1 explores the
search space in one loop, where the first step at each iteration
is propagation from the currently known nogoods V and the
current assignment A in (a). If some nogood § is violated,
in (b), a new nogood is learned from the conflict and back-
jumping is done. If propagation at (a) derived new assign-
ments, lazy-grounding of the input program is done in (c).

In (d), all external sources are queried, employing external
evaluation functions and external input assignments. Note
that, at this point, it cannot be the case that Tp(X) € A
and Tp(X) € A both hold for any atom p(X), because
atoms of the form p(X) are only defined by the rules added
in the program transformation of Definition 6 and those rules
only fire if Tp(X) ¢ A. In (e), guessing is done, which
is different from ordinary CDNL-based guessing: due to the
lazy-grounding, not all atoms may be guessed upon but only
those corresponding to ground instances of applicable rules
(cf. Sec. 3). Heuristics may be employed for selecting good
guesses. Upon reaching (f), the iterations of lazy-grounding,
guessing, and propagating do not yield any more information,
i.e., a fixpoint has been reached. In order to complete the as-
signment (wrt. known atoms), all atoms being unassigned in
A are assigned to false. In (g), the assignment is tested for
only containing true or false assignments. This is necessary,
because the ALPHA solver internally works with must-be-true
as additional truth value for increased efficiency. For evalu-
ation of external atoms, must-be-true is treated as true. If
the check succeeds, then the current assignment is an answer
set of the HEX-program and recorded as such.? If the check

’In the implementation, false atoms of an answer set A are not
stored explicitly.

1019

Algorithm 1: Lazy-Grounding HEX-Evaluation

Input: The ordinary program «(II, .A) corresponding to a HEX-program
II, given input-safe domain A of II

Output: All answer sets AS(«a(I1, .A) U n(II)) of a(II, A) U n(II)

AS + 0 // found answer sets

A <~ {Ua|a€ A} // all known atoms unassigned

V < 0 // dynamic nogood storage

Run lazy grounder (obtain initial nogoods V from facts)

while search space not exhausted do

(A, V) < Propagation(A, V) (a)
if some nogood 6 € V violated by A then (b)
\ analyze conflict, add learned nogood to V, backjump
else if A changed then (c)
| runlazy grounder wrt. A and extend V
else if external sources not queried for current A then @)
| extend V wrt. n(&[p], i(A, A)) for each &[p] in II
else if there are guesses left then ()
| selectaguess
else if exists Ua € A then ®
| replace each Ua by Fain A
else if all atoms assigned T or F in A then (2)
AS +— ASU{A}
add enumeration nogood and backtrack
else (h)
| backtrack

return AS

fails, some must-be-true remained and the current assignment
is not an answer set, hence backtracking occurs in (h).

If an external input-cycle would exist, i.e., an input predi-
cate of an external atom depends on the atom itself (cf. [Eiter
et al., 2014]), an additional minimality-check is required in
(g), which is outside the scope of this work. Hence, in the
following we assume programs II do not have such cycles.

Algorithm 1 returns the answer sets of the program trans-
formation together with all rules encoding possibly relevant
input-output relations of external atoms:

Proposition 4. For HEX-program 11 and input-safe domain
A of T1, Algorithm 1 yields the answer sets of a(11, A) Un(II).

Given a HEX-program IT and an input-safe domain A of I,
if Algorithm 1 returns an answer set of «(IT, A)Un(II), we
obtain an answer set of II by using for ordinary atoms occur-
ring in II the respective truth value and by setting all other
atoms in HB to false. Observe that the resulting assignment
maps all atoms of the form e p)(t), P(X) or pa(X) to false
as they do not occur in I1. Moreover, each answer set of II is
obtained this way.

Theorem 2. For a HEX-program 11 and an input-safe domain
A of T1, the answer sets returned by Algorithm I correspond
exactly to the answer sets of 1.

To show this result, we rely on the correctness and com-
pleteness of ordinary lazy-grounding ASP solving (cf. The-
orem 1 in [Weinzierl, 2017]), which needs to be extended
to also take external evaluations into account. As external
atoms are evaluated under input-complete assignments only,
it is ensured that input-output relations returned by the ex-
ternal evaluation function at any point during search are not
contradicted by later external evaluations. Since no cyclic de-
pendencies involving external atoms are allowed, their evalu-
ation only depends on a subprogram that does not contain the
respective external atom itself. Because of this, the Splitting

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

size split. monol. alpha s. (n=1) m. (n=1) a.(n=1)
41 0.16 (0) 0.16 (0) 1.22(0)| 0.13 (0) 0.13 (0) 1.13(0)
6| 0.80 (0) 043 (0) 1.68(0)| 0.61 (0) 031 (0) 1.43(0)

8| 7.62 (0) 4.09 (0) 248(0)| 595 (0) 376 (0) 1.98(0)
10| 67.52 (0) 88.54 (0) 4.82(0)| 5531 (0) 85.11 (0) 3.43(0)
12 1300.00 (10) 189.79 (6) 9.15(0)(295.73 (9) 158.15 (5) 5.47(0)
14 1300.00 (10) 300.00 (10) 17.37 (0) [300.00 (10) 300.00 (10) 9.52 (0)
16 {300.00 (10) 300.00 (10) 27.79 (0) | 300.00 (10) 300.00 (10) 14.93 (0)
18 300.00 (10) 300.00 (10) 54.00 (0) [300.00 (10) 300.00 (10) 25.44 (0)
20|300.00 (10) 288.67 (9) 132.08 (0)[300.00 (10) 288.27 (9) 50.67 (0)
22(300.00 (10) 300.00 (10) 225.47 (0) [300.00 (10) 300.00 (10) 66.91 (0)
24 |300.00 (10) 300.00 (10) 300.00 (10) [300.00 (10) 300.00 (10) 119.20 (0)

Table 1: Consistent Preferences Results

sel(X) < notn_sel(X), person(X).
n_sel(X) + not sel(X), person(X).
preferred(X,Y) «+&prefs[sel](X,Y).
preferred(X,Y) «preferred(X, Z),preferred(Z,Y).
+—preferred(X, X).

Figure 1: Consistent Preferences Rules

Theorem from [Eiter ef al., 2016al] can be applied for prov-
ing correctness of Algorithm 1. Completeness intuitively fol-
lows from completeness wrt. ordinary programs and the fact
that the truth values computed for replacement atoms by Al-
gorithm 1 coincide with the outputs of the respective oracle
functions, given identical assignments to ordinary atoms.

5 Implementation and Evaluation

To evaluate the performance of the new HEX-algorithm, we
have integrated the ALPHA lazy-grounding solver, which is
freely available, with the DLVHEX reasoner [Redl, 2016]. The
two components communicate via the interface in Section 4,
where DLVHEX bridges to external sources and handles pro-
gram decomposition, while ALPHA acts as ordinary ASP
solver. The program transformation in Definition 6 allows
us to omit the usual guessing program [Eiter et al., 2016a] in
the implementation. For comparison, we used DLVHEX with
GRINGO and CLASP [Gebser et al., 2011b] as backends.

The tests were performed on a Linux machine with two 12-
core AMD Opteron 6176 SE CPUs and 128 GB RAM. The
timeout for each run was 300 secs and the memory limit 12
GB. We used the HTCondor load distribution system® to en-
sure a stable environment that minimizes runtime variations
between runs on the same problem instance.

Average runtimes of 10 instances per size (resp. 30 for
benchmark #3) are reported in secs for computing all answer
sets and one answer set (n=1); timeouts are in parentheses.

Benchmark Configurations. We compared three configura-
tions: e splitting: the program is decomposed into indepen-
dently groundable components, which are processed by an or-
dinary solver; e monolithic: a grounding of the complete
program is generated, and an ordinary solver is run; e alpha:
no program splitting happens and the novel algorithm using
ALPHA is applied.

We expected alpha to perform better (i) than splitting,
in case many guesses violate constraints and decomposition

3httpJresearch.cs.wisc.edu/htcondor

size split. monol. alpha| s.(n=1) m.(n=1) a.(n=1)
10| 206 (0) 040 (0) 1.62 (0)| 1.05(0) 0.31 (0) 1.38(0)
12| 871 (0) 1.05 (0) 1.87 (0)| 6.67(0) 0.88 (0) 1.44(0)
14| 3929 (0) 4.04 (0) 456 (0)| 2220(0) 3.17 (0) 1.83(0)

16/200.54 (0) 14.83 (0) 3.91 (0)|126.96(0) 13.89 (0) 2.87 (0)
18(300.00 (10) 5720 (0) 7.29 (0)|249.94 (8) 55.49 (0) 3.83(0)
20[300.00 (10) 300.00 (10) 128.01 (4)|233.52(7) 300.00 (10) 7.42 (0)
22(300.00 (10) 300.00 (10) 133.87 (4)|190.75 (6) 300.00 (10) 5.60 (0)
24(300.00 (10) 300.00 (10) 214.84 (7)|257.36 (8) 300.00 (10) 37.51 (1)
26 (300.00 (10) 300.00 (10) 300.00 (10) |212.42 (7) 300.00 (10) 37.96 (1)
28(300.00 (10) 300.00 (10) 243.17 (8)|109.73 (3) 300.00 (10) 6.67 (0)
30 300.00 (10) 300.00 (10) 272.53 (9)|240.28 (8) 300.00 (10) 38.66 (1)

Table 2: Generic Configuration Results

splits the latter from the guessing part; and (ii) better than
monolithic, if generating the respective grounding before
solving needs a lot of resources due to nonmonotonic external
atoms. Furthermore, we hypothesized that lazy-grounding is
beneficial if many constants are imported by value invention
but only few of them occur simultaneously in an answer set.

Consistent Preferences. This benchmark considers a prob-
lem where many new constants are imported by an external
atom based on a guess, which obstructs intelligent ground-
ing techniques. A HEX-program selects a subset P’ of a pool
P of persons p and checks if the union of individual pref-
erences pref(p,I) C IxI over items I is consistent (i.e.
acyclic). The answer sets of the rules from Figure 1 plus the
facts {person(p) | p € P} correspond to all P’ C P where
this holds. The item set I and the preferences pref(p,I)
are not part of the HEX-program, but imported via an exter-
nal atom &prefs[sel](X,Y) for the selected persons. Its
oracle function evaluates to true wrt. a partial assignment
A and output (7,¢'), if some p fulfills Tsel(p) € A and
(i,i") € pref(p,I); to false, if Fsel(p) € A holds for all
ps.t. (i,1") € pref(p, I); and to unassigned otherwise. Thus,
the input parameter sel is monotonic, but evaluating the ex-
ternal atom under its maximal extension may cause a large
amount of constants to be imported into the program.

We ran tests for randomly generated instances with n =
4,...,24 persons and 2n items, where each individual pref-
erence (4,4") uniformly occurs with 5% probability (Table 1).

Generic Configuration. Using ASP for configuration has
a long tradition (e.g. [Soininen et al., 2001] considered prod-
uct configuration and more recently [Gebser et al., 2015] the
railway domain). Here, we address a generic setting* that is
likely to occur in real-world scenarios as those mentioned.

A configuration is a subset C’ of a set C' of components,
which has an associated set m(C”) C P of properties from a
set P. An admissible C' must fulfill a set R of requirements
(e.g. costumer demands) of the form (R*, R™) € 2P x2P,
which means that R Cm(C’) and R~ Nm(C’) = 0 holds.

In the HEX-program, we guess a configuration C’' C C'in
a predicate con fig and compute its properties with an exter-
nal atom &proplconfig](P). As config is a nonmonotonic
input parameter, traditional grounding must evaluate it for all
possible inputs. For a partial configuration C' and property p,
the oracle function is true, if p € m(C") for every C” 2 C’;
false, if p ¢ m(C"") for every C"” O C’; and unassigned else.

“We exploit the benchmark implementation from httpsgithub.com/
hexhex/corefree/masterbenchmarks/genericmapping.

1020

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

size split. monol. alpha s. (n=1) m. (n=1) a.(n=1)
5| 018 (0) 0.38 (0) 1.39 (0)| 0.14 (0) 0.37 (0) 1.13(0)
10| 264 (0) 633 (0) 930 (0) 1.25 (0) 5.89 (0) 1.61(0)

15| 5454 (1) 224.03 (2) 56.14 (3)| 3638 (0) 218.92 (1) 2.10(0)
20(273.95 (23) 300.00 (30) 96.49 (9)|262.49 (21) 300.00 (30) 3.40 (0)
25(300.00 (30) 300.00 (30) 111.42 (11)|300.00 (30) 300.00 (30) 8.65 (0)
30 [300.00 (30) 300.00 (30) 102.14 (10) | 300.00 (30) 300.00 (30) 15.02 (0)
35(300.00 (30) 300.00 (30) 83.31 (8)|300.00 (30) 300.00 (30) 23.92 (0)
40(300.00 (30) 300.00 (30) 55.88 (5)|300.00 (30) 300.00 (30) 27.74 (0)
45(300.00 (30) 300.00 (30) 88.35 (8)300.00 (30) 300.00 (30) 63.07 (2)
50 300.00 (30) 300.00 (30) 81.79 (7)|300.00 (30) 300.00 (30) 80.34 (6)

Table 3: Failure Diagnosis Results

We tested random instances with n = 10, ..., 30 compo-
nents, n/5+1 properties and up to 2n requirements, where
a property occurs in a requirement with probability 30% and
depends on a component with probability 10%; each property
and requirement was added with probability 50 % (Table 2).

Failure Diagnosis. Another classical use-case of logic pro-
grams is abduction-based diagnosis [Kakas et al., 1992]. Sup-
pose possible causes of a machine failure should be given
from certain (Boolean) measurement values that are only par-
tially available. The task is to compute, respecting the open
measurement values, all necessary causes that entail the mea-
surement values. In that, information about combinations of
failure causes that can be excluded is available.

This problem can be modeled® using sets M and M’ of
known resp. unknown measurements, a set H of possible
causes, a logic program P relating measurements and pos-
sible causes, and a set C of constraints that exclude specific
combinations of causes. We want to compute the intersection
D of all possible diagnoses D C H wrt. measurement values
M= MUM" with M" C M’,s.t.D ¢ Cforall C € C. For
this, we guess M" C M’ in the HEX-program and employ a
nonmonotonic external atom &diags|[P, M|(D) to obtain the
necessary failure causes.

In the tests, we used random instances withn = 5,...,50
measurement values, each available at 20 % (e.g. due to un-
finished measurements), and up to 2n constraints to exclude
combinations of causes, where each occurs in a constraint
with probability 30 %. The results are shown in Table 3.

Findings. In all three benchmarks, lazy-grounding (set-
ting alpha) exhibits a significant advantage in runtime over
splitting and monolithic. This matches our hypotheses
(i) and (ii) as under monolithic, the external atom must
be grounded for exponentially many input combinations in
the last two benchmarks, and under splitting, the search
space cannot be pruned effectively due to the separation of
guesses and constraints. We observe that splitting outper-
forms monolithic for Failure Diagnosis because computing
the diagnoses is resource-intense and must be executed for ev-
ery input during the grounding step. Here, this outweighs the
costs related to less search space pruning in splitting. Note
that in general, alpha finds the first answer set much faster
than the other configurations, and notably, was very fast when
no answer set exists. However, in computing all answer sets
it often timed out when instances have a large number of so-

SWe adopt the setting implemented at httpsigithub.comnexhexicore/
tree/master/benchmarks/diagnosis.

1021

lutions. Hence, with increasing instance size, the number of
instances with many solutions has a stronger impact on the
average runtimes for alpha. Methodologically, this suggests
to restrict the solution space of a problem by adding further
constraints when using lazy-grounding.

Somewhat surprising, alpha outperformed monolithic
for Consistent Preferences, despite feasible grounding for the
instance sizes. Our analysis explains this by the large number
of guesses usually added for evaluation of external atoms in
HEX during grounding. Hence, considerably more time is re-
quired for solving. In contrast, no additional guesses must be
introduced in our program transformation (Def. 6) as here the
external atom only has monotonic input parameters and new
constants can be imported on-the-fly.

The benchmark instances and all results are available at
httpAwww.kr.tuwien.ac.at/research/projects/inthex/azyhex.

6 Discussion and Conclusion

Related Work. Our work builds on partial evaluation of
external atoms [Eiter et al., 2016c], and on the recently de-
veloped ALPHA solver [Weinzierl, 2017]. It is the first time
that lazy-grounding has been considered for the HEX frame-
work. We are not aware of similar approaches for related
systems, such as CLINGO, which however, supports no value
invention based on the respective answer set as HEX. Lazy-
grounding ASP solvers like ASPERIX [Lefévre and Nicolas,
2009bl, GAsP [Palu ef al., 20091, and OMIGA [Dao-Tran et
al., 2012] could in theory be employed, but likely result in
worse performance, as they are not based on CDNL-search.

Summary. We have introduced a new algorithm for HEX-
programs that interleaves external evaluation plus value in-
vention with lazy-grounding ASP solving. It employs a tai-
lored interface between the two components with a program
transformation based on input-safe domains and a novel eval-
uation function that adds rules for input-output relations over
external atoms to the program. Monotonic external atoms are
directly evaluated on partial groundings, with the benefit that
no additional guesses are needed. Due to the black-box nature
of external atoms, computing a restricted grounding wrt. not
monotonic inputs is necessary; however, this usually involves
only a small subset of the complete grounding.

The benchmark results of our prototype implementation
are promising, and show the potential of the new algorithm
based on the ALPHA solver. In the special setting of HEX-
programs, lazy-grounding exhibits a significant benefit al-
ready for relatively small instances since program splits and
guessing for monotonic external atoms can be avoided.

Outlook. We plan to integrate an advanced minimality-check
into the algorithm, so that cycles over nonmonotonic external
atoms can be treated. Moreover, an evaluation mixing full
grounding and lazy-grounding, each for a different compo-
nent of a given program, may increase overall performance.

References
[Brewka et al., 2016] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczynski. Answer set programming: An in-

troduction to the special issue. Al Magazine, 37(3):5-6,
2016.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

[Dao-Tran et al., 2012] Minh Dao-Tran, Thomas Eiter,
Michael Fink, Gerald Weidinger, and Antonius Weinzierl.
Omiga : An open minded grounding on-the-fly answer set
solver. In Luis Farifias del Cerro, Andreas Herzig, and
Jérome Mengin, editors, Logics in Artificial Intelligence,
JELIA 2012, volume 7519 of LNCS, pages 480-483.
Springer, 2012.

[Eiter et al., 2005] Thomas Eiter, Giovambattista Ianni, Ro-
man Schindlauer, and Hans Tompits. A uniform integra-
tion of higher-order reasoning and external evaluations in
answer-set programming. In Leslie Pack Kaelbling and
Alessandro Saffiotti, editors, International Joint Confer-
ence on Artificial Intelligence, IJCAI 2005, pages 90-96.
Professional Book Center, 2005.

[Eiter et al., 2014] Thomas FEiter, Michael Fink, Thomas
Krennwallner, Christoph Redl, and Peter Schiiller. Effi-
cient HEX-program evaluation based on unfounded sets.
J. of Artificial Intelligence Research, 49:269-321, 2014.

[Eiter et al., 2016a] Thomas Eiter, Michael Fink, Giovam-
battista Ianni, Thomas Krennwallner, Christoph Redl, and
Peter Schiiller. A model building framework for an-
swer set programming with external computations. TPLP,
16(4):418-464, 2016.

[Eiter et al., 2016b] Thomas Eiter, Michael Fink, Thomas
Krennwallner, and Christoph Redl. Domain expansion for
asp-programs with external sources. Artificial Intelligence,
233:84-121, 2016.

[Eiter et al., 2016c] Thomas Eiter, Tobias Kaminski,
Christoph Redl, and Antonius Weinzierl. Exploiting
partial assignments for efficient evaluation of answer
set programs with external source access. In Subbarao
Kambhampati, editor, International Joint Conference on
Artificial Intelligence, IJCAI 2016, pages 1058-1065.
IJCAI/AAAI Press, 2016.

[Eiter et al., 2016d] Thomas Eiter, Christoph Redl, and Pe-
ter Schiiller. Problem solving using the HEX family. In
Christoph Beierle, Gerhard Brewka, and Matthias Thimm,
editors, Computational Models of Rationality, Essays ded-
icated to Gabriele Kern-Isberner on the occasion of her

60th birthday, pages 150—174. College Publications, 2016.

[Eiter et al., 2017] Thomas Eiter, Tobias Kaminski, and An-
tonius Weinzierl. Lazy-grounding for answer set programs
with external source access. Technical Report INFSYS
RR-1843-17-01, Institut fiir Informationssysteme, Tech-
nische Universitdt Wien, Vienna, Austria, June 2017.

[Erdem et al., 2016] Esra Erdem, Michael Gelfond, and
Nicola Leone. Applications of answer set programming.
Al Magazine, 37(3):53-68, 2016.

[Gebser et al., 2011a] Martin Gebser, Benjamin Kaufmann,
Roland Kaminski, Max Ostrowski, Torsten Schaub, and
Marius Thomas Schneider. Potassco: The potsdam answer
set solving collection. AI Commun., 24(2):107-124, 2011.

[Gebser et al., 2011b] Martin Gebser, Benjamin Kaufmann,
Roland Kaminski, Max Ostrowski, Torsten Schaub, and
Marius Thomas Schneider. Potassco: The potsdam answer
set solving collection. AI Commun., 24(2):107-124, 2011.

1022

[Gebser er al., 2012] Martin Gebser, Benjamin Kaufmann,
and Torsten Schaub. Conflict-driven answer set solv-
ing: From theory to practice. Artificial Intelligence, 187-
188:52-89, August 2012.

[Gebser er al., 2015] Martin Gebser, Anna Ryabokon, and
Gottfried Schenner. Combining heuristics for config-
uration problems using answer set programming. In
Francesco Calimeri, Giovambattista Ianni, and Miroslaw
Truszczynski, editors, Logic Programming and Nonmono-
tonic Reasoning, LPNMR 2015. Proceedings, volume
9345 of LNCS, pages 384-397. Springer, 2015.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation
Computing, 9(3-4):365-386, 1991.

[Kakas et al., 1992] Antonis C. Kakas, Robert A. Kowalski,
and Francesca Toni. Abductive logic programming. J. Log.
Comput., 2(6):719-770, 1992.

[Kaufmann et al., 2016] Benjamin ~ Kaufmann, Nicola
Leone, Simona Perri, and Torsten Schaub. Grounding
and solving in answer set programming. Al Magazine,
37(3):25-32, 2016.

[Lefevre and Nicolas, 2009a] Claire Leféevre and Pascal
Nicolas. A First Order Forward Chaining Approach for
Answer Set Computing. In Esra Erdem, Fangzhen Lin, and
Torsten Schaub, editors, Logic Programming and Non-
monotonic Reasoning, LPNMR 2009, volume 5753 of
LNCS, pages 196-208. Springer, 2009.

[Lefevre and Nicolas, 2009b] Claire Lefevre and Pascal
Nicolas. The First Version of a New ASP Solver: AS-
PeRiX. In Esra Erdem, Fangzhen Lin, and Torsten Schaub,
editors, Logic Programming an Nonmonotonic Reason-
ing, LPNMR 2009, volume 5753 of LNCS, pages 522-527.
Springer, 2009.

[Lefevre et al., 2017] Claire Lefévre, Christopher Béatrix,
Igor Stéphan, and Laurent Garcia. Asperix, a first-order
forward chaining approach for answer set computing.
TPLP, pages 1-45, January 2017.

[Paly e al., 2009] Alessandro Dal Palu, Agostino Dovier,
Enrico Pontelli, and Gianfranco Rossi. Gasp: Answer set
programming with lazy grounding. Fundamenta Informat-
icae, 96(3):297-322, 2009.

[Redl, 2016] Christoph Redl. The DLVHEX system for
knowledge representation: Recent advances (system de-
scription). CoRR, abs/1607.08864, 2016.

[Soininen et al., 2001] Timo Soininen, Ilkka Niemeld, Juha
Tiihonen, and Reijo Sulonen. Representing configuration
knowledge with weight constraint rules. In Alessandro
Provetti and Tran Cao Son, editors, Answer Set Program-
ming, ASP’01 Workshop 2001, 2001.

[Weinzierl, 2017] Antonius Weinzierl. Blending lazy-
grounding and CDNL search for answer-set solving. In
Logic Programming and Nonmonotonic Reasoning, LP-
NMR 2017, LNCS. Springer, 2017. To appear.

