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Abstract
Public announcements cause each agent in a group
to modify their beliefs to incorporate some new
piece of information, while simultaneously being
aware that all other agents are doing the same.
Given a set of agents and a set of epistemic goals,
it is natural to ask if there is a single announcement
that will make each agent believe the correspond-
ing goal. This problem is known to be undecidable
in a general modal setting, where the presence of
nested beliefs can lead to complex dynamics. In
this paper, we consider not necessarily truthful pub-
lic announcements in the setting of AGM belief re-
vision. We prove that announcement finding in this
setting is not only decidable, but that it is simpler
than the corresponding problem in the most sim-
plified modal logics. We then describe an imple-
mented tool that uses announcement finding to con-
trol robot behaviour through belief manipulation.

1 Introduction
We are concerned with the manner in which the beliefs of
a group of agents can be manipulated by making public an-
nouncements of propositional formulas. Suppose that we
have n agents, each with a set of current beliefs and an epis-
temic goal ψi. We are interested in finding a single formula
φ such that each agent Ai will believe the corresponding goal
ψi after a public announcement of φ. We address two prob-
lems related to this propositional announcement problem:

1. Is there always a solution, even when the goals are col-
lectively inconsistent?

2. What is the complexity of finding a solution?

We also describe an implemented announcement finding tool,
and demonstrate how it can be used as a robot controller.

Public announcements have been addressed in modal logic
[Plaza, 2007]. The problem that we address roughly corre-
sponds to the notion of an arbitrary public announcement
[Balbiani et al., 2007] in the tradition of Dynamic Epistemic
Logic (DEL) [Ditmarsch et al., 2008], except that we allow
non-truthful announcements. The important distinction in our
work is that we are interested in the simpler setting of propo-

sitional logic with AGM-style belief revision operators1. We
focus on the AGM setting because we expect announcement
finding to be computationally easier, as we avoid difficult
problems due to nested belief. We argue that our approach
is also appropriate for practical applications where the focus
is on giving orders in the most efficient way possible.

This paper is an extension of [Hunter and Schwarzentruber,
2015], and it makes several contributions to existing work on
the theory of belief change. First, we define arbitrary pub-
lic announcements in an AGM setting. We demonstrate that
the question is meaningful in this context, as there are nat-
ural applications where a reasonable treatment of announce-
ments need not be concerned with nested beliefs. This paper
can therefore be seen as part of the ongoing effort to con-
nect the study of belief change between the AGM and DEL
communities. The second contribution is a detailed analysis
of the complexity of arbitrary announcements for a particu-
lar AGM revision operator, namely Dalal’s revision operator
[Dalal, 1988]. Finally, we make a practical contribution, as
we introduce an implemented tool for finding announcements
with respect to a range of different belief revision operators.

Motivating Example Consider a domain involving a robot
controller, and n robots that act independently. The only way
the controller can communicate with the robots is through
broadcast messaging2. If there are constraints on messag-
ing in terms of cost or timing, then the controller may seek
to minimize the number of messages sent to ensure all robots
have the correct beliefs. Towards this end, it is useful to send
messages that will impact the beliefs of each robot differently.

As a concrete example, suppose that there are two surveil-
lance robots R1 and R2 that are tasked with patrolling a cer-
tain area. If there is a breach at the gate, we would like
one robot to go check the gate while the other continues
patrolling. In order to achieve the desired behaviour, the
controller would like to broadcast a single alarm message
“breach” that will lead each robot to simultaneously have the
appropriate beliefs about how they should behave. In this pa-
per, we formalize this kind of reasoning in an abstract setting.

1AGM stands for the highly influential approach to belief revi-
sion due to Alchourròn, Gärdenfors and Makinson [Alchourrón et
al., 1985].

2Assumed here to be synchronous.
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2 Preliminaries
2.1 Belief Revision
One highly influential approach to belief revision is the AGM
approach, in which revision is captured by an operator that
satisfies a particular set of rationality postulates [Alchourrón
et al., 1985]. The beliefs of an agent are represented by a be-
lief set, which is a logically closed set of propositional formu-
las over a vocabulary P . In this paper, we assume P is finite;
hence K, the belief set, is equivalent to a single formula. An
AGM belief revision operator takes a belief set K and for-
mula φ as input, and returns a new belief set that incorporates
φ while keeping as much of K as consistently possible. We
write |K| to denote the set of interpretations where K is true.

Every AGM revision operator ∗ has the property that, for
any belief set K, there is an underlying total pre-order ≺K

over interpretations of P such that |K ∗ φ| = min≺K
(φ)

[Katsuno and Mendelzon, 1992]. So AGM revision involves
finding ≺K-minimal states consistent with a particular for-
mula. One important example is the Dalal operator [Dalal,
1988], denoted by ∗d. For this operator, the underlying order-
ing is defined by the Hamming distance between interpreta-
tions. The Hamming distance between interpretations v, w is
the number of propositional variables assigned different truth
values by v and w. So then |K ∗d φ| is the set of models of φ
that have minimal Hamming distance from a model of K.

Belief manipulation is concerned with the ability of one
agent to convince another to hold certain beliefs. With some
revision operators, agents can be manipulated to believe a tar-
get formula φ exclusively through indirect statements or evi-
dence [Hunter and Booth, 2015]. The work in this paper can
be seen as an exploration of multi-agent belief manipulation.

2.2 Dynamic Epistemic Logic
Dynamic Epistemic Logic (DEL) provides an alternative ap-
proach to reasoning about beliefs. In DEL, modal logics
of knowledge and belief are combined with dynamic logic
to model epistemic change. Standard modalities include K
(knowledge), B (belief), and the parametrized announcement
modality [φ]. The semantics of [φ] is defined as a restriction
to worlds where φ holds. For an overview of DEL, we refer
the reader to [Ditmarsch et al., 2008].

There have been versions of DEL that incorporate be-
lief revision operators over worlds in the AGM sense; see,
for example ([Benthem, 2007; Baltag and Smets, 2006;
2008]). In these logics, each agent a has an ordering over
possible worlds and the semantics of [φ] is defined by model
transformations that adjust the orderings.

The most obvious distinction between the AGM approach
and the DEL approach to belief revision is the fact that the
DEL approach permits the representation of nested beliefs.
As a result, it is much more expressive. Also, some of the
properties we expect in the AGM setting are no longer valid.
For example, the Success postulate for AGM revision states
that φ ∈ K ∗ φ. In a modal setting, this is equivalent to the
schema [φ]Bφ. This is not valid in most multi-agent epis-
temic logics, because an announcement of φ often changes
the world such that φ should not actually be believed.3.

3This is the case in so-called Moore sentences, for example.

The fact that announcing φ does not ensure belief in φ
leads to a natural question: how can we get another agent to
believe something through announcement? This question is
addressed in DEL via the logic of arbitrary public announce-
ments [Balbiani et al., 2007]. Arbitrary announcement logic
is similar, but not identical, to the problem addressed in this
paper. First of all, we do not have belief revision operators in
public announcement logic; we have only hard updates. Fur-
thermore, in DEL, announcements are required to be truthful.

2.3 Known Complexity Results
In this section, we give some known complexity results re-
lated to public announcements. The first result is really the
starting point for this work.
Theorem 1 ([French and van Ditmarsch, 2008])
Satisfiability in the logic of arbitrary announcements is
undecidable.
Hence, if we have nested knowledge and a rich domain of
Kripke structures, we can not hope to find public announce-
ments to change the beliefs of agents in the desired manner. A
simpler logic called DLPA-APAL (Dynamic Logic of Propo-
sitional Assignments with Arbitrary Public Announcement
Logic) is defined in [Charrier and Schwarzentruber, 2015].
In DLPA-APAL, Kripke structures are restricted to include
just one world with each valuation, and epistemic relations
are represented by programs over propositional assignments.
Theorem 2 ([Charrier and Schwarzentruber, 2015])
Satisfiability in DLPA-APAL is NEXPTIME-complete for the
single announcement case.
This result shows that restricting to reasoning over beliefs on
valuations is decidable. Our goal in this paper is to show that
if we restrict further, by removing nested beliefs, we can get
a better complexity. This is true even if we consider willful
manipulation, where announcements can be false.

3 The Propositional Announcement Problem
3.1 The Basic Problem
Given n agents and n AGM belief revision operators ∗i as
input; we are looking for the existence of a consistent formula
φ such that

K1 ∗1 φ |= ψ1 (1)
K2 ∗2 φ |= ψ2

...
Kn ∗n φ |= ψn

where Ki and ψi represent the belief set and the goal of the
agent i, respectively. Obviously, if

∧
i ψi is consistent, then

we can just revise by this. But this is not always the case.

Example Consider the robot controller example over the
vocabulary {patrol, checkgate}. We think of this vocabulary
as defining a state machine, where each interpretation repre-
sents a state; the robot can have actions that are triggered by
transitions to given states. This is a standard control mech-
anism for simple agents in a video game setting, and it can
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function as a control mechanism for our simple robot agents
as well. In our example, the patrol variable is true when the
robot should be patrolling their area and the checkgate vari-
able is true when the robot is supposed to check the gate.

Suppose we have two robots R1 and R2 with initial belief
states defined as follows:

Bel(R1) = {¬patrol ∨ checkgate}
Bel(R2) = {¬patrol ∨ ¬checkgate}

The controller believes there is a problem at the gate. Is there
a formula that can be broadcast to immediately get R1 to
check the gate while R2 patrols the grounds? In other words,
is there a formula φ such that:

{¬patrol ∨ checkgate} ∗ φ |= checkgate

{¬patrol ∨ ¬checkgate} ∗ φ |= ¬checkgate ∧ patrol
The answer is yes; we can set φ = patrol.

The preceding example is framed in the context of the
robot controller, but it also demonstrates an important case
for propositional announcement. In particular, it shows that
there are cases where the goals are inconsistent, yet a solution
is possible.

3.2 Existence of Solutions
In this section, we give some basic results related to the exis-
tence of solutions for the propositional announcement prob-
lem. The following result is immediate.
Proposition 1 For all n > 1, there are instances of (1) with
no solution.
Proof Assume the vocabulary {p}, let K1 = {p},
K2 = {¬p}, ψ1 = ¬p and ψ2 = p. It follows immedi-
ately that any solution φ satisfies φ |= p ∧ ¬p, so there is no
consistent solution. �

The following result may be less obvious, but it is similarly
straightforward. The idea is that, if there are “enough” propo-
sitional variables, we can set up a set of inconsistent goals that
can be guaranteed by an appropriate revision.
Theorem 3 Let P be a vocabulary and let the number of
agents n satisfy n < 2|P| . Then there is an instance of (1)
over P with inconsistent goals that has a solution.
Proof Let P0, . . . , Pn be a list of mutually inconsistent max-
imal conjunctions over literals of P; we know that such a list
exists, because there are 2|P| distinct maximal conjunctions
of literals, and we know that 2|P| > n by assumption. For
each i, we set:

Ki = (¬P0 ∨ Pi) ∧
∧
j 6=i

¬Pj

ψi = Pi ∧
∧
j 6=i

¬Pj

Note that the conjunction
∧

i ψi is clearly inconsistent. If we
set φ = P0, then it is easy to verify that Ki ∗i φ |= ψi for
each i, which is what we wanted to show. �

These results demonstrate that the general propositional an-
nouncement problem is non-trivial. There are instances with

no solution and there are instances with solutions, and we can
not easily identify which is the case without considering the
possible revisions. This leads to the following question: How
hard is it to determine if there is a solution to a given instance
of the problem? We turn to this problem in the next section.

4 Complexity
4.1 The Decision Problem
In this section, we restrict the problem slightly by requir-
ing that all agents have the same revision operator. Given
n agents and an AGM revision operator ∗, we are looking for
the existence of a consistent formula φ such that

K1 ∗ φ |= ψ1 (2)
K2 ∗ φ |= ψ2

...
Kn ∗ φ |= ψn

where Ki and ψi represent the belief set and the goal of the
agent i, respectively. In principle, ∗ could be any shared revi-
sion operator.

In practice, we will often be interested in the complexity of
finding announcements; but we must first consider the corre-
sponding decision problem.

The Propositional Announcement Problem (PAP(∗))
Input:

An integer n
A list K1, . . . ,Kn of formulas (initial beliefs).
A list ψ1, . . . , ψn of formulas (goals).

Ouput:
Yes, if there exists φ satisfying (2)
No, otherwise.

We refer to this problem as PAP (∗) to emphasize that it de-
pends on some given operator ∗ on belief sets. We normally
assume that ∗ is an AGM revision operator, but this need not
be the case in general.

4.2 Announcement Existence
For the moment, we are interested in analyzing a simple case
to obtain the most efficient algorithm possible. Hence, we
consider Dalal’s well-known revision operator based on Ham-
ming distance[Dalal, 1988]. As in §2.1, we let ∗d denote
Dalal’s revision operator.

We present a non-deterministic algorithm that decides
PAP (∗d). In the algorithm, we use non-determistic choice
to select the minimum distance di between Ki and ψi. Also
note that d(K, v) denotes the minimum Hamming distance
between the set of models of formula K and interpretation v.

EXIST ANN (K1, . . . ,Kn, ψ1, . . . , ψn)
0. Let m be the size of the underlying input vocabulary of

K1, . . . ,Kn, ψ1, . . . , ψn

1. Guess d1, . . . , dn ∈ {0, 1, . . . ,m}
2. Guess valuations v1, . . . , vn
3. For all i, j ∈ {1, . . . , n}

If d(Kj , vi) < dj , reject.
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4. For all i ∈ {1, . . . , n}
If d(Ki, vi) > di, reject.

5. For all i, j ∈ {1, . . . , n}
If d(Kj , vi) = dj and vi 6|= ψj , reject.

6. Accept.

We need to prove that EXIST ANN(K̄, ψ̄) actually produces
the desired result. In the proof, we write min≤Ki

(φ) for the
minimal Hamming distance from a model of φ to a model of
Ki.

Theorem 4 Let K̄ = K1, . . . ,Kn and let ψ̄ = ψ1, . . . , ψn

be sequences of formulas. Then EXIST ANN(K̄, ψ̄) accepts
if and only if there exists φ such that Ki ∗d φ |= ψi for each i.

Proof Suppose that EXIST ANN(K̄, ψ̄) accepts, and let us
consider an accepting run. Let φ be a formula with ||φ|| =⋃

i{vi}, where the valuations vi are those from an accepting
run guessed on line 2. By line 3,

min
≤Ki

(φ) ≥ dj

because if this is not the case, the algorithm would have re-
jected the input. But then, by line 4,

min
≤Ki

(φ) = dj .

In other words, for each i, the models of φ that are models of
Ki are of distance di fromKi. Finally, since the conditions of
all lines are false, it follows that for every v such that v |= φ, it
must be the case that d(Kj , v) = dj implies v |= ψj . Hence,
the minimal models of φ with respect to Ki are also models
of ψi. So K ∗ φ |= ψi, which is what we wanted to show.

Now suppose that there exists φ such thatKi ∗dφ |= ψi for
each i. For each i, define di = min≤Ki(φ). For each i, let vi
denote one of the valuations of ψi such that d(Ki, vi) = di.
We know that such a vi exists, since Ki ∗d φ |= ψi. If we
guess d̄ = d1, . . . , dn and v̄ = v1, . . . , vn on lines 1 and 2 of
the algorithm, then we have an accepting run. �

So EXIST ANN(K̄, ψ̄) does what we want it to do: it de-
termines if there is a public announcement φ such that each
agent i believes ψi following revision by φ. We can also
say something about the complexity. The initial guessing
is a polynomial number of guesses with respect to the input
length. Note that in the algorithm, tests d(Kj , vi) < dj etc.
can be answered by an NP oracle. Hence, the algorithm in-
tuitively seems to lie in the complexity class ΣP

2 = NPNP .
The following result makes this claim precise.

Theorem 5 PAP(∗d) is in ΣP
2 .

Proof After the initial guesses, the algorithm clearly
runs in polynomial time other than the checks of the form
d(K, v) < d at several stages. But recall that we are using
the Hamming distance here, so this check can be performed
as follows. Guess a set of atomic propositional variables of
size less than d, and let v′ be the interpretation obtained from
v by switching the truth values of these variables. If v′ |= K,
then the minimum distance between K and v is less than d.
This process is in NP .

Hence the entire algorithm runs in time NP with a poly-
nomial number of calls to an NP oracle. This gives the com-
plexity NPNP = ΣP

2 , which was the desired result. �

Recall that announcement finding was NEXPTIME-
complete in the modal case, even if we restricted possible
worlds to be valuations. So this result shows that the prob-
lem is much easier in the AGM case. Note that hardness of
PAP(∗d) is left as an open issue.

So far, we have restricted attention to Dalal’s revision op-
erator. This choice can be justified to some extent by the fact
that Dalal’s operator permits iterated revision, which we an-
ticipate will be important in practice for a robot controller.
Inspection of our proofs shows that the actual properties of
the Hamming distance operator only occur in two places.

• When the minimum distance is guessed in the algorithm.

• In the checks of the form d(K, v) < d.

The advantage of Dalal’s revision operator in both cases is
that we have a polynomial number of steps, because the dis-
tance only ranges from 0 to the size of the vocabulary. How-
ever, this is obviously not true for other revision operators;
we return to this point in the conclusion.

5 Implementation
5.1 Basic Approach
In this section, we are interested in a different question: can
we use announcement finding to implement a feasible solu-
tion to a problem of practical interest? To answer this ques-
tion, we describe a practical tool that uses announcement
finding as the basis for a simulated robot controller.

We describe AnnB, an automated robot controller that cal-
culates public announcements to manipulate the beliefs of
agents and force them to perform particular tasks. The key
points of operation for AnnB are as follows:

• Each agent has a set of beliefs and a revision operator.

• There is a fixed set of movement behaviours.

• Believing certain formulas causes an agent to perform
behaviours.

In this environment, giving an agent information for revision
can trigger changes in activity. Given a set of goal behaviours,
AnnB computes the announcement required to change the be-
liefs of the agents in a way that gets each agent to perform a
desired action.
AnnB is written in Kotlin4. It is built on the publicly avail-

able libraries of GenB [Hunter and Tsang, 2016]. Briefly,
GenB is a general belief revision solver that is able to cal-
culate the result of any AGM belief revision operation. There
are built-in sample operators, but GenB also allows the user
to specify any revision operator by giving the correspond-
ing faithful assignment. Hence, building AnnB on the GenB
framework gives us considerable flexibility.

4Kotlin is a variant of java, available at www.kotlinlang.org.
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Figure 1: Defining Agents

5.2 Defining Behaviours
The first step is to specify the agents. This is done through
a simple dialog box in which agents are added and given an
initial belief state, as in Figure 1. By convention, we intro-
duce a propositional variable that matches with the colour of
the agent. This variable will initially only be believed by an
agent of that colour. Figure 2 gives the simulation view.

After setting up the set of agents, we define behaviours
through the behaviour definition table. Essentially, the be-
haviour definition table associates the truth of propositional
formulas with movement on screen. Built-in algorithms de-
fine standard movement patterns such as wander, patrol, and
find-path. The behaviour of an agent is determined by check-
ing if it believes each formula in the behaviour window, start-
ing from the top and working down. An example is given in
Figure 3. In this example, the yellow agent is initially pa-
trolling at position y = 0. The green agent is initially pa-
trolling at position y = 2, because it does not believe the first
two propositions. The final line in the behaviour table is the
default behaviour that any agent should display if it does not
believe any of the previous propositions.

5.3 Algorithm
The algorithm used by AnnB is based on EXIST ANN; how-
ever, there are several changes. First, the input includes a
plausibility function Pi for each agent i. Informally, Pi(v) <
Pj(w) indicates that agent i considers the valuation v to be
more plausible than w. This function defines a faithful as-
signment, which allows any revision operator to be specified.
The second difference is that the algorithm is deterministic,
so it loops through possible values rather than guessing.

The following is a high level description of the algorithm.
In practice, we interate over the di’s starting each at 0 and
incrementing one position at a time. We write form(v̄) to
mean the disjunctive normal form sentence obtained from a
sequence of valuations in a the natural way.

FIND ANN DET (K1, . . . ,Kn, P1, . . . , Pn, ψ1, . . . , ψn)
0. Let m = maxi,s Pi(s)
1. For each d̄ = (d1, . . . , dn) with 0 ≤ di ≤ m:
2. For each n-tuple v̄ = (v1, . . . , vn) of valuations:
3. If Pj(vi) < dj for any i, j, continue.
4. If Pi(vi) > di for any i, continue.
5. If Pj(vi) = dj and vi 6|= ψj for any i, j, continue.
6. Return φ = form(v̄)

7. Return “no solution.”

Figure 2: Simulation View

We can prove that this algorithm is correct.

Theorem 6 Let K̄ = K1, . . . ,Kn, and ψ̄ = ψ1, . . . , ψn

be sequences of formulas. Let P1, . . . , Pn be a sequence
of plausibility functions. If φ is the formula returned by
FIND ANN DET(K̄, P̄ , ψ̄) then Ki ∗i φ |= ψi for each i,
where ∗i is the AGM revision operator obtained from the
plausibility function Pi.

Proof Parallel to the proof of Theorem 4. �

In Figure 4, we give an illustration of the way this algorithm
is used. Suppose that we would like the yellow agent to stop
patrolling, and guard the north entrance. At the same time, we
would like the red agent to continue patrolling. We can spec-
ify this behaviour in a declarative manner by indicating that
yellow should no longer believe patrol, whereas red should
continue to believe it. We can then find a suitable announce-
ment by clicking the Find Announcement button. Clicking
on Commit changes the beliefs of each agent, and causes the
new behaviour to be exhibited in the simulation window.

5.4 Performance and Functionality
One advantage of AnnB is that it is able to solve the an-
nouncement problem for all AGM revision operators. How-
ever, if we would like to do a second revision, we need to
supply a new set of plausibility orderings. While it would be
possible to do this in accordance with a particular iterated re-
vision operator, it must be done manually in the current soft-
ware.

Due to the complexity result in Theorem 5, we can not ex-
pect a general announcement solver to find solutions quickly
for large instances. For the application at hand, this is not a
major limitation. We are able to define behaviours using a
small set of variables and patterns, inspired by standard char-
acter movement in video games. However, run times for large
instances quickly become unmanageable. To analyze the ef-
ficiency, we need to define and specify suitable bench mark
problems in our domain of interest; such a specification is be-
yond the scope of the present paper. We leave a systematic
analysis of the practical efficiency of AnnB for future work.

It is not our intention to suggest that AnnB can function
as a complete robot control system. But it can play an im-
portant role. In general, the coordination of autonomous
robots involves replanning when obstacles are faced [Coltin
and Veloso, 2013]. When an obstacle is encountered by one
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Figure 3: Defining Behaviours

robot, a broadcast announcement is the simplest way to in-
form the others. By using an announcement finder, we can
select an announcement that ensures all goals are acheived.

6 Discussion
6.1 Relation with Modal Approaches
Belief revision has been addressed in several different modal
frameworks, including [Benthem, 2007; Baltag and Smets,
2006; Caridroit et al., 2015; 2016]. The most obvious differ-
ence in our approach is that we are unable to capture nested
beliefs. However, it is also significant that we are not con-
strained with any notion of the “actual” world. Indeed, the
announcer is just searching for a formula that suitably inter-
acts with the revision operators; this gives us a more flexible
setting to address problems of belief manipulation.

Although we work in a propositional framework, our re-
sults are closely connected to modal work on announce-
ment finding. In particular, we remark that we can actu-
ally reformulate PAP (∗) as a variant of the model checking
problem of DEL with plausibility models ([Benthem, 2007;
Baltag and Smets, 2006]). We create a (potentially exponen-
tially bigger than K1, . . . ,Kn) pointed Kripke modelM, w
such that the valuations of the most plausible worlds in w are
exactly models of Ki for all agents i ∈ {1, . . . , n}. Then
we ask whether there exists a propositional formula φ such
thatM, w |= [φ]BR(B1ψ1, . . . , Bnψn) where [φ]BR is the an-
nouncement operator that semantically performs the belief re-
vision for all agents and Bi is the belief operator for agent i.

6.2 Future Work
We have only considered the complexity of announcement
finding in the case of the Dalal’s revision operator, where the

Figure 4: Finding Announcements

number of levels in the plausibility ordering is at most |P| (the
size of the vocabulary). In general, the worst case complex-
ity to check all levels of a total pre-order over a vocabulary
of size P will be 2|P|. If we are actually required to make
this many checks, then the decision problem for other revi-
sion operators would lie at a higher level of the polynomial
hierarchy. This would not be surprising, as it is known that
Dalal’s operator is computationally simpler than other AGM
revision operators [Eiter and Gottlob, 1992]. We leave the
complexity of additional AGM operators for future work.

It would also be useful to consider announcement finding
for iterated revision in the tradition of Darwiche and Pearl
[Darwiche and Pearl, 1997; Jin and Thielscher, 2007]. In this
context, the problem takes n agents and n Darwiche-Pearl
revision operators ∗i as input. We are looking for the exis-
tence of a consistent formula φ such that ψi ∈ min(≺i ∗i φ)
for each i, where ≺i and ψi represent the epistemic state and
the goal of the agent i, respectively. Following [Liberatore,
1997], we expect the complexity will be higher in this case.

At a practical level, improvements can be made to AnnB.
One obvious direction for future work would be to improve
the running time of the algorithm through suitable heuristics,
or by using an efficient SAT solver for the NP calculations.
We are also interested in moving past simulation to a proto-
type controller for real, physical robots using our tool.

6.3 Conclusion

We have considered arbitrary public announcements in the
setting of propositional belief revision. We have proved that
the decision problem for announcement finding in this setting
is computationally simpler than it is in a modal setting, even
under very strong simplifying assumptions. We have argued
that this result is important, because revision by announce-
ments can be used in practical applications where the notion
of fully nested beliefs is not required. This has been demon-
strated in practice through the development of robot control
software based on announcement finding.
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