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Abstract
Determining the most appropriate means of pro-
ducing a given product, i.e., which manufacturing
and assembly tasks need to be performed in which
order and how, is termed process planning. In pro-
cess planning, abstract manufacturing tasks in a
process recipe are matched to available manufac-
turing resources, e.g., CNC machines and robots,
to give an executable process plan. A process plan
controller then delegates each operation in the plan
to specific manufacturing resources. In this paper
we present an approach to the automated computa-
tion of process plans and process plan controllers.
We extend previous work to support both non-
deterministic (i.e., partially controllable) resources,
and to allow operations to be performed in parallel
on the same part. We show how implicit fairness as-
sumptions can be captured in this setting, and how
this impacts the definition of process plans.

1 Introduction
Product manufacturing is increasingly moving towards
flexible, adaptive, intelligent, and networked manufactur-
ing systems, in which manufacturing activities are dis-
tributed, and enterprises collaborate through the so-called
manufacturing-as-a-service paradigm [Lu et al., 2014]. In
the manufacturing-as-a-service paradigm, each product may
be different from the one before (batch size of one produc-
tion) [TSB, 2012; Rhodes, 2015]. Traditional approaches
to production control are unable to meet the demands of
manufacturing-as-a-service or batch-size-of-one production.
Manufacturing process planning is traditionally carried out
by engineers who are experts in the particular processes used
in a specific factory, and, with the exception of some lim-
ited support by Computer-Aided Process Planning (CAPP)
tools, is largely a manual process. From the point of view
of manufacturing-as-a-service where the product to be man-
ufactured is not known in advance, the traditional approach
has several drawbacks: it requires expensive human expertise
to determine whether the customer’s product can be manu-
factured by a given service provider; and even if the prod-
uct is manufacturable, the small batch sizes (perhaps a sin-
gle item) mean that manually producing a process plan is un-

economic. To realise the manufacturing-as-a-service vision,
process planning must be fully automated, allowing service
providers to ‘bid’ to manufacture products in real time.

To date, there has been relatively little work on the man-
ufacture and assembly of highly-customised products in a
highly-networked manufacturing environment. An exception
is [de Silva et al., 2016], where techniques are proposed to: (I)
determine whether a particular product can be manufactured
by a particular set of manufacturing resources (the realisabil-
ity problem), and (II) how a particular customised product
should be manufactured using available resources (the con-
trol problem). Their approach takes as input a process recipe
specifying the tasks necessary to manufacture the product,
and transforms the process recipe into an executable process
plan specifying the low-level tasks to be executed by each
manufacturing resource in the production line. The result-
ing process plan is used to orchestrate the activities of agents
in the Evolvable Assembly Systems (EAS) architecture, an
agent-based architecture for manufacturing control software
designed to address rapidly changing product and process re-
quirements including batch-size-of-one customised produc-
tion [Chaplin et al., 2015]. In EAS, each resource agent
represents and controls a manufacturing resource, e.g., a ma-
chine tool or a robot.

The approach in [de Silva et al., 2016] relies on several
strong assumptions. In particular, it assumes that manufac-
turing resources are deterministic; that is, the execution of
a manufacturing or assembly task from a given state of the
system can result in only one possible new state. However
many manufacturing resources are non-deterministic in the
sense that performing a manufacturing task may result in one
of a number of possible states. For example, a moulding op-
eration may result in excess material that must be removed
from the moulded part. A second major restriction is that
the formalism in [de Silva et al., 2016] prohibits performing
manufacturing or assembly tasks in parallel on the same part
or set of parts. As a result, they are unable to model, e.g., a
flexible assembly cell in which one robot positions or holds a
part while another robot performs an operation on the part.

In this paper we extend the approach of [de Silva et al.,
2016] to allow non-deterministic resources and tasks to be
performed in parallel on the same part, and we define novel
notions of process plans and process plan controllers for
this setting. Crucially, as we consider non-deterministic re-
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sources, their execution may result in cycles that are not under
the control of the process plan; therefore, we investigate how
implicit fairness assumptions can be captured in this setting,
and how this impacts the definition of process plans.

2 Process Recipes
A process recipe specifies the sequence of tasks necessary
to manufacture a product, including its constituent parts and
associated parameters required to process and assemble these
parts into the final product, any tests that must occur during
the manufacturing process, and how to respond to test results.

As in [de Silva et al., 2016], we formalise process recipes
as labelled transition systems, where labels are complex “task
expressions”. Let L = ⟨T,C⟩ be a library of tasks where T
is a finite set of tasks which represent operations and C is a
finite set of part constants. We assume that the set T is parti-
tioned into three mutually disjoint sets: the set of observable
tasks Tob which correspond to manufacturing operations; the
set of internal tasks Tin, which represent internal actions of
the system; and the set of synchronisation tasks Tsyn, which
specify the transfer of parts between resources. Specifically,
Tsyn = {in

h∣h ∈ N} ∪ {outh∣h ∈ N} is the set of in and
out synchronisation tasks, by which a part is moved from a
resource that performs task outh (releasing a part) to the re-
source that performs task inh (accepting a part). We also use
nop to denote idling.

The smallest task expressions are called parameterised
tasks (or p-tasks). We extend the formalism of [de Silva
et al., 2016] to allow p-tasks of the form t(x,y,z), where
t ∈ Tob ∪ Tin, and x,y,z are sequences of part constants in
C. The sequences x and y represent the “internal” and “ex-
ternal” inputs of t, respectively, and z represents the outputs.
A resource executing task t consumes the parts in x and pro-
duces the parts in z, while the parts in y must be present in
another resource which consumes them (as input) for its own
task. For example, drill(ε, c, ε) represents a drilling opera-
tion performed on a part c that is present in another resource
(e.g., a robot drilling a hole in a part held by another robot).

Formally, a task expression is a formula in the language
Lang(T ) generated by the grammar:

T ∶= t ∣ T ;T ∣ T ∥T ∣ T “∣” T

where “;” denotes a sequence, “∥” denotes parallel composi-
tion, and “∣” denotes interleaved composition. We call p-tasks
and parallel compositions of p-tasks atomic task expressions.
We denote by Langob(T ) the subset of Lang(T ) where ev-
ery p-task t(x,y,z) ∈ Tob, i.e., only observable tasks are al-
lowed. We impose the following additional constraints on T .
Any expression T1∥. . .∥Tm occurring in T is restricted such
that each Ti is a p-task and:

• a part constant cannot appear in the inputs x (resp. out-
puts z) of more than one task; i.e., before (resp. after)
parallel tasks are performed on a part, it can only be
present in one of their resources; and

• it does not hold that xi,xj = ε with zi,zj ≠ ε for some
i, j ∈ [1,m], i ≠ j, i.e., we disallow introducing more
than one “fresh” part into the system (in parallel).

A
BCE

F D

load( , ,f)  ;;  separate(f, ,p·∙h)  ;;  applyglue(p, ,p)  ;;  insert(p·∙h, ,h2)  ;;  engrave(h, ,h)  ;;
store(h2, ,h2)
remove(h2, ,h2)

dotestf(h2, ,h2)
remove(h2, ,h2) rotate( ,h2, )  ||  dotestv(h2, ,h2)

Figure 1: A process recipe.

We also restrict task expressions T1 ∣ . . . ∣ Tm occurring in T
such that each Ti does not mention the operator “∣”.

Definition 1 (Process Recipe). A process recipe is a tuple
R = ⟨s0, S,L, δR⟩, where S is a finite set of states, s0 ∈ S is
the initial state, L ⊆ Langob(T ) is a set of task expressions,
and δR ⊆ S × L × S is a non-empty transition relation. We
denote a transition from state s to s′, with task expression T ,
either by s TÐ→s′ or ⟨s,T , s′⟩ ∈ δR. ∎

As in [de Silva et al., 2016], process recipes may contain
(bounded) cycles, and we assume that cycles are removed
by unfolding the recipe up to the bound in a pre-processing
step. The unfolded recipe thus describes the (finite) process
of manufacturing a given product; when the recipe reaches an
end-state with no outgoing transitions the process is “com-
pleted”. States in the recipe are essentially states in the man-
ufacture of the product that are ‘choice points’, i.e., where a
decision must be made at run-time what to do next based on,
e.g., the specification of the current product instance (such as
its colour) or testing the partially assembled product. Note
that δ is a relation: in general, there may be more than one
outgoing transition from each state, because a recipe may en-
code different alternatives to reach an end-state from the ini-
tial state s0. We generalise [de Silva et al., 2016] by allowing
different outgoing transitions, labelled with the same task ex-
pression, from the same state of the process recipe.

Figure 1 shows an example of a process recipe (based on
[de Silva et al., 2016]) that specifies how to assemble a hinge.
The first and second p-tasks load a new pallet fixture (f ) and
separate it into its constituents: the hinge pin (p) and hol-
low hinge (h). Then p is glued onto the hinge h to obtain a
(non-hollow) hinge (h2), which is then engraved with a serial
number. The next two (parallel) tasks involve a 360 degree vi-
sual test on h2, after which the recipe either requests a force
test, or discards the hinge, depending on the runtime outcome
of the visual test. Similarly, the hinge can be stored or dis-
carded, depending on a further force-test (as these tests are
performed at runtime, all alternatives must be accounted for).

3 Non-Deterministic Resources
We model manufacturing resources in the facility as labelled
transition systems, and extend [de Silva et al., 2016] by al-
lowing non-deterministic transitions.

Definition 2 (Resource). A resource is a tuple R =

⟨s0, S, T,Ô⇒⟩, where S is a set of states, s0 ∈ S is the initial
state, T is the set of tasks, and δR ⊆ S × T × S is a transition
relation. ∎

We write s t
Ô⇒s

′ to denote a transition from s to s′ by task
t. For example, resource R1 in Figure 2 can load new pallets.
Loading is a non-deterministic transition as it may result in
the pallet being misaligned; when this happens, an acoustic
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Figure 2: An assembly system with non-deterministic resources.
The tasks in Tin are attgr1, attgr2, attgr3, beep.

signal instructs the operator to realign the pallet. The pal-
let can then be either stored, removed, or moved to another
resource (out1). Transfer of parts between resources is per-
formed by resourceR5, which models a transportation system
specifying the “legal routes” between production resources.

A (production) topology represents the synchronous execu-
tion of a set of resources, including where parts are processed
and how parts are moved between resources.
Definition 3 (Topology). Let {R1, . . . ,Rn} be resources,
with each Ri = ⟨s0i , Si, T,Ô⇒i⟩. A topology is a tuple P =
⟨s0, S, Tn,Ô⇒⟩, where S = S1 ×⋯ × Sn is the set of states;
s0 = ⟨s01, . . . , s

0
n⟩ is the initial state; Tn is the set of concur-

rent tasks; and the transition relationÔ⇒⊆ S×Tn×S is such
that s t

Ô⇒s
′ iff for all i ∈ [1, n]1 either:

• ti /∈ Tsyn and si
ti
Ô⇒i s

′
i, i.e., resource Ri can execute ti;

• ti ∈ Tsyn and si
ti
Ô⇒i s

′
i, and there exists exactly one j ∈

[1, n] such that sj
tj
Ô⇒j s

′
j with tj = inh and ti = outh

for some h, denoted tj ↢ ti, or the opposite, denoted
tj ↣ ti. ∎

The second condition checks that, within a transition, each
out task is matched with an in. A transition s t

Ô⇒s
′ is said to

be observable iff at least one task in the vector is observable.
Given a topology ⟨s0, S, Tn,Ô⇒⟩, the assignment of parts

to resources during production is represented by a resource
vector r = ⟨c1, . . . ,cn⟩, where each ci ∈ C

∗ is a (possibly
empty) sequence of parts that do not appear anywhere else in
r. We denote ci by r(i) for i ∈ [1, n]; the set of all possible
resource vectors as V ; and the empty vector as r0 = ⟨ε, . . . , ε⟩.
Hence, r(i) denotes the parts allocated to resource Ri in the
current state of the topology. We note that each element in r
is a sequence and not a set, i.e., order matters when moving
parts between resources, or when executing tasks on parts.
We address a limitation in [de Silva et al., 2016] by allowing
the simultaneous execution of tasks on the same parts, in or-
der to model “joint” tasks. A resource Ri currently in state
si can execute an (atomic) p-task t(x,y,z) iff (I) the task t

1s = ⟨s1, . . . , sn⟩, s
′
= ⟨s′1, . . . , s

′

n⟩ and t = ⟨t1, . . . , tn⟩.

is available from state si in Ri, and (II) the input parts are
currently assigned to the resource, and, if external parts are
required (i.e., y ≠ ε), then there exist one or more other re-
sources to which those parts are collectively assigned. After
executing t, parts in z are allocated to the resource. For exam-
ple, the task insert into(c1, c2, ε) inserts part c1 into part c2,
where c2 is currently assigned to another resource, and does
not produce any parts. Given a p-task t(x,y,z), we denote x
by in(t), y by ext(t) and z by out(t).

We now give a formal definition of simultaneous tasks. Let
T = t1∥. . .∥tm be a task expression, r a resource vector, s a
topology state, and s t

Ô⇒s
′ a transition with t = ⟨t′1, . . . , t

′
n⟩.

Let I = {i ∈ [1, n] ∣ t′i ∈ Tob} be the “observable indices” of
t. Then, we say that a resource vector r′ is an allocation of
T to t with respect to r, denoted r′ = AL(r,T , t), iff for all
i ∈ [1, n]∖I we have r′(i) = r(i), and there exists a bijection
f ∶ I ↦ [1,m] s.t. for all i ∈ I , we have that j = f(i) implies

• tj = t′i, namely the task label in position i in the vector
is equal to the task label of the j-th parallel p-task; and

• r(i) = in(tj), r′(i) = out(tj) and ext(tj) ≠ ε iff there
exists a subset of indices I ′ ⊆ [1, n] ∖ {i} such that
ext(tj) is a concatenation of each in(tk), k ∈ I ′.

Intuitively, an allocation of T to a topology transition la-
belled with vector t returns the new resource vector resulting
from the simultaneous execution of each task in t, provided
that all the p-tasks in T are matched to an observable task in
t. For instance, a vector of tasks t = ⟨hold, nop, engrave⟩
can execute a parallel task expression T = engrave(ε, c, ε)∥
hold(c, ε, c), so that ⟨c, ε, ε⟩ = AL(⟨c, ε, ε⟩,T , t). For se-
quences of the form T1;T2 we can compute allocations recur-
sively, and for interleaved compositions of the form T1 ∣ T2,
we need to find a linearisation such that an allocation exists.
Details are omitted for brevity, as they do not differ from [de
Silva et al., 2016] apart from the base case above.

For synchronisation tasks, a resource vector r′ is a transfer
of parts from r via t, denoted r′ = MOV(r, t), if for each i ∈
[1, n] we have (I) ti ↢ tj and r′(i) = r(i) ⋅ c with r(j) = c ⋅c;
or (II) ti ↣ tj and r′(i) = c with r(j) = c ⋅ c; or (III) r′(i) =
r(i) otherwise. For example, if r = ⟨c, ε, ε⟩ then MOV(r, t)
with t = ⟨out1, nop, in1⟩ is ⟨ε, ε, c⟩.

4 Realisability of Recipes
Each transition in a process recipe is labelled with a task ex-
pression, but these tasks are not directly executable: actual
realisations, in the form of “orchestrations” of the topology,
must be found. We now introduce some technical definitions.

A trace of a topology P from a resource vector r0 is a
sequence τ = σ0

t1
Ô⇒σ1

t2
Ô⇒⋯ such that for each i ≥ 0 we

have σi = (si, ri), where si is a state in the topology and ri
is a resource vector. A trace represents the evolution of the
topology, together with the new resource vector computed at
each step. We call a finite trace history, and given a history
τ = σ0

t1
Ô⇒⋯

tm
Ô⇒σm of length m, we denote σm by last(τ).

Unless otherwise specified, we assume s0 = s
0 and r0 = r

0,
i.e., we take as initial the initial state of the topology and the
empty resource vector.
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We now introduce the notion of plan, which compactly
represents the set of histories (there may be more than one,
as the topology is non-deterministic) that realise a given task
expression. Let H denote all possible histories of P. Then, a
history-based plan is a partial function

π ∶H ↦ Tn

which maps a history of P to a vector of tasks. A trajectory
of a plan π on P from σ0 is a trace τ = σ0

t1
Ô⇒σ1

t2
Ô⇒⋯ of P,

of length ` ≥ 0, such that ti+1 = π(τ ∣i), where τ ∣i denotes the
fragment of τ of length i ∈ [0,m − 1]. Given a history τ , we
call σ∣τ ∣ = last(τ) the outcome of τ from σ0. A trajectory of
π is said to be complete with respect to π iff it is finite and
cannot be extended further, namely, iff π(τ) is undefined.

4.1 Strong Cyclic Plans
A history-based terminating plan is a plan such that all its
trajectories are finite, i.e., it always terminates irrespective of
the non-determinism of the topology. However, not all tra-
jectories are finite. For example, in Figure 2, the resource
R3 encodes a robotic arm which can perform various oper-
ations by attaching different grippers. Since performing the
internal task attgr3 in state 1 may lead to two possible suc-
cessor states, there is no history-based terminating plan that is
guaranteed to realise the recipe, as the observable task rotate
may never be reached. In reality, while performing a task
may occasionally take a resource into an abnormal state, re-
sources are engineered such that after a ‘small’ number of
retries and/or some recovery steps, the intended state will be
reached.2 This ‘fairness assumption’ is however not captured
explicitly in the resource or the topology.

Note that the appropriate notion of fairness for manufac-
turing resources does not correspond to strong fairness as
in [De Giacomo et al., 2010], where if the action is re-
peated infinitely often, then any outcome happens infinitely
often. First, while internal tasks such as attgr3 can be
non-deterministic, observable tasks such as rotate are as-
sumed to be deterministic: executing the task is assumed to
lead to the intended state—otherwise the author of a process
recipe would have to anticipate all possible failures of the
(unknown) manufacturing resources used to manufacture the
product. In this sense, fairness is only relevant to internal
tasks, as only internal tasks forming part of the ‘implemen-
tation’ of an observable task may be retried: e.g., repeatedly
executing attgr3 will eventually reach a state where rotate
can be executed. Second, repeating an observable task would
violate the recipe, and in many cases this would be incor-
rect and/or unsafe (consider, for instance, operations such as
casting or moulding). Third, parts/subassemblies often repre-
sent considerable investment of materials and process steps,
so are usually only discarded as a last resort. As observable
tasks may be non-deterministic in practice, a controller may
have to implement a ‘recovery’ internal plan fragment to rem-
edy undesired states (e.g., to remove excess material from a
moulded part when required) prior to the next observable task
in the recipe. Hence, we need to relax strong fairness, and

2Note that there is no restriction in our formalism that the number
of retries should be small.

consider a particular kind of strong cyclic plan [Cimatti et
al., 2003] whose associated trajectories can always terminate,
and when they do, are guaranteed to achieve the goal.

4.2 Process Plans
We can now concretise our definition of process plan, which
represents a strong cyclic history-based plan. First, we say
that a history-based plan π is nonblocking if any of its finite
trajectories can be extended to a complete trajectory (namely,
it is a prefix of a complete trajectory of π). Thus, it is always
possible for these plans to terminate. However, they are not
necessarily terminating plans, as they may have infinite tra-
jectories. To be implementable in practice, we need to find a
finite representation of such plans.
Definition 4 (Process plan). Given a task expression T , a
topology state s0 and a resource vector r0, we say that a
history-based plan π is a process plan for T from (s0, r0)
iff π is nonblocking and any complete trajectory of π from
(s0, r0) realises T , as defined below.

Informally, a trajectory τ realises an atomic task expres-
sion T iff the task is allocated in (exactly) one step, which
is necessarily an observable transition, while all other steps
are arbitrary unobservable transitions (i.e., consisting only of
internal tasks and synchronisation tasks). Formally, given a
plan π, an initial state s0 and a resource vector r0, a trajec-
tory τ = σ0

t1
Ô⇒⋯

tm
Ô⇒σm of π from σ0, with σi = (si, ri) for

each i ∈ [1,m] realises an atomic task expression T iff:
• there exists an ` ∈ [1,m] such that r` = MOV(r, t`) with
r = AL(r`−1,T , t`);

• for any other j ≠ `, j ∈ [1,m], we have that tj is unob-
servable and r` = MOV(r`−1, t`).

We extend this notion to sequences, and say that a trajec-
tory τ realises a task expression of the form T1;T2 iff τ has
the form τ = τ1 ⋅ τ2 and τ1 (resp. τ2) realises T1 (resp. T2),
where τ1 ⋅ τ2 denotes the concatenation of two finite trajec-
tories sharing the last and first state, respectively (which is
equal to τ1 when τ2 is the empty trajectory). The extension
to interleaved compositions is analogous, by considering all
possible linearisations. Without loss of generality, we assume
that an observable transition is always the last one in the tra-
jectory, as this strictly relates plans to the task expressions
that they realise by disallowing subsequent arbitrary transi-
tions (which, instead, should be executed to realise the next
task expression in the recipe).

As process plans are not necessarily terminating, they may
have infinite trajectories. We therefore introduce finite repre-
sentations of such plans. First, given a history τ , its contrac-
tions, denoted acycl(τ), is the set of histories obtained from
τ by removing all cycles. The contractions correspond to the
fixpoint of an operator λ on {τ} defined as τ1 ⋅τ2 ∈ λ({τ,⋯})
iff τ = τ1 ⋅ τ ′ ⋅ τ2, such that the first and last state of τ ′ are the
same, i.e., last(τ1) = last(τ ′). It is trivial to see that a con-
traction always exists. A basic plan is a partial function

πb ∶Ha ↦ Tn

that is defined only for acyclic histories Ha ⊆ H of P (which
are finite), and thus only generates finite and complete trajec-
tories. We say that πb is a basic plan for T iff every acyclic
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trajectory of πb that is complete realises T , and at least one
such trajectory exists. These plans can be represented and
implemented finitely; however, they are not process plans:
they do not need to realise any task, and indeed in a non-
deterministic topology they may not do so. Given a basic plan
πb, we can reconstruct a generic history-based plan π{πb} as
follows:

π{πb}(τ) ∶= πb(τ) iff it is defined;
π{πb}(τ) ∶= π{πb}(τ

′) otherwise,

where τ ′ is a trajectory of πb and τ ′ ∈ acycl(τ). Informally,
πb is applied to τ by disregarding any cycle.
Theorem 1. If πb is a basic plan for T and π{πb} is nonblock-
ing, then π{πb} is a process plan for T .

Proof Sketch. It is easy to see that πb is defined for every con-
traction of one of its trajectories that still does not realise T .
This holds trivially for acyclic trajectories, since they must re-
alise the task expression by definition. For cyclic trajectories,
assume that for a contraction τ ′, πb(τ ′) is undefined. Then
τ ′ is not a trajectory of πb (which is instead required) other-
wise, being complete, it would contradict the fact that every
complete acyclic trajectory realises T . Hence any cyclic tra-
jectory of π{πb} can always be extended to one that is finite
and complete. Thus π{πb} is nonblocking, which together
with the hypothesis proves the claim. ◻

Basic plans are memory bounded, and as soon as they in-
duce a cyclic trajectory, they immediately “reset” to a con-
traction. However, not every process plan can be recon-
structed from a given basic πb (e.g., a process plan that pre-
scribes a different action for the same cyclic behaviour of the
system when the number of cycles is a prime number). Never-
theless, the result above is crucial for computing the “correct”
set of basic plans πb for a task expression T (i.e., those where
π{πb} is nonblocking). It can be shown that from the set of all
basic process plans Π̄ = {π1, . . . , πq} for a task expression T
such that π{πi} is nonblocking, we can reconstruct any pro-
cess plan π for T . The proof of this claim is involved and
we omit it due to lack of space, as it is not needed to prove
the correctness of our approach. Rather it supports (in addi-
tion to Theorem 1) the intuition that basic plans represent the
minimum information required to reconstruct process plans.
Intuitively, a process plan for T can be reconstructed from Π̄
by means of a function f ∶ H ↦ ∣Π̄∣ that prescribes, at each
step of the current trajectory τ , which basic plan πf(τ) to use.

4.3 Process-Plan Simulation Relation
In this section, we capture the ability to realise transitions in
the recipe as a property relating states of the recipe with states
of the topology and resource vectors.
Definition 5. Let P = ⟨s0, S, T,Ô⇒⟩ be a topology and
R = ⟨s0, S,L, δR⟩ a recipe. A process-simulation relation is
a relation PSIM ⊆ S×S×V ,3 such that a tuple ⟨s, s, r⟩ ∈ PSIM

implies that for any T , if s TÐ→s′ for some s′, then there exists
a process plan π such that for each complete trajectory τ of π
from (s, r), we have that (I) τ realises T (as defined above);
and (II) ⟨s′, s′, r′⟩ ∈ PSIM, where (s′, r′) = last(τ).

3Recall that V is the set of all resource vectors.

Thus, a state s of a recipeR is said to be process-simulated
by a state s of a topology P with respect to a resource vector
r if there exists a process-simulation relation PSIM such that
⟨s, s, r⟩ ∈ PSIM. Moreover, R = ⟨s0, S,L, δR⟩ is process-
simulated by P = ⟨s0, S, T,Ô⇒⟩ if s0 is process-simulated
by s0 with respect to r0.

The definition states that no matter how the recipe evolves
from s (according to transition choices made by runtime
tests), there exists a process plan whose complete trajectories
realise the requested task expression. Crucially, the process
recipe cannot control which particular trajectory of the pro-
cess plan is followed, as the topology is non-deterministic.
Definition 6 (Realisability of a recipe). Given a state s0
and a resource vector r0, a recipeR = (s0, S,L, δR) is realis-
able from (s0, r0) iff there exists a function ω ∶ S×V ×δR ↦
Π such that:

• for each transition s0 TÐ→s
′ in R, the plan

ω(s0, r0, s
0 T
Ð→s

′) = π is defined and it is a process plan
for T from (s0, r0);

• if ω(s, r, s TÐ→s′) = π is defined, then
– π is a process plan for T from (s, r); and
– for each outcome (s′, r′) of a complete trajectory
τ of π from (s, r), and for each s′ T

′

Ð→s
′′ in R, we

have that ω(s′, r′, s′ T
′

Ð→s
′′) is defined. ∎

Recall that if π is a process plan for T from σ, then any
complete trajectory of π from σ realises T . Finally, a recipe
R is realisable in a topology P = ⟨s0, S, T,Ô⇒⟩ if R is re-
alisable from (s0, r0). The above definition only requires the
existence of a function ω which returns a possible “correct”
plan at each step. The notion of realisability in a topology is
closely related to the notion of plan-based simulation in [De
Giacomo et al., 2016] and T -realisation in [De Giacomo et
al., 2010]. However, unlike that setting, we do not consider
a planning domain due to the high modularity of our setting,
as well as the presence of various low-level details (such as
resource vectors and simultaneous tasks).
Theorem 2. A process recipeR is realisable in a topology P
iff P process-simulatesR.
Proof Sketch. Given (s, r), assume that a function ω as above
is defined for each s TÐ→s′ in R, namely, ω(s, r, s TÐ→s′) = π,
but P does not process-simulate R. By Def. 5 this implies
that there is no process plan, including π, such that each of
its complete trajectories τ realise T , or the ⟨s′, s′, r′⟩ /∈ PSIM
with (s′, r′) = last(τ). These two cases violate the first and
second item of Def. 6, respectively; hence, ω does not exist.
If instead ⟨s0, s0, r0⟩ ∈ PSIM, then, by definition, there exists
a plan π as in Def. 5 for each s0 TÐ→s′ in R; hence, we can
build the function ω so that ω(s0, r0, s0 TÐ→s′) = π. The same
argument can be applied by induction on ⟨s′, s′, r′⟩, where
(s′, r′) is the outcome of any complete trajectory of π, as
⟨s′, s′, r′⟩ ∈ PSIM by hypothesis. ◻

4.4 Process Plan Controllers
Intuitively, a process plan controller encodes a set of func-
tions ω as in Definition 6, i.e., a function that associates at
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least one process plan to each transition (task expression) of
a recipe, such that for each possible resulting trajectory, the
function can still associate another process plan as the recipe
is progressed forward. We use a finite-state representation
based on the notion of process-plan simulation relation.
Definition 7. Given a topology P and process recipe R, a
process plan controller forR = ⟨s0, S,Lang(T ), δR⟩ in P is
a tuple C = ⟨PSIM, δR,Π, δ⟩ with:

• PSIM ≠ ∅ is a process plan-simulation relation, whose
elements correspond to the set of states in the controller;

• δR is the recipe transition relation;
• Π is a set of process plans;
• δ ∶ PSIM×δR×Π× PSIM is a transition relation, defining

transitions from one state to another, by executing a pro-
cess plan π that realises a task expression T . A transition
⟨s′, s′, r′⟩ ∈ δ(⟨s, s, r⟩, tr, π) exists for tr = s TÐ→s′, also
denoted ⟨s, s, r⟩ tr,πÐÐ→⟨s′, s′, r′⟩, iff s TÐ→s′ is in δR and:

– π is a process plan for T , i.e., it is nonblocking and
all complete trajectories of π realise T ;

– a complete trajectory τ of π exists from (s, r) with
(s′, r′) = last(τ), and for any complete trajectory
τ ′ of π from (s, r) with (s′′, r′′) = last(τ ′), we
have ⟨s, s, r⟩ tr,πÐÐ→⟨s′′, s′, r′′⟩. ∎

As a direct consequence of Theorem 2 and the definition of
process plan controller, we get the following result.
Theorem 3. A recipeR is realisable in a topology P iff there
exists a process plan controller forR in P.

Proof Sketch. It follows by construction of the process
plan controller C. It is possible to compute the func-
tion ω in Definition 6 as follows: ω(s, r, s TÐ→s

′) = π iff
⟨s, s, r⟩ tr,πÐÐ→⟨s

′, s′, r′⟩, considering tr = s TÐ→s
′. Indeed by

Theorem 2 if ⟨s, s, r⟩ ∈ PSIM then ω(s, r, s TÐ→s′) is defined
for every recipe transition s TÐ→s′. ◻

5 Computing Basic Plans
In this section, we provide an algorithm that computes a
process-plan simulation relation given a process recipeR and
a topology P, and in doing so also computes a process plan
controller forR and P. We extend the algorithms in [de Silva
et al., 2016] to handle non-deterministic topologies and to
compute a set of basic plans, having the property as in Theo-
rem 1, for each transition of the process recipe. By the theo-
rem, these can be used to reconstruct history-based plans.

Given a process recipe R, a topology P, a state s of P, a
resource vector r and a state s ofR, Algorithm 1 determines,
for each transition tr = s TÐ→s′, whether there exists a basic
plan for T from (s, r), and in turn, whether the same holds for
each transition from s′ (as required by Definition 6). To this
end, tr is passed as a parameter to Algorithm 2 to continue
checking from s′. We use π0

b to denote the empty plan.
Algorithm 2 uses two auxiliary functions: given a task ex-

pression T = T1;T2; . . . ;Tn with n > 0, the first element of
T is defined as FST(T ) = T1 and the rest of its elements as

Algorithm 1 FINDSIM(R,P, s, r, s)

Input: a process recipeR = (s0, S,L, δR), a topology P, the topol-
ogy state s, resource vector r and recipe state s.

1: δ, δ′, PSIM, PSIM′:= ∅
2: for each recipe transition tr = (s,T , s′) ∈ δR do
3: (PSIM′, δ′) := EVAL(R,P,T , tr, (s, r), π0

b , (s, r),∅)
4: if PSIM′ = ∅ then return (∅,∅)
5: PSIM := PSIM ∪ PSIM′; δ := δ ∪ δ′

6: return (PSIM ∪ {(s, s, r)}, δ)

Algorithm 2 EVAL(R,P,Tcur , tr, τ, πb, σ0,Σ)

Input: a process recipe R, a topology P = (s0, S, Tn,Ô⇒),
the current task expression Tcur and recipe transition tr =
(s,T , snxt), the current trajectory τ and basic plan πb, the ini-
tial couple σ0 = (s0, r0) and the visited couples Σ.

1: σ↓ := (s
↓
, r↓) := last(τ)

2: (PSIM, δ) := (∅,∅)
3: if Tcur = ε then
4: x := (s0, s, r0)

tr,πb
ÐÐÐ→(s↓, snxt , r↓)

5: (PSIM, δ) := FINDSIM(R,P, s
↓
, r↓, snxt)

6: return (PSIM, δ ∪ {x})
7: if σ↓ ∈ Σ then return ({σ↓},∅)
8: σfst := ε
9: for each t such that (s

↓
, t, s) exists inÔ⇒ do

10: (PSIMt, δt) := (∅,∅)
11: if t is observable and r′ = AL(r↓, FST(Tcur), t) then
12: for each (s

↓
, t, s) ∈Ô⇒ do

13: σ := (s,MOV(r′, t))
14: πb(τ) := t
15: (PSIMs, δs) :=

EVAL(R,P, RST(Tcur), tr, τ
t
Ô⇒σ,πb, σ0,∅)

16: if PSIMs = ∅ then (PSIMt, δt) := (∅,∅); break
17: else (PSIMt, δt) := (PSIMt ∪ PSIMs, δt ∪ δs)
18: end for
19: (PSIM, δ) := (PSIM ∪ PSIMt, δ ∪ δt)
20: else if t is unobservable then
21: for each (s

↓
, t, s) ∈Ô⇒ do

22: σ := (s,MOV(r↓, t))
23: πb(τ) := t
24: Σ′ := Σ ∪ {σ↓}

25: (PSIMs, δs):=EVAL(R,P,Tcur , tr, τ t
Ô⇒σ,πb, σ0,Σ

′
)

26: if PSIMs = ∅ then
27: (PSIMt, δt) := (∅,∅); σfst := ε; break
28: else if PSIMs = {σ

′
} and δs = ∅ then

29: σfst := EARLIER(σfst , σ
′, τ)

30: else (PSIMt, δt) := (PSIMt ∪ PSIMs, δt ∪ δs)
31: end for
32: (PSIM, δ) := (PSIM ∪ PSIMt, δ ∪ δt)
33: end for
34: if PSIM ≠ ∅ then return (PSIM, δ)
35: else if σfst /∈ {ε, s↓} then return ({σfst},∅)

36: else return (∅,∅)

RST(T ) = T2; . . . ;Tn if n > 1, and as RST(T ) = ε if n = 1.
Intuitively, Algorithm 2 performs a depth-first search of the
topology to check whether there exists a basic plan for the
task expression Tcur (initially T ) from σ↓. In particular, the
outer loop (lines 9 to 33) considers each unique label t in the
outgoing topology transitions from s↓; lines 11 to 19 apply if

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1028



t is observable and the first task in Tcur can be allocated to it,
and lines 20 to 32 apply if t is unobservable.

For each observable transition associated with a particu-
lar label t, lines 12 to 18 prescribe the following. First, the
“successor” couple σ = (s, r) is created to represent the allo-
cation of Tcur to t, and the movement of parts via synchroni-
sations. Second, line 14 updates the plan πb with the vector
t labelling the topology transition (s↓, t, s); this plan is then
passed as a parameter in the recursive call to EVAL. Finally,
if the rest of the tasks in Tcur cannot be realised from σ, all
non-deterministic transitions labelled with t are disregarded.
Otherwise, new tuples in PSIMs and the corresponding con-
troller transition δs for t are stored (line 17), and the loop
continues. If t is unobservable, the steps are similar to those
described above, except for lines 28 and 29. Line 28 applies
to the case in which τ t

Ô⇒σ constitutes a cycle “back” in the
current trajectory τ (i.e., line 7 was executed in the recursive
call at line 25): if this is the case, then we compare σ′ with
the state σfst (initially the empty string) which is the “ear-
liest” state that is possible to reach, through cycles, from the
current topology state s↓. The intuition is as follows: we need
to make sure that there exists the possibility, from σ↓, to cy-
cle back to a state σfst from which it is still possible to find
a complete trajectory whose execution allocates the task ex-
pression Tcur . If this is the case, then the cycle in the current
trajectory of plan πb is “admissible”: it (still) guarantees the
nonblocking condition of the plan π{πb}. Formally, we define
the function EARLIER(σ1, σ2, τ) = σ1 if σ1 occurs before σ2
in τ (or σ2 = ε), and EARLIER(σ1, σ2, τ) = σ2 if σ2 occurs
before σ1 in τ (or σ1 = ε). Then (PSIM, δ) is returned in line
34, consisting of the simulation relations and corresponding
controller’s transitions. Otherwise, we must rely on there be-
ing a state that appears in τ before s↓, and possibly as early as
σfst , from where a complete trajectory can be found and the
task allocated. Thus, we “propagate back” σfst until we can
exit the current cycle, or until the recursive step is reached
with σ↓ = σfst , from where an exit must then exist if a non-
empty simulation relation is to be returned. Line 7 checks
whether the algorithm has reached a couple σ↓ visited earlier,
and if so returns it, guaranteeing that the plan is bounded.

A variant of this algorithm for deterministic topologies
has been implemented as part of an agent based control ar-
chitecture for manufacturing, designed to address rapidly
changing product and process requirements [de Silva et al.,
2017]. Within this architecture, a process plan controller is
used to select basic plans for task expressions that appear
in the recipe. Such plans are represented in the Behaviour
to Markup Manufacturing Language (B2MML) ISA-95 stan-
dard, which is a format that is interpretable by real-world
manufacturing execution systems. The implementation also
takes into account additional details such as parameters and
materials, which have been omitted in this paper.

6 Related Work
The problem we consider has similarities with AI planning
[Nau et al., 2004; Cimatti et al., 2003]. We adopted a
synthesis-based approach due to the difficulties of encoding
process recipes and production topologies as planning goals

and planning domains. In our setting, there are several fea-
tures that make such an encoding difficult, including condi-
tional goals (in the recipe), interleaved and parallel tasks.

The notion of process plan controller is closely related to
other approaches. For example agent planning programs [De
Giacomo et al., 2010; 2016] are finite-state programs where
transitions prescribe propositional achievement and mainte-
nance goals that must be realised on a planning domain by
implementing each transition via a conditional plan. The so-
lution approach is based on restricted forms of LTL synthe-
sis, and is able to cope with non-deterministic propositional
planning domains with explicit fairness constraints, thus pro-
ducing strong cyclic plans. However, as explained in Section
4.1, the manufacturing setting has a number of features which
preclude a straightforward application of this approach, and
standard notions of strong cyclic planning cannot be applied.

Our notion of a terminating plan is also similar to history-
based terminating plans in [De Giacomo et al., 2016], and
related to the notion of (memoryless) strong acyclic plans
[Cimatti et al., 2003]. As we explain in Section 4.1, our ap-
proach differs from [De Giacomo et al., 2016] in that the tra-
jectories we consider are not finite. Similarly, the state-action
table representation used for strong acyclic plans in [Cimatti
et al., 2003] is insufficiently flexible for process plans, as it is
memoryless, whereas in our setting we must choose actions
based on the current history (evolution of the topology) rather
than simply the current state of the topology.

Over the last decade there has been a growing body of work
on automation to achieve flexibility, resilience, and moni-
toring in manufacturing. For example, Flexible Manufac-
turing Systems [Browne et al., 1984; Sethi and Sethi, 1990;
ElMaraghy, 2005] increase the variety of parts and products
that can be produced, while Reconfigurable Manufacturing
Systems [Bi et al., 2008; Koren et al., 1999; Mehrabi et al.,
2000; Smale and Ratchev, 2009] allow more rapid response
to market changes for a certain product family. In [Felli et al.,
2016] an approach is presented to the synthesis of controllers
capable of producing multiple instances of the same product
simultaneously. However, as none of this work has addressed
the manufacture of products in the context of manufacturing
as a service, nor considered fairness assumptions or differen-
tiated observable and unobservable tasks, they are restricted
to acyclic plans when resources are non-deterministic.

7 Conclusions and Future Work
We extended previous approaches to the realisability and con-
trol problems for process recipes in manufacturing systems
consisting of non-deterministic resources, and where opera-
tions can be performed in parallel on the same part. We for-
mally defined the notions of process plans and process plan
controllers for these systems, where loops in plans must be
allowed due to intrinsic fairness assumptions. In this paper
we assume that a manufacturing facility is always initially in
the initial state of the topology with an empty resource vector.
In future work, we plan to relax this assumption and gener-
alise our approach to consider an arbitrary initial state, where
parts are already assigned to resources, and the topology is
currently being orchestrated to realise another process recipe.
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