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Abstract
In structured argumentation frameworks such as
ASPIC+, rebuts are only allowed in conclusions
produced by defeasible rules. This has been crit-
icized as counter-intuitive especially in dialectical
contexts. In this paper we show that ASPIC−,
a system allowing for unrestricted rebuts, suffers
from contamination problems. We remedy this
shortcoming by generalizing the attack rule of un-
restricted rebut. Our resulting system satisfies
the usual rationality postulates for prioritized rule
bases.

1 Introduction
Structured argumentation offers a formal method for defeasi-
ble reasoning. Many approaches distinguish between strict
and defeasible inference rules. Unlike strict rules, a de-
feasible rule warrants the truth of its conclusion only pro-
visionally: it is retracted in case good counter-arguments
are encountered. Different types of argumentative attacks
can be distinguished. E.g., if an argument a concludes the
contrary of an argument b it is said to rebut b. In many
formalisms, such as ASPIC+ [Modgil and Prakken, 2013;
2014], rebut is restricted in such a way that an argument b
cannot be rebutted if its conclusion is obtained by a strict rule.
In [Caminada et al., 2014], it has been argued that especially
in dialectical contexts unrestricted rebut is more natural. As
a consequence, the system ASPIC− has been proposed in
which rebut is unrestricted.

In [Caminada and Amgoud, 2007] several rationality pos-
tulates have been proposed. E.g., the output of an argu-
mentation system should be consistent and closed under the
strict rules. For multi-extension semantics (e.g., preferred and
stable semantics), ASPIC− violates these postulates unlike
ASPIC+ (given some restrictions) [Prakken, 2011]. Thus,
unrestricted rebut can lead to undesired behaviour and one
has to be careful when devising systems utilizing it. The situ-
ation is different for the single-extension grounded semantics
where both ASPIC+ and ASPIC− are well-behaved relative
to the postulates in [Caminada and Amgoud, 2007].

∗We thank M. Beirlaen, M. Caminada and the anonymous re-
viewers for helpful comments. Our research is supported by the
Alexander von Humboldt-Foundation.

However, as shown in this article, ASPIC− does not
satisfy other standards such as Crash-Resistance and Non-
Interference. Ideally, a reasoning system should not lose con-
sequences if irrelevant information is added to the knowledge
base. As demonstrated in [Wu, 2012] for ASPIC, the lack of
Crash-Resistance and Non-Interference is especially threat-
ening if the underlying strict rules are domain-independent.
This is typically the case if the strict rules are induced by an
underlying logic such as classical logic (in short, CL). Given
an inconsistent knowledge base and strict rules such as log-
ical explosion, for any formula an argument with a contrary
conclusion can be constructed.

So far, there are not many results that establish Crash-
Resistance and Non-Interference for systems in the ASPIC-
family. An exception is [Wu, 2012] where Crash-Resistance
is established for ASPIC Lite, where priorities over defeasi-
ble rules are not taken into account. In [Grooters and Prakken,
2016] a system with restricted rebut is introduced that avoids
logical explosion by using a sub-classical logic as a base
logic. For any completeness-based semantics a weakened
version of Crash-resistance and Closure are shown for total
pre-orders expressing priority relations between the defeasi-
ble rules. For multi-extension semantics a counter-example
for full Crash-Resistance is provided.

For approaches with unrestricted rebut, to the best of our
knowledge, there have been no investigations into Crash-
Resistance or Irrelevance. This paper therefore answers the
following pertinent question: is it possible to define a frame-
work for structured argumentation that gives a sensible output
when the strict rules are domain-independent? We will an-
swer this question positively by defining the system ASPIC	.
We consider total pre-orders expressing priority relations be-
tween the defeasible rules. To the best of our knowledge, this
is the first such result for frameworks in the ASPIC-family.

2 The ASPIC-family
A well-known, general and popular family of frameworks for
structured argumentation is the ASPIC-family. In ASPIC ar-
guments are constructed using an argumentation system.1

1In this paper we will, due to spatial restrictions, omit several fea-
tures of the original ASPIC+ framework of [Prakken, 2011], such as
defeasible premises, issues, undercutting and undermining attacks.
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Definition 1. An Argumentation System (AS) is a tuple
AS = (L,S,D,K, ,6) consisting of:

- a formal language L
- a set of strict rules S ⊆ 2L ×L of the form A1, . . . , An →
B

- a set of defeasible rules D ⊆ 2L × L of the form
A1, . . . , An ⇒ B.

- an S-consistent2 set of strict premises K ⊆ L.

- a contrariness function from L to L.3

- a preorder 6 over D.

A1, . . . , An are called the antecedents and B is called the
consequent of A1, . . . , An → B resp. A1, . . . , An ⇒ B.

Definition 2. Let AS = (L,S,D,K, ,6) be an argumen-
tation system. An argument a is one of the following:

- a = 〈A〉 where A ∈ K
conc(a) = A, Sub(a) = {a}, DefR(a) = ∅

- a = 〈a1, . . . , an → B〉 where a1, . . . an (with
n > 0) are arguments s.t. there is a strict rule
conc(a1), . . . conc(an)→ B ∈ S
conc(a) = B, Sub(a) = {a} ∪

⋃n
i=1 Sub(ai), and

DefR(a) =
⋃n
i=1 DefR(ai).

- a = 〈a1, . . . , an ⇒ B〉 where a1, . . . an (with
n > 0) are arguments s.t. there is a defeasible rule
conc(a1), . . . conc(an)⇒ B ∈ D
conc(a) = B, Sub(a) = {a} ∪

⋃n
i=1 Sub(ai), DefR(a) =

{conc(a1), . . . conc(an)⇒ B} ∪
⋃n
i=1 DefR(ai).

By Arg(AS) we denote the set of arguments that can be
built from AS. An argument a will be called defeasible if
DefR(a) 6= ∅ and strict otherwise. We lift DefR to sets of
arguments as usual: DefR({a1, . . . , an}) =

⋃n
i=1 DefR(ai).

Example 1. The paradigmatic example for generating a set
of strict rules SCL by an underlying logic is to use CL:
A1, . . . , An → A ∈ SCL iff {A1, . . . , An} `CL A. Con-
trariness is defined by A = ¬A. We will use this system as a
guiding example throughout this paper.

Let AS1 = (L,SCL,D1 = {> ⇒2 ¬p ∨ ¬q, > ⇒1

p, p ⇒1 q}, ∅, ,6). In this and the following examples, the
natural numbers in the subscripts of ⇒ are used to express
the priority ordering over D, i.e. (A1, . . . , An ⇒i B) 6
(A′1, . . . , A

′
m ⇒j B

′) iff i 6 j. Here are some arguments
in Arg(AS1):
a1: > ⇒2 ¬p ∨ ¬q a2: > ⇒1 p
a3: a2 ⇒1 q a4: a1, a2 → ¬q
a5: a2, a3 → p ∧ q a6: a1, a3 → ¬p

2K is S-inconsistent iff there is a derivation from K using S
for A and A (for some A ∈ L). K is S-consistent if it is not S-
inconsistent.

3In the context of ASPIC+ usually associates formulas with a
set of contrary formulas. To simplify the presentation we opt here for
the simpler variant where each formula is associated with a unique
contrary formula.

2.1 Attacks and Defeats
Definition 3. Where a, b ∈ Arg(AS), a unrestrictedly rebuts
b (in symbols: aUrReb) iff conc(a) = conc(b) and b is defea-
sible.

Definition 4. Where a, b ∈ Arg(AS), a restrictedly rebuts (in
symbols: aReReb) b = 〈b1, . . . , bn ⇒ B〉 iff conc(a) = B.

It is clear that for any arguments a and b, if aReReb then
aUrReb. The other direction does not hold in general, as wit-
nessed by the fact that in Example 1, where a′2 = a2 → ¬¬p,
we have a2UrRea6 but not a2ReRea6.

When two arguments conflict, one of the arguments may
defeat the other due to its higher priority. To account for
defeat via priorities, we lift our order 6 on D to an order
on arguments via the weakest link lifting(see e.g. [Modgil
and Prakken, 2013]): where a, b ∈ Arg(AS), a � b iff
DefR(b) = ∅ or ∃α ∈ DefR(a) s.t. ∀β ∈ DefR(b): α 6 β.

Definition 5. Where a, b ∈ Arg(AS) and Att ∈
{ReRe, UrRe}: a defeats b iff there is a c ∈ Sub(b) s.t. aAttc
and c � a. We write (a, b) ∈ Att�(Arg(AS)).

Where Arg(AS) is clear from the context, we will often
just write Att� instead of Att�(Arg(AS)).

2.2 Grounded Semantics
Definition 6. Where Att ∈ {ReRe, UrRe}, an argumentation
framework (AF) for an argumentation theory AS is the pair
(Arg(AS), Att�(Arg(AS))).

Given an AF, we can apply Dung’s acceptability semantics
[Dung, 1995] for evaluating arguments.

Definition 7. Let AF = (Arg(AS), Att�) be an AF, A ⊆
Arg(AS) and a ∈ Arg(AS). a is acceptable w.r.t. A (or, A
defends a) iff for all b s.t. (b, a) ∈ Att� there is a c ∈ A s.t.
(c, b) ∈ Att�. We write Acc(A) for the set of all acceptable
arguments w.r.t.A. A is conflict-free iff there are no a, b ∈ A
s.t. (a, b) ∈ Att�. A is a complete extension iff it is conflict-
free and Acc(A) = A. The minimal complete extension is the
grounded extension, written G(AF ).

Remark 1. The grounded extension has the following fixed
point characterization: G(AF ) =

⋃
i≥0 Gi where G0 =

Acc(∅) and Gi+1 = Acc(Gi) (i ≥ 0).

We define a consequence relation based on the grounded
extension for AFs as follows.

Definition 8. Where AF = (Arg(AS), Att�) is an AF for
AS. AS |∼ Att�A iff there is an argument a ∈ G(AF ) with
conc(a) = A.

3 Rationality Postulates
In [Caminada and Amgoud, 2007; Caminada et al., 2011] de-
sirable properties for argumentation-based consequence rela-
tions |∼ are defined:

Postulate 1. |∼ satisfies Direct Consistency if for no ar-
gumentation system AS, AS |∼A and AS |∼A (for some
A ∈ L).
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Postulate 2. |∼ satisfies Closure if for every argumentation
system AS, if AS |∼Ai for 1 6 i 6 n and B follows via the
strict rules of AS from {A1, . . . , An} then AS |∼B.

Postulate 3. |∼ satisfies Indirect Consistency if for no
argumentation system AS with strict rules S , there are
A1, . . . , An s.t. AS |∼Ai for 1 6 i 6 n and {A1, . . . , An} is
S-inconsistent.

Where ∆ ⊆ L, let Atoms(∆) be the set of all atoms occur-
ring in ∆.

Postulate 4. |∼ satisfies Non-Interference if for any
two argumentation systems AS = (L,S,D,K, ,6) and
AS′ = (L,S,D′,K′, ,6′), where K ∪ K′ is S-consistent,
(Atoms(D) ∪ Atoms(K)) ∩ (Atoms(D′) ∪ Atoms(K′)) = ∅,
we have: AS′ |∼A iff AS+ |∼A where AS+ = (L,S,D ∪
D′,K ∪ K′, ,≤+) and Atoms(A) ⊆ Atoms(AS′) (where
≤+ is such that ≤ [≤′] is the restriction of ≤+ to D × D
[D′ ×D′]).4

4 ASPIC−, Non-Interference, and Closure: a
Dilemma

In [Caminada et al., 2014] it is shown that |∼ UrRe, the conse-
quence relation associated with ASPIC− under the grounded
semantics, satisfies Closure and both Consistency postulates.
However, if the strict rules are defined on the basis of CL (see
Ex. 1) there are counterexamples to Non-Interference.

Example 2. Let AS2 = (L,SCL,D2 = {> ⇒ p}, ∅, ,D2×
D2) and AS3 = (L,SCL,D3 = {> ⇒ p,> ⇒ s,> ⇒
¬s}, ∅, ,D3×D3), where SCL and are defined as in Ex. 1.
Note that a = > ⇒ p ∈ G((Arg(AS2), UrRe)) but since
b = 〈> ⇒ s〉, 〈> ⇒ ¬s〉 → ¬p ∈ Arg(AS3) and b defeats
a, a 6∈ G((Arg(AS3), UrRe)).

A solution to problems of this kind has been proposed
in [Wu, 2012] for ASPIC+ (so using restricted rebut) and
for trivial preference orderings over the defeasible rules (so
where ≤ = D × D). Non-Interference is ensured there by
filtering out inconsistent arguments like b in Ex. 2, i.e., argu-
ments with inconsistent support sets.

A first proposal to ensure Non-Interference for |∼ UrRe

would be thus to filter out inconsistent arguments. However,
in ASPIC− frameworks with a non-trivial priority ordering
this leads to violations of Closure as shown in the following
example:

Example 3 (Ex. 1 continued). Suppose the inconsistent
a6 is removed from the AS while the consistent arguments
a1, a2, a3, a4, a5 remain. Since a5 � a1 while a1 6� a5, with
a1 the argument a5 can be defeated but not vice versa. Thus,
a1 is in the grounded extension G while a5 /∈ G. Moreover,
the potential defeater a6 of a2 is removed, thus a2 ∈ G. How-
ever, a3 and a4 keep each other out of the grounded extension.
Hence, we get the consequences ¬p∨¬q and p while ¬q does
not follow.

4A related rationality standard is Crash Resistance. It follows
from Non-Interference under some very weak criteria on the strict
rule base (cf. [Caminada et al., 2011]).

We analyse this example as follows: a1 = > ⇒2 ¬p ∨
¬q offers a strong reason against the reasoning path taken by
a3 = 〈> ⇒1 p〉 ⇒1 q since it expresses that at least one of
the two conclusions of the two subarguments a2 = > ⇒1 q
and a3 has to be false. In other words, someone arguing for
a3 is committed to both p and q while someone arguing for a1

expresses that this commitment is mistaken. In view of this,
one would expect a1 to defeat a3. Consequently, since a1 is in
the grounded extension, it would defend a4 = a1, a2 ⇒1 ¬q
from its attacker a3. Thus, also a4 would be grounded and we
would get Closure.

Our analysis motivates to generalize Unrestricted Rebut to
allow for attacks like the one of a1 on a3 as follows: a attacks
b in (the conclusions of) some of its subarguments b1, . . . , bn
iff conc(a) expresses that conc(b1), . . . , conc(bn) cannot all
hold at the same time. We will do so in the next section.

5 Generalizing Rebut: ASPIC	

We will now define ASPIC	, a framework for structured ar-
gumentation that satisfies all four rationality postulates above
while allowing for unrestricted rebut. Recall that we faced the
following dilemma in Section 4. Unrestricted rebut leads to
a violation of Non-Interference (see Ex. 2). While removing
inconsistent arguments from AFs remedies this shortcoming
it gives rise to a violation of Closure (see Ex. 3). We will now
show that we can have our cake and eat it: inspired by our
analysis of Ex. 3 we propose a generalization of unrestricted
rebut which allows for an argument to attack another one if
its conclusion claims that a subset of the commitments of the
attacked argument are not tenable together.

To formalize this idea we introduce two notational conven-
tions. First, we assume that a lifting of the contrariness oper-
ator : L → L to (finite) sets of formulas : ℘fin(L)\∅ → L
is available. For instance, one may express {A1, . . . , An}
by means of disjunction

∨n
i=1Ai or by means of conjunc-

tion
∧n
i=1Ai. Second, we define C(a) =df {conc(b) | b ∈

Sub(a)} to be the set of the conclusions of subarguments of
a.
Definition 9. Where a, b ∈ Arg(AS) : a gen-rebuts b (in
symbols: aGeReb) iff b is defeasible and conc(a) = ∆ for
some ∆ ⊆ C(b).
Definition 10. (a, b) ∈ GeRe� iff there is a c ∈ Sub(b) s.t.
aGeRec and c � a.

Clearly, if aUeReb then aGeReb while the other direction
does not hold in general.

The consequence relation for generalized rebuttal |∼ GeRe

is defined as in Definition 8.
In Example 3, note that now a1 defeats a3 and conse-

quently, AS |∼ GeRe¬p. In fact, as is shown in the next section
all four rationality postulates hold for |∼ GeRe given some re-
quirements on the strict rules that are met by many potential
base logics or domain dependent rule bases.

6 Rationality Standards and ASPIC	

When proving the rationality postulates for ASPIC	, we will
suppose that the set of strict rules S of a given AS satisfies
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Transposition (T), Resolution (R) and Cut (C) (where ∆′ ⊆
∆ and Θ′ ⊆ Θ are finite sets of formulas):

T: (∆ \∆′) ∪Θ′ → (Θ \Θ′) ∪∆′ if ∆→ Θ.

R: ∆ ∪∆ ∪Θ→ Θ.

C: ∆ ∪Θ→ A if ∆ ∪ {D} → A and Θ→ D.

We suppose that there is a conjunction symbol in the language
that works in the usual way: e.g., ∆ → A iff

∧
∆ → A;

∆→
∧

∆ and
∧

∆→ A where A ∈ ∆ are available rules.
The generality of these requirements ensure that our frame-

work can be instantiated by a broad class of rule bases. For
example, a wide variety of Tarski consequence relations, such
as CL, intuitionistic logic and many modal logics, can be
used to generate a set of strict rules. Likewise, closing a set
of domain specific rules under the properties defined above
generates such a strict rule base. Note that Transposition was
already required in e.g. [Prakken, 2011] and [Caminada et al.,
2014].

Example 4. For the instantiation SCL in terms of CL pro-
posed in Ex. 1 the requirements read:

T: If A1, . . . , An → ¬B1 ∨ . . . ∨ ¬Bm ∈ SCL then
A1, . . . , Al, Bk, . . . , Bm → ¬Al+1∨. . .∨¬An∨¬B1∨
. . . ∨ ¬Bk−1 ∈ SCL.

R: A1, . . . , An,¬A1 ∨ . . . ∨ ¬An ∨ ¬B1 ∨ . . . ∨ ¬Bm →
¬B1 ∨ . . . ∨ ¬Bm ∈ SCL.

C: IfA1, . . . , An → A∈SCL andB1, . . . , Bm → Ai∈SCL

then A1,.., Ai−1, Ai+1,.., An, B1,.., Bm→A∈SCL.

As noted in Section 4, Non-Interference fails for un-
restricted rebut in the presence of inconsistent arguments.
In contrast, for generalized rebut they are harmless as the
grounded extension attacks them:

Fact 1. Where AS = (L,S,D,K, ,≤), AF =
(Arg(AS), GeRe�), S is closed under T and C, and b ∈
Arg(AS) is S-inconsistent (i.e., C(b) is S-inconsistent), b is
defeated by 〈→ C(b)〉 ∈ G0(AF ).

Proof. Since b is inconsistent, ∃A ∈ L s.t. C(b) →
A,C(b) → A ∈ S . By T, A → C(b) ∈ S . By C,
C(b) → C(b) ∈ S . By T, a = 〈→ C(b)〉 ∈ Arg(AS).
As a has no attackers, a ∈ G0(AF ).

The four rationality standards hold for |∼ GeRe:

Theorem 1. |∼ GeRe satisfies Direct Consistency, Closure,
Indirect Consistency and Non-Interference for any AS =
(L,S,D,K, ,≤) such that S is closed under T, R and C
and ≤ is a total preorder.

Proof. Direct Consistency follows from G(AF ) being
conflict-free. Closure follows from Lemma 2 (proven below).
Indirect Consistency is a corollary of Direct Consistency and
Closure. Non-Interference follows with Fact 5 and Lemmas
3 and 4 (proven below). We show one direction. Suppose
AS′ |∼ GeRe

A. Thus, ∃a ∈ G(AF ′) s.t. conc(a) = A. By Fact
5, cut(a) ∈ G(AF ′). By Lemma 3, cut(a) ∈ G(AF+). Thus
AS+ |∼ GeRe

A.

The following proofs are for a given AF with underlying
argumentation system AS = (L,S,D,K, ,≤) that satisfies
the requirements of Theorem 1. In order to avoid clutter, we
will in the following sometimes write a1, . . . , an instead of
{conc(a1), . . . , conc(an)}. Furthermore, we will say a de-
feats b in {b1, . . . , bn} if a defeats b and conc(a) = b1, . . . , bn
for b1, . . . , bn ∈ Sub(b).

Some proofs of the following auxiliary results are omitted
due to space restrictions:

Fact 2. C1, . . . , Cm → A1, . . . , An, B2, . . . , Bk ∈ S if
A1, . . . , An → B1 ∈ S and C1, . . . , Cm → B1, . . . , Bk ∈
S .

Lemma 1. If a ∈ Gk(AF ) then a′ = 〈a → A〉 ∈ Gk(AF )
where k ≥ 0 and conc(a)→ A ∈ S .

Proof. We show the inductive step (k ⇒ k + 1) of the in-
ductive proof. Suppose b defeats a′ in some ∆. If a′ /∈ ∆
then b defeats a and is thus defeated by Gk. Else by Fact 2
b′ = 〈b → (∆ ∪ {a}) \ {a′}〉 defeats a. Thus, some c ∈ Gk
defeats b′ in some Λ. If b′ /∈ Λ, c′ also defeats b. Otherwise
with Fact 2 c′ = 〈c→ (Λ ∪ {b}) \ {b′}〉 defeats b.

Fact 3. 1. If b = 〈b1, . . . , bn → B〉 and Gk defeats b then
it also defeats b in some ∆ for which b /∈ ∆.

2. If a ∈ Gk, b = 〈a1, . . . , an → A〉 ∈ Arg(AS) where
a1, . . . , an ∈ Sub(a), then b ∈ Gk.

3. Where a ∈ G and a attacks b then G defeats b.

Proof. Ad 1. Suppose c ∈ Gk defeats b in ∆ and b ∈ ∆. By
Fact 2 and Lemma 1 c′ = 〈c→ (∆ ∪ {b1, . . . , bn}) \ {b}〉 ∈
Gk. Clearly, c′ defeats b. Ad 2. Suppose some c defeats b in
∆. If b /∈ ∆ then c also defeats a and thus Gk−1 defeats b.
Else by Fact 2 c′ = 〈c → ∆ ∪ {a1, . . . , an}) \ {b}〉 defeats
a. Again, Gk−1 defeats c′ and by item 1 it also defeats b. Ad
3. Omitted due to space.

Lemma 2. If a1, . . . , an ∈ G(AF ) and a = 〈a1, . . . , an →
A〉 ∈ Arg(AS), a ∈ G(AF ).

Proof. We prove this by an induction on π(a) = n +∑n
i=1 κ(ai) where κ(ai) is the minimal j for which ai ∈ Gj .

We show the inductive step. We first consider defeaters b of
a in some ∆ where a /∈ ∆. Let ∆i = ∆ ∩ Sub(ai) where
1 ≤ i ≤ n. Suppose first that some ∆i = ∅. Wlog suppose
∆1∪ . . .∪∆k = ∅ while each ∆j 6= ∅ where k < j ≤ n. Let
dj = 〈∆j →

∧
∆j〉. By Fact 3.2 dj ∈ Gκ(aj). By the IH,

d′ = 〈dk+1, . . . , dn → c〉 ∈ G. Since d′ attacks c, by Fact
3.3, G defeats c.

Suppose now that for every 1 ≤ i ≤ n, ∆i 6= ∅. Sup-
pose wlog that a1 ∈ min�({a1, . . . , an}). Thus, c′ =

〈c,∆2, . . . ,∆n → ∆1〉 defeats a1. Hence, there is a e ∈
Gκ(a1)−1 that defeats c′ in some Λ. By Fact 3.1 we can as-
sume that c′ /∈ Λ. Let Λj = Λ ∩ Sub(aj) for each 2 ≤ j ≤ n
and Λc = Λ ∩ Sub(c). Let lj = 〈Λj →

∧
Λj〉 if Λj 6= ∅

and otherwise lj is the empty string. By Fact 3.2, lj ∈ Gκ(aj)

whenever Λj 6= ∅. Let e′ = 〈e, l2, . . . , ln → Λc〉. By the IH,
e′ ∈ G. Since e′ attacks c, G defeats c by Fact 3.3.
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Consider a b defeating a in ∆ s.t. A ∈ ∆. By Fact 2
we have b′ = 〈b → (∆ ∪ {a1, . . . , an}) \ {a}〉 defeating a.
Above we have shown that G defeats b′. By Fact 3.1 G defeats
b.

Remark 2. Any argument a ∈ Arg(AS) can be trans-
formed into an argument cut(a) such that: any argument
b ∈ Sub(cut(a)) of the form b = 〈b1, . . . , bn → B〉
is such that each bi is either of the form 〈Bi〉 or of the
form 〈b′1, . . . , b′m ⇒ Bi〉, DefR(cut(a)) = DefR(a), and
C(cut(a)) ⊆ C(a).

The way to achieve this is to apply C “as much
as possible”. That means for any subargument b =
〈b1, . . . , bn → B〉 of a for which some bi is of the
form 〈b′1, . . . , b′m → Bi〉 we replace b in a by b′ =
〈b1, . . . , bi−1, b

′
1, . . . , b

′
m, bi+1, . . . , bn → B〉.

Fact 4. If b is S-consistent and b′ = 〈b → B〉 ∈ Arg(AS),
then b′ is S-consistent.

Fact 5. If a ∈ G(AF ) then also cut(a) ∈ G(AF ).

In the remainder of this section, letAS = (L,S,D,K, ,≤
), AS′ = (L,S,D′,K′, ,≤′), and AS+ = (S,D ∪ D′,K ∪
K′, ,≤+) be as in Postulate 4 where AF , AF ′ and AF+ are
the corresponding argumentation frameworks.

Fact 6. Where a ∈ Arg(AS+)\Arg(AS′) is S-consistent and
Atoms(conc(a)) ⊆ Atoms(K′∪D′), there is a c ∈ Arg(AS′)
for which C(c) ⊆ C(a), DefR(c) = DefR(a) ∩ D′ and
conc(c) = conc(a).

Lemma 3. cut(a) ∈ G(AF+) if cut(a) ∈ G(AF ′).

Proof. Let a′ = cut(a). We prove by induction that if a′ ∈
Gi(AF ′) then a′ ∈ G(AF+). We show the inductive step.
Let a′ ∈ Gi+1(AF ′). By Fact 1, a′ is S-consistent. Suppose
some b ∈ Arg(AS+) defeats a′ in {a1, . . . , an}. If b is S-
inconsistent it is, by Fact 1, attacked by G0(AF+) and hence
a′ is defended from b. Suppose now b is S-consistent.

If Atoms(conc(a′)) 6⊆ Atoms(AS′) then a′ is of the form
a′ = 〈c1, . . . , cm → A〉. If now additionally a′ = ai for
some 1 ≤ i ≤ n, say wlog a′ = a1, let b′ = 〈b →
c1, . . . , cm, a2, . . . , an〉 which is in Arg(AS+) by Fact 2.

Else let b′ = b. By Fact 4, b′ is S-consistent. By Fact
6, there is a c ∈ Arg(AS′) s.t. b′ �′ c, C(c) ⊆ C(b),
and conc(c) = conc(b′). Since c defeats a′ and a′ ∈
Gi+1(AF ′) there is a d ∈ Gi(AF ′) that defeats c in some
{d1, . . . , dk}. By the inductive hypothesis d ∈ G(AF+).
Since C(c) ⊆ C(b′), d also defeats b′. If conc(b′) is not
among conc(d1), . . . , conc(dk), d defeats b and hence de-
fends a from b. Otherwise suppose wlog, conc(d1) =
conc(b′). By Fact 2, d′ = 〈d → b, d2, . . . , dk〉 ∈ Arg(AS′).
By Lemma 1, d′ ∈ Gi(AF ′). Since d′ defeats b it defends a′.
Altogether we have shown that a′ is defended by G(AF+)
and thus a′ ∈ G(AF+).

Lemma 4. Where Atoms(conc(a)) ⊆ Atoms(D′ ∪ K′), if
a ∈ Gi(AF+) then there is an a′ ∈ Gi(AF ′) with conc(a′) =
conc(a), C(a′) ⊆ C(a) and DefR(a′) = DefR(a) ∩ D′.

The proof is similar to the one of Lemma 3.

7 Future Work
In future research we plan to investigate how to overcome
some of the restrictions imposed on the framework of this pa-
per. This includes, among others, to study non-total orders on
the priorities for the defeasible rules and other lifting princi-
ples such as last link, to combine generalized rebut with other
attack rules such as undercut, and to study variants of gener-
alized rebut. Generalized rebut in its current form allows for
attacks that some may deem counter-intuitive. E.g., given the
arguments a = 〈> ⇒3 p〉 ⇒1 q and b = > ⇒2 ¬p, we
have b GeRe� a simply since a � b. Of course, c = > ⇒3 p
defeats b and defends a, as desired. Nevertheless, on intuitive
grounds one may consider b defeating a as counter-intuitive
since the subargument c of a (the conclusion of which b at-
tacks) is stronger than b. An alternative would thus be to
define a gen-rebuts b in the conclusions of subarguments
b1, . . . , bn of b iff (I) conc(a) = {conc(b1), . . . , conc(bn)}
and (II) bi � a for all (or some) 1 ≤ i ≤ n. We will inves-
tigate such variants in the future. This variant also turns out
more promising when studying other lifting principles such
as last link.
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