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Abstract
We investigate the decidability and computational
complexity of query conservative extensions in Horn
description logics (DLs) with inverse roles. This is
more challenging than without inverse roles because
characterizations in terms of unbounded homo-
morphisms between universal models fail, block-
ing the standard approach to establishing decid-
ability. We resort to a combination of automata
and mosaic techniques, proving that the problem is
2EXPTIME-complete in Horn-ALCHIF (and also
in Horn-ALC and in ELI). We obtain the same up-
per bound for deductive conservative extensions, for
which we also prove a CONEXPTIME lower bound.

1 Introduction
In the past years, access of incomplete data mediated by de-
scription logic (DL) ontologies has gained increasing impor-
tance [Poggi et al., 2008; Bienvenu and Ortiz, 2015]. The
main idea is to specify domain knowledge and semantics of
the data in the ontology, resulting in more complete answers
to queries. Significant research activity has led to efficient
algorithms and tools for a wide range of DLs such as DL-Lite
[Calvanese et al., 2007], more expressive Horn-DLs [Eiter
et al., 2012; Trivela et al., 2015; Bienvenu et al., 2016], and
“full Boolean” DLs such as ALC [Kollia and Glimm, 2013;
Zhou et al., 2015].

In contrast to query answering, which is by now well-
understood, there is a need to develop reasoning services for
ontology engineering that are tailored towards query-centric
applications and support tasks such as ontology versioning
and module extraction from ontologies. For example, if one
wants to safely replace an ontology with a new version or with
a smaller subset of itself (a module), then the new ontology
should preserve the answers to all queries over all ABoxes
(which store the data) [Kontchakov et al., 2010]. The same
guarantee ensures that one can safely replace an ontology with
another version in an application [Konev et al., 2012]. In both
cases, ontologies need to be tested not for their logical equiva-
lence, but for giving the same answers to relevant queries over
relevant datasets.

This requirement can be formalized using conservative ex-
tensions. In the following, we use the DL term TBox instead

of ontology. A TBox T2 ⊇ T1 is a (Γ,Σ)-query conserva-
tive extension of a TBox T1, where Γ and Σ are signatures of
concept/role names relevant for data and queries, respectively,
if all Σ-queries give the same answers w.r.t. T1 and T2, for
every Γ-ABox. Note that the subset relationship T2 ⊇ T1

is natural when replacing a TBox with a module, but not
in versioning, so we might not want to insist on it. In this
more general case, T1 and T2 are called (Γ,Σ)-query insepa-
rable. Conservativity and inseparability of TBoxes, as defined
above, are useful when knowledge is considered static and
data changes frequently. Variants of these notions for knowl-
edge bases (KBs), which consist of a TBox and an ABox, can
be used for applications with static data [Wang et al., 2014;
Arenas et al., 2016].

We also consider the basic notion of query entailment: T1

(Γ,Σ)-query entails T2 if all Σ-queries give at least the an-
swers w.r.t. T1 that they give w.r.t. T2, on any Γ-ABox. Query
inseparability and conservativity are special cases of entail-
ment: inseparability is bidirectional entailment and conser-
vativity is entailment with the assumption that T1 ⊆ T2. It
thus suffices to prove upper bounds for query entailment and
lower bounds for conservative extensions. As a query lan-
guage, we concentrate on conjunctive queries (CQs); since
we work with Horn-DLs and quantify over the queries, this
is equivalent to using unions of CQs (UCQs) or positive ex-
istential queries (PEQs). CQ entailment has been studied for
various DLs [Kontchakov et al., 2009; Lutz and Wolter, 2010;
Konev et al., 2012; Botoeva et al., 2016c], also in the KB
version [Botoeva et al., 2016b; Botoeva et al., 2016c] and
for OBDA specifications [Bienvenu and Rosati, 2015], see
also the survey [Botoeva et al., 2016a]. Nevertheless, there is
still a notable gap in our understanding of this notion: query
entailment between TBoxes is poorly understood in Horn
DLs with inverse roles, often considered a crucial feature, for
which there do not seem to be any available results. This is
for a reason: it has been observed in [Botoeva et al., 2016a;
Botoeva et al., 2016b] that standard techniques for Horn DLs
without inverse roles fail when inverse roles are added.

In fact, for Horn-DLs without inverse roles query en-
tailment can be characterized by the extence of homo-
morphisms between universal models [Lutz and Wolter, 2010;
Botoeva et al., 2016a]. The resulting characterizations pro-
vide an important foundation for decision procedures, of-
ten based on tree automata [Botoeva et al., 2016a]. In
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the presence of inverse roles, however, such characteriza-
tions are only correct if we require the existence of n-
bounded homomorphisms, for any n [Botoeva et al., 2016a;
Botoeva et al., 2016b]. It is not obvious how the existence
of such infinite families of bounded homomorphisms can be
verified using tree automata (or related techniques) and, conse-
quently, decidability results for query conservative extensions
in Horn-DLs with inverse roles are difficult to obtain. The
only result we are aware of concerns inseparability of KBs,
and it is proved using intricate game-theoretic techniques.

In this paper, we develop decision procedures for query
entailment and related problems in Horn DLs with inverse
roles. The main idea is to provide a more refined charac-
terization, mixing unbounded and bounded homomorphisms
and using unbounded homomorphisms only in places where
this is strictly necessary. We can then deal with the “un-
bounded part” using tree automata while the “bounded part”
is addressed by precomputing relevant information using a
mosaic technique. In this way, we establish decidability and
a 2EXPTIME upper bound for query entailment (and thus in-
separability and conservativity) in Horn-ALCHIF . Together
with lower bounds from [Botoeva et al., 2016c], we get 2EXP-
TIME-completeness for all fragments of Horn-ALCHIF that
contain ELI or Horn-ALC.

We additionally study the case of deductive entailment be-
tween TBoxes, i.e., the question whether T1 entails at least
the same concept and role inclusions as well as functional-
ity assertions over Σ as T2. This problem too has not pre-
viously been studied for Horn DLs with inverse roles. We
consider ELHIF⊥-TBoxes and show that deductive entail-
ment is equivalent to a restricted version of query entailment.
We obtain a model theoretic characterization, a decision pro-
cedure, and a 2EXPTIME upper complexity bound. We also
give a CONEXPTIME lower bound.

Omitted proofs can be found in the long version here:
www.informatik.uni-bremen.de/tdki/research/papers.html

2 Preliminaries
2.1 Horn-ALCHIF
We introduce Horn-ALCHIF , a member of the Horn-SHIQ
family of DLs whose reasoning problems have been widely
studied [Hustadt et al., 2007; Krötzsch et al., 2007; Eiter et
al., 2008; Kazakov, 2009; Lutz and Wolter, 2012; Ibáñez-
Garcı́a et al., 2014]. Let NC,NR,NI be sets of concept, role,
and individual names. A role is either a role name r or an
inverse role r−. As usual, we identify (r−)− and r, allowing
to switch between roles names and their inverses easily. A
concept inclusion (CI) is of the form L v R, where L and R
are concepts defined by the syntax rules

R,R′ ::= > | ⊥ | A | ¬A | R uR′ | ¬L tR | ∃r.R | ∀r.R

L,L′ ::= > | ⊥ | A | L u L′ | L t L′ | ∃r.L

with A ranging over concept names and r over roles. A role
inclusion (RI) is of the form r v s with r, s roles and a
functionality assertion (FA) is of the form func(r) with r a
role. ELI⊥-concepts are expressions that are built according
to the syntax rule for L above, but do not use “t”.

A Horn-ALCHIF TBox T is a set of CIs, RIs, and FAs.
An ELHIF⊥ TBox is a set of ELI⊥-CIs, RIs, and FAs. To
avoid dealing with rather messy technicalities that do neither
seem to be very illuminating from a theoretical viewpoint nor
too useful from a practical one,1 we generally assume that
functional roles cannot have any subroles, that is, r v s ∈ T
implies func(s) /∈ T . We conjecture that our main results also
hold without that restriction. An ABox A is a non-empty set
of concept and role assertions of the form A(a) and r(a, b),
where A ∈ NC, r ∈ NR and a, b ∈ NI. We write ind(A) for
the set of individuals in A.

The semantics is defined as usual in terms of interpretations
I = (∆I , ·I) complying with the standard name assumption,
i.e., aI = a for all a ∈ NI [Baader et al., 2017]. An interpreta-
tion I is a model of a TBox T if it satisfies all inclusions and
assertions in it, and likewise for ABoxes. A is consistent with
T if T and A have a common model.

A signature Σ is a set of concept and role names. A Σ-ABox
is an ABox that uses only concept and role names from Σ, and
likewise for Σ-ELI⊥-concepts and other syntactic objects.

Generally and without further notice, we work with Horn-
ALCHIF TBoxes that are in a certain nesting-free normal
form, that is, they contain only CIs of the form

> v A, A v ⊥, A1 uA2 v B, A v ∃r.B, A v ∀r.B,

where A,B,A1, A2 are concept names and r, s are roles. It is
well-known that every Horn-ALCHIF TBox T can be con-
verted into a TBox T ′ in normal form (introducing additional
concept names) such that T is a logical consequence of T ′ and
every model of T can be extended to one of T ′ by interpreting
the additional concept names, see e.g. [Bienvenu et al., 2016].
As a consequence, all results obtained in this paper for TBoxes
in normal form lift to the general case.

2.2 Query Conservative Extensions and
Entailment

A conjunctive query (CQ) is of the form q(x) = ∃yϕ(x,y),
where x and y are tuples of variables and ϕ(x,y) is a con-
junction of atoms of the form A(v) or r(v, w) with A ∈ NC,
r ∈ NR, and v, w ∈ x ∪ y. We call x answer variables and y
quantified variables of q. A CQ q is tree-shaped if the undi-
rected graph (x ∪ y, {{v, w} | r(v, w) is an atom in q}) is
a tree; tree-shaped CQs are thus connected and may contain
multi-edges. A tree-shaped CQ q is strongly tree-shaped or an
stCQ if the root is the one and only answer variable and q has
no multi-edges, i.e., no two atoms r1(z1, z2), r2(z′1, z

′
2) with

r1 6= r2 and {z1, z2} = {z′1, z′2}.
A match of q in an interpretation I is a function π : x ∪

y → ∆I such that π(v) ∈ AI for every atom A(v) of q
and (π(v), π(w)) ∈ rI for every atom r(v, w) of q. We
write I |= q(a1, . . . , an) if there is a match of q in I with
π(xi) = ai for all i < n. A tuple a of elements from NI is a
certain answer to q over an ABox A given a TBox T , written
T ,A |= q(a), if I |= q(a) for all models of T and A.

1E.g., out of 439 available ontologies in BioPortal [Matentzoglu
and Parsia, 2017], only 21 (≤ 4.8%) contain the described pattern. A
significant fraction of the occurrences of the pattern appear to be due
to modeling mistakes.
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Definition 1 Let Γ,Σ be signatures and T1, T2 Horn-
ALCHIF TBoxes. We say that T1 (Γ,Σ)-CQ entails T2, writ-
ten T1 |=CQ

Γ,Σ T2, if for all Γ-ABoxes A consistent with T1 and
T2, all Σ-CQs q(x) and all tuples a ⊆ ind(A), T2,A |= q(a)
implies T1,A |= q(a). If in addition T1 ⊆ T2, we say that T2

is a (Γ,Σ)-CQ conservative extension of T1. If T1 |=CQ
Γ,Σ T2

and vice versa, then T1 and T2 are (Γ,Σ)-CQ inseparable.

We also consider (Γ,Σ)-stCQ entailment, denoted |=stCQ
Γ,Σ and

defined in the obvious way by replacing CQs with stCQs.
If T1 6|=CQ

Γ,Σ T2 because T2,A |= q(a) but T1,A 6|= q(a) for
some Γ-ABox A consistent with both Ti, Σ-CQ q(x) and a,
we call the triple (A, q, a) a witness to non-entailment.
Example 2 Let T1 = {PhDStud v ∃advBy.Prof, advBy v
adv−} and T2 = T1 ∪ {func(advBy)}, Σ = {Prof} and Γ =

{PhDStud, adv}. Then T1 6|=CQ
Γ,Σ T2 because of the witness

({PhDStud(john), adv(mary, john)},Prof(x),mary).
If we drop from Definition 1 the condition that A must be
consistent with both T1 and T2, then we obtain an alternative
notion of CQ entailment that we call CQ entailment with
inconsistent ABoxes. While this new notion trivially implies
CQ entailment in the original sense, the converse fails.
Example 3 Let T1 = ∅, T2 = {A1 u A2 v ⊥} and Γ =

{A1, A2}, Σ = {B}. Then T1 |=CQ
Γ,Σ T2 but T1 does not

(Γ,Σ)-CQ entail T2 with inconsistent ABoxes.
The following lemma relates the two notions of CQ entailment.
CQ evaluation is the problem to decide, given a TBox T , an
ABox A, a CQ q, and a tuple a ∈ ind(A), whether T ,A |=
q(a).
Lemma 4 CQ entailment with inconsistent ABoxes can be
decided in polynomial time given access to oracles deciding
CQ entailment and CQ evaluation.
Consequently and since CQ evaluation is in EXPTIME in Horn-
ALCHIF [Eiter et al., 2008], all complexity results obtained
in this paper also apply to CQ entailment with inconsistent
ABoxes.

It is easy to see that T1 6|=CQ
Γ,Σ T2 if there is a Γ-role r and a

Σ-role s with T2 |= r v s but T1 6|= r v s. We write T1 |=RI
Γ,Σ

T2 if there are no such r and s. Clearly, T1 |=RI
Γ,Σ T2 can be

decided via |Γ| · |Σ| many Horn-ALCHIF subsumption tests,
thus in EXPTIME [Tobies, 2001]. It is thus safe to assume
T1 |=RI

Γ,Σ T2 when deciding CQ entailment, which we will
generally do from now on to avoid dealing with special cases.

2.3 Deductive Conservative Extensions
Another natural notion of entailment is deductive entail-
ment, which generalizes the notion of deductive conserva-
tive extensions [Ghilardi et al., 2006; Lutz et al., 2007;
Konev et al., 2009; Lutz and Wolter, 2010], and which sepa-
rates two TBoxes in terms of concept and role inclusions and
functionality assertions, instead of ABoxes and queries.
Definition 5 Let Σ be a signature and let T1 and T2 be
ELHIF⊥ TBoxes. We say that T1 Σ-deductively entails T2,
written T1 |=ELHIF⊥Σ T2, if for all Σ-ELI⊥-concept inclu-
sions α and all Σ-RIs and Σ-FAs α: T2 |= α implies T1 |= α.

If additionally T1 ⊆ T2, then we say that T2 is a Σ-deductive
conservative extension of T1. If T1 |=ELHIF⊥Σ T2 and vice
versa, then T1 and T2 are Σ-deductively inseparable.
Although closely related, it is not difficult to see that deductive
and query entailment are orthogonal.
Example 6 (1) Let T1, T2 be as in Example 3 and Σ =

{A1, A2, B}. Then T1 |=stCQ
Σ,Σ T2, but T1 6|=ELHIF⊥Σ T2.

(2) Let T1 = ∅ and T2 = {A v ∃r.B}, and Σ =

{A,B}. Then T1 |=stCQ
Σ,Σ T2, but T1 6|=CQ

Σ,Σ T2 as witnessed
by ({A(a)}, ∃xB(x), a). However, T1 |=ELHIF⊥Σ T2.
Nevertheless, the two notions are sufficiently closely related
so that we have the following.
Lemma 7 In ELHIF⊥, deductive entailment can be decided
in polynomial time given access to oracles for stCQ entailment
and stCQ evaluation.

2.4 Homomorphisms and the Universal Model
For interpretations I1, I2 and a signature Σ, a Σ-
homomorphism from I1 to I2 is a total function h : ∆I1 →
∆I2 such that (1) h(a) = a for all a ∈ NI, (2) h(d) ∈ AI2
for all d ∈ AI1 , A ∈ NC ∩ Σ, and (3) (h(d), h(d′)) ∈ rI2 for
all (d, d′) ∈ rI1 , r ∈ NR ∩ Σ. If there is a Σ-homomorphism
from I1 to I2, we write I1 →Σ I2.

Let T be a Horn-ALCHIF TBox in normal form andA an
ABox consistent with T . A type for T is a set t ⊆ sub(T )∩NC

such that T |=
d
t v A impliesA ∈ t for all concept namesA.

For a ∈ ind(A), let tpT (a) = {A | T ,A |= A(a)} be the
type of a relative to T . When a ∈ ind(A), t, t′ are types for
T , and r is a role, we write
• a  T ,A

r t if T ,A |= ∃r.
d
t(a) and t is maximal with

this condition, and
• t  Tr t′ if T |=

d
t v ∃r.

d
t′ and t′ is maximal with

this condition.
A path for A and T is a finite sequence π = ar0t1 · · ·
tn−1rn−1tn, n ≥ 0, with a ∈ ind(A), r0, . . . , rn−1 roles,
and t1, . . . , tn types for T such that

(i) a  T ,A
r0 t1 and, if func(r0) ∈ T , then there is no b ∈

ind(A) such that T ,A |= r0(a, b);
(ii) for every 1 ≤ i < n, we have ti  Tri ti+1 and, if

func(r) ∈ T , then ri−1 6= r−i .
When n > 0, we use tail(π) to denote tn. Let Paths be the set
of all paths for A and T . The universal model IT ,A of T and
A is defined as follows:

∆IT ,A = Paths

AIT ,A = {a ∈ ind(A) | T ,A |= A(a)} ∪
{π ∈ ∆I \ ind(A) | T |=

l
tail(π) v A}

rIT ,A = {(a, b) ∈ ind(A)2 | s(a, b) ∈ A, T |= s v r} ∪
{(π, πst) | πst ∈ Paths and T |= s v r} ∪
{(πst, π) | πst ∈ Paths and T |= s− v r}

It is standard to prove that IT ,A is indeed a model of T and
A and that it is universal in the sense that for every model I
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of T and A, we have I → IT ,A. Consequently, T ,A |= q(a)
iff IT ,A |= q(a), for all CQs q(x) and tuples a of individuals.

We also need universal models of a TBox T and a type t,
instead of an ABox. More precisely, we define IT ,t = IT ,At

where At = {A(a) | A ∈ t} for a fixed a ∈ NI.

3 Model-theoretic Characterization
We aim to provide a model-theoretic characterization of query
entailment that will be the basis for our decision procedure
later on. The first step towards this characterization consists
in showing that non-entailment is always witnessed by tree-
shaped ABoxes and tree-shaped CQs with at most one answer
variable. Here, tree-shaped ABoxesA are defined analogously
to tree-shaped CQs: A is tree-shaped if the undirected graph
GA = (ind(A), {{a, b} | r(a, b) ∈ A}) is a tree.

Lemma 8 Let T1 and T2 be Horn-ALCHIF TBoxes with
T1 |=RI

Γ,Σ T2. If T1 6|=CQ
Γ,Σ T2, then there is a witness (A, q, a)

where A and q are tree-shaped and |a| ≤ 1, i.e., q has at
most one answer variable. If T1 6|=stCQ

Γ,Σ T2, then there is such
a witness where additionally q is an stCQ.

Our goal is to characterize query entailment in terms of homo-
morphisms between (universal) models. Homomorphisms are
natural because answers to CQs are preserved under homo-
morphisms (both on interpretations and on ABoxes). In fact,
they are preserved even under bounded homomorphisms if the
bound is not smaller than the number of variables in the CQ.

Let I1, I2 be interpretations, d ∈ ∆I1 , and n ≥ 0. We
say that there is an n-bounded Σ-homomorphism from I1 to
I2, written I1 →n

Σ I2, if for any subinterpretation I ′1 of I1

with |∆I′1 | ≤ n, we have I ′1 →Σ I2. Moreover, we write
I1 →fin

Σ I2 if I1 →n
Σ I2 for any n. The following characteri-

zation follows from the definition of CQ entailment, Lemma 8,
and the connection between CQs and suitably bounded homo-
morphisms.

Lemma 9 Let T1 and T2 be Horn-ALCHIF TBoxes with
T1 |=RI

Γ,Σ T2. Then T1 |=CQ
Γ,Σ T2 iff for all tree-shaped Γ-

ABoxes A consistent with T1 and T2, IT2,A →fin
Σ IT1,A.

Ideally, we would like to use Lemma 9 as a basis for a decision
procedure based on tree automata. To this end, it is useful that
the ABoxA and models IT1,A and IT2,A in the lemma are tree-
shaped. What is problematic is that Lemma 9 speaks about
unbounded homomorphisms, for any bound (corresponding to
the unbounded size of CQs), since it does not seem possible
to verify such a condition using automata. We would thus like
to replace bounded homomorphisms with unbounded ones,
which does not compromise the characterization in the case
of Horn-DLs without inverse roles [Lutz and Wolter, 2010;
Botoeva et al., 2016c]. However, this is not true already for
ELI TBoxes [Botoeva et al., 2016a]:

Example 10 Let T1 = {A v ∃s.B, B v ∃r−.B}, T2 =
{A v ∃s.B, B v ∃r.B}, Γ = {A}, and Σ = {r}. Then
both IT1,A and IT2,A contain an infinite r-path; the r-path
in IT1,A has a final element while the one in IT2,A does not.
Hence IT2,A 6→Σ IT1,A, but T1 |=CQ

Γ,Σ T2 (see Thm. 11 below).

We now show that it is possible to refine Lemma 9 so that
it makes a much more careful statement in which bounded
homomorphisms are partly replaced by unbounded ones. It is
then possible to check the unbounded homomorphism part of
the characterization using tree automata as desired, and to deal
with unbounded homomorphisms using a mosaic technique
that “precompiles” relevant information about unbounded
homomorphisms to be used in the automaton construction.

We start with introducing relevant notation. For a signa-
ture Σ, we use I|con

Σ to denote the restriction of the interpre-
tation I to those elements that can be reached from an ABox
individual by traveling along Σ-roles (forwards or backwards).
For a TBox T , an ABoxA, and a ∈ ind(A), we use IT ,A|a to
denote the subtree interpretation in the universal model IT ,A
rooted at a. A Σ-subtree in IT ,A is a maximal tree-shaped, Σ-
connected sub-interpretation I of IT ,A that does not comprise
any ABox individuals. The root of I is the (unique) element of
∆I that can be reached from an ABox individual on a shortest
path among all element of ∆I . The refined characterization
uses simulations instead of homomorphisms for the stCQ case
because they are insensitive to multi-edges. Given a signature
Σ and two interpretations I,J , a Σ-simulation of I in J is a
relation σ ⊆ ∆I×∆J such that: (1) (a, a) ∈ σ for all a ∈ NI,
(2) if d ∈ AI with A ∈ Σ and (d, e) ∈ σ, then d2 ∈ AJ , and
(3) if (d, d′) ∈ rI with r a Σ-role and (d, e) ∈ σ, then there is
some e′ with (e, e′) ∈ rJ and (d′, e′) ∈ σ. We write I �Σ J
if there is a Σ-simulation of I in J .
Theorem 11 Let T1 and T2 be Horn-ALCHIF TBoxes with
T1 |=RI

Γ,Σ T2. Then T1 |=CQ
Γ,Σ T2 iff for all tree-shaped Γ-

ABoxes A consistent with T1 and T2, and for all tree-shaped,
finitely branching models I1 of A and T1, the following hold:
(1) IT2,A|con

Σ →Σ I1;
(2) for all Σ-subtrees I in IT2,A, one of the following holds:

(a) I →Σ I1;
(b) I →fin

Σ IT1,tpI1
(a) for some a ∈ ind(A).

Furthermore, T1 |=stCQ
Γ,Σ T2 iff for all A and I1 as above,

IT2,A|con
Σ �Σ I1.

4 Decidability and Complexity
We prove that, in Horn-ALCHIF , CQ entailment can be de-
cided in 2EXPTIME. By existing lower bounds, the former is
thus 2EXPTIME-complete in all fragments of Horn-ALCHIF
that contain ELI or Horn-ALC. Moreover, stCQ entailment
in Horn-ALCHIF and deductive entailment in ELHIF⊥ can
also be decided in 2EXPTIME. We establish a CONEXPTIME
lower bound and leave the precise complexity open.

To obtain the upper bounds, we use a combination of tree
automata and mosaics to implement the characterization in
Theorem 11. We start with a mosaic-based decision procedure
for Condition (2b). Note that a Σ-subtree I in IT2,A can
be uniquely identified by the type t2 of its root. It therefore
suffices to show the following.
Theorem 12 Given two Horn-ALCHIF TBoxes T1 and T2

and types ti for Ti, i ∈ {1, 2}, it can be decided in time
22p(|T2|log|T1|)

whether IT2,t2 |con
Σ →fin

Σ IT1,t1 , p a polynomial.
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Although we cannot get rid of bounded homomorphisms in
Theorem 11, a central idea for applying a mosaic approach to
prove Theorem 12 is to first replace bounded homomorphisms
with unbounded ones. To make this possible, we also replace
IT1,t1 with a suitable class of interpretations used as targets
for the unbounded homomorphisms.

To illustrate, consider Example 10 and let t1 = t2 = {B}.
The difference between IT2,t2 →fin

Σ IT1,t1 and IT2,t2 →Σ

IT1,t1 is that unbounded homomorphisms fail once they “reach
the root” of IT1,t1 while bounded homomorphisms can, de-
pending on the bound, map the root of IT2,t2 deeper and
deeper into IT1,t1 , thus never reaching its root. The latter is
possible because IT1,t1 is regular in the sense that any two
elements which have the same type root isomorphic subtrees.
This is of course not only true in this example, but by construc-
tion in any universal model. To transition back from bounded
to unbounded homomorphisms, we replace IT1,t1 with a class
of (finite and infinite) interpretations that can be seen as a
“backwards regularization” of IT1,t1 . In our concrete example,
we would include an interpretation where a predecessor is
added to the root of IT1,t1 because IT1,t1 contains an element
of the same type as the root that has such a predecessor, an
interpretation where that predecessor has a predecessor, and
so on, even ad infinitum. We will now make this precise.

An interpretation I is quasi tree-shaped if:
1. ∆I ⊆ ({−1} ∪ N)∗;
2. (d, e) ∈ rI implies that e = d · c or d = e · c for some
c ∈ {−1} ∪ N.

For d, e ∈ ∆I , we say that e is a successor of d if e = d · c
for some c ∈ N or d = e · −1. By this convention, quasi tree-
shaped interpretations can be viewed as directed graphs. The
directedness does not correspond to the distinction between
roles and inverse roles; in particular, there can be several role
edges in both directions between the same d and e. Quasi
tree-shaped interpretations can be viewed as a finite or infinite
trees that need not have a root as they can extend indefinitely
not only downwards but also upwards.
Let T be a Horn-ALCHIF TBox and let tp(T ) be the set of
all types for T consistent with T . For every t0 ∈ tp(T ), we
use tp(T , t0) to denote the set of all t ∈ tp(T ) that occur in
the universal model IT ,t0 of t0 and T . Furthermore, given a
quasi tree-shaped interpretation I and an element d ∈ ∆I , the
1-neighborhood of d in I is a tuple nI1 (d) = (t−, ρ, t, S) such
that (a) t = tpI(d); (b) if there is a predecessor d0 ∈ ∆I of
d, then t− = tpI(d0) and ρ = {r | (d0, d) ∈ rI}, otherwise
ρ = t− = ⊥; (c) S is the set of all pairs (ρ′, t′) such that
there is a successor d′ of d with (d, d′) ∈ ρ′ (ρ′ maximal) and
t′ = tpI(d′). We write (t−1 , ρ1, t1, S1) v (t−2 , ρ2, t2, S2) if
t1 = t2, S1 ⊆ S2 and, if ρ1 6= ⊥, then ρ1 = ρ2 and t−1 = t−2 .

In the following, we define a class canω(T , t0) of quasi
tree-shaped models of T . To construct a model from this class,
choose a type t ∈ tp(T , t0) and define I = ({d0}, ·I) such
that tpI(d0) = t. Then extend I by applying the following
rule exhaustively in a fair way:
(R) Let d ∈ ∆I . Choose some e ∈ ∆IT ,t0 such that

nI1 (d) v nIT ,t0
1 (e), and add to d the predecessor and/or

successors required to achieve nI1 (d) = n
IT ,t0
1 (e).

The potentially infinite class canω(T , t0) is the set of all
interpretations I obtained as a limit of this construction.
Lemma 13 Let T be a Horn-ALCHIF TBox, t0 ∈ tp(T ),
and I a tree-shaped interpretation. Then I →fin

Σ IT ,t0 iff
there is a J ∈ canω(T , t0) with I →Σ J .
We can now use Lemma 13 to devise the mosaic-based proce-
dure for deciding the existence of a bounded homomorphism.
Let T1, T2 be as in Theorem 11. We denote with rol(Ti) the
set of all roles r, r− such that the (possibly inverse) role r
occurs in Ti. Moreover, for a set of roles ρ, denote with ρ|Σ
the restriction of ρ to Σ-roles.

Fix now some t1 ∈ tp(T1). Intuitively, a mosaic for t1 rep-
resents a possible 1-neighborhood of some element in IT1,t1
together with a decoration with sets of types for T2 that can
be homomorphically embedded into the neighborhood. For-
mally, a mosaic for t1 is a tuple M = (t−, ρ, t, S, `) such
that (t−, ρ, t, S) = n

IT1,t1
1 (d) for some d ∈ ∆IT1,t1 and

` : {t−, t} ∪ S → 2tp(T2) satisfies the following condition:

(M) For all t̂ ∈ `(t) we have t̂∩Σ ⊆ t and, for all t̂′ ∈ tp(T2),
r ∈ rol(T2) with t̂  T2r t̂′, one the following holds for
σ = {s | T |= r v s}:
(a) σ|Σ = ∅;
(b) t− 6= ⊥, σ|Σ ⊆ ρ−, and t̂′ ∈ `(t−);
(c) there is (ρ′, t′) ∈ S with t̂′ ∈ `(ρ′, t′) and

σ|Σ ⊆ ρ′.
To ease notation, we use t−M to denote t−, ρM to denote ρ, and
likewise for the other components of a mosaic M . LetM be
the set of all mosaics for t1 andM′ ⊆ M. An M ∈ M′ is
good inM′ if the following conditions are satisfied:
1. for each (ρ, t) ∈ SM , there is an N ∈ M′ such that

(tM , ρ, t) = (t−N , ρN , tN ), `M (ρ, t) = `N (tN ), and
`M (tM ) = `N (t−N ).

2. if t−M 6= ⊥, there is N ∈M′ with (ρM , tM ) ∈ SN , t−M =

tN , `M (t−M ) = `N (tN ), and `M (tM ) = `N (ρM , tM ).
LetM0,M1, . . . be the sequence obtained by starting with
M0 = M and definingMi+1 to beMi when all mosaics
that are not good inMi have been removed. Assume thatMp

is where the sequence stabilizes.
Lemma 14 Let ti ∈ tp(Ti) for i ∈ {1, 2}. Then there is a
J ∈ canω(T1, t1) such that IT2,t2 |con

Σ →Σ J iffMp contains
a mosaic M with t2 ∈ `M (tM ).

Since there are at most 2|T1|2
|T2|

mosaics for t1, we obtain the
desired Theorem 12.

We now develop the decision procedure for CQ and stCQ
entailment in Horn-ALCHIF , based on Theorems 11 and 12.
Our main tool are alternating two-way tree automata with
counting (2ATAc), an extension of alternating tree automata
over unranked trees [Grädel and Walukiewicz, 1999] with the
ability to count. A tree is a non-empty (potentially infinite)
set of words T ⊆ (N \ 0)∗ closed under prefixes. We assume
that trees are finitely branching, i.e., for every w ∈ T , the set
{i | w·i ∈ T} is finite. For anyw ∈ (N\0)∗, we setw·0 := w.
If w = n0n1 · · ·nk, k ≥ 0, we set w ·−1 := n0 · · ·nk−1. For
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an alphabet Θ, a Θ-labeled tree is a pair (T, L) with T a tree
and L : T → Θ a node labeling function.

A 2ATAc is a tuple A = (Q,Θ, q0, δ,Ω) where Q is a finite
set of states, Σ is the input alphabet, q0 ∈ Q is the initial
state, δ is a transition function, and Ω : Q→ N is a priority
function. The transition function δ maps every state q and
input letter a ∈ Θ to a positive Boolean formula δ(q, a) over
the truth constants true and false and transition atoms of the
form q, 〈−〉q, [−]q, 3nq and 2nq. Informally, a transition q
expresses that a copy of A is sent to the current node in state
q; 〈−〉q means that a copy is sent in state q to the predecessor
node, which is required to exist; [−]q means the same except
that the predecessor node is not required to exist; 3nq (resp.,
2nq) means that a copy of q is sent to k (resp., to all but k)
successors. The semantics of 2ATAc is given in terms of runs
as usual, please see the appendix. We use L(A) to denote
the set of trees accepted by A. It is standard to verify closure
of 2ATAc under intersection. The following is obtained via
reduction to standard alternating parity tree automata [Vardi,
1998].
Theorem 15 The emptiness problem for 2ATAc can be solved
in time exponential in the number of states.

Let T1, T2 be Horn-ALCHIF TBoxes and Γ,Σ signatures.
We aim to show that one can construct a 2ATAc A such that
L(A) = ∅ iff T1 6|=CQ

Γ,Σ T2. In fact, A is the intersection of
four 2ATAc A1,A2,A3,A4. They run over Θ-labeled trees
with Θ = 2Θ0 × 2Θ1 × 2Θ2 , where Θ0 = Γ ∪ {r− | r ∈ Γ}
and Θi = sig(Ti) ∪ {r− | r ∈ sig(Ti)} for i = 1, 2. For a Θ-
labeled tree (T, L), we use Li, i ∈ {0, 1, 2} to refer to the i-th
component of L, that is, L(n) = (L0(n), L1(n), L2(n)), for
all n ∈ T . The component L0 represents a (possibly infinite)
ABoxA = {A(n) | A ∈ L0(n)}∪{r(n ·−1, n) | n 6= ε, r ∈
L0(n)}, where r−(a, b) is identified with r(b, a). The 2ATAc

A1 accepts a Θ-labeled tree (T, L) iff A is finite, connected
and includes the root of T (and is thus tree-shaped), and it is
straightforward to construct.

Components L1, L2 give rise to interpretations I1 =
(T, ·I1) and I2 = (ind(A), ·I2), where for i ∈ {1, 2}:
AIi = {n | A ∈ Li(n)}
rIi = {(n, n · −1) | r−∈Li(n)} ∪ {(n · −1, n) | r∈Li(n)}
A2 verifies that I1 is a model of A and T1, which is standard,
too. A3 verifies that A is consistent with T2, and I2 is IT2,A
restricted to ind(A). This involves computing the type of an
ABox element without having access to the anonymous (that
is: non-ABox) part of IT2,A, using a characterization of ABox
entailments [Bienvenu et al., 2013] in terms of derivation trees.
Finally, A4 verifies that either (1) or (2) from Theorem 11
is not satisfied. For (1), A4 sends a copy of itself to every
tree I starting at an ABox element in IT2,A, and attempts
to show that I cannot be homomorphically embedded into a
corresponding tree in I1. This attempt is successful if either
incompatible types are found in the root or, recursively, there
is some successor of the current type in IT2,A that cannot be
mapped to any neighbor in I1. Since the anonymous part of
IT2,A is not explicit in the input, the current type is stored
in the states, and the generating relation t  T2r t′ is “hard-
coded” into the transition function. For Condition (2a), A4

non-deterministically guesses a Σ-subtree I and proceeds
as in (1); Condition (2b) is verified based on Theorem 12
by pre-computing→fin

Σ . Thus the number of states of A4 is
exponential in T2 (because of the types) but only polynomial
in |T1|. Automata A1,A2,A3 have polynomially many states.

In the special case of stCQ entailment, we simply replace
A4 with a 2ATAc A

′
4 that refutes the simulation condition of

Theorem 11 analogously to how A4 refutes Condition (1).
To obtain the desired upper complexity bounds for query

and deductive entailment, we observe that, in both cases, A
can be constructed in time polynomial in |T1| and exponential
in |T2|, and the emptiness check adds an exponential blowup
(Theorem 15). For deductive entailment, we use the reduction
to stCQ entailment (Lemma 7).

Theorem 16 In Horn-ALCHIF , the following problems can
be decided in time 22p(|T2|log|T1|)

, p a polynomial: (Γ,Σ)-CQ
entailment, (Γ,Σ)-CQ inseparability, and (Γ,Σ)-CQ conser-
vative extensions. The same holds for Σ-deductive entailment,
Σ-deductive inseparability, and Σ-deductive conservative ex-
tensions in ELHIF⊥.

Matching lower bounds for all problems except deductive
entailment are provided by [Botoeva et al., 2016c]. They hold
even in the case where Γ = Σ.

Corollary 17 In any fragment of Horn-ALCHIF that con-
tains ELI or Horn-ALC, the following problems are
2EXPTIME-complete: (Γ,Σ)-CQ entailment, (Γ,Σ)-CQ in-
separability, and (Γ,Σ)-CQ conservative extensions.

In the description logic EL, which is ELI without inverse roles,
deductive conservative extensions and deductive Σ-entailment
are EXPTIME-complete [Lutz and Wolter, 2010]. This raises
the question whether the upper bound for deductive entailment
reported in Theorem 16 is tight. While we leave this question
open, we observe that the transition from EL to ELI does
increase the complexity of deductive conservative extensions
and related problems to at least CONEXPTIME. We consider
this a surprising result since in reasoning problems that are not
defined in terms of conjunctive queries, adding inverse roles
does typically not result in an increase of complexity. The
following is established by a non-trivial reduction of a tiling
problem.

Theorem 18 In ELI and in ELHIF⊥, deductive conserva-
tive extensions, deductive Σ-entailment, and deductive Σ-
inseparability are CONEXPTIME-hard.

5 Conclusion
As future work, it would be interesting to close the gap in com-
plexity between CONEXPTIME and 2EXPTIME for deductive
entailment in ELI and ELHIF⊥. Furthermore, it would be
interesting to extend the results to ontology languages from
the family of Datalog+/- (aka existential rules), in particular
to frontier-guarded TGDs.
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and Pascal Hitzler. Complexity boundaries for Horn descrip-
tion logics. In Proc. AAAI, pages 452–457, 2007.

[Lutz and Wolter, 2010] Carsten Lutz and Frank Wolter. Decid-
ing inseparability and conservative extensions in the descrip-
tion logic EL. J. Symb. Comput., 45(2):194–228, 2010.

[Lutz and Wolter, 2012] Carsten Lutz and Frank Wolter. Non-
uniform data complexity of query answering in description
logics. In Proc. KR, 2012.

[Lutz et al., 2007] Carsten Lutz, Dirk Walther, and Frank Wolter.
Conservative extensions in expressive description logics. In
Proc. IJCAI, pages 453–458, 2007.

[Matentzoglu and Parsia, 2017] Nico Matentzoglu and Bijan
Parsia. BioPortal Snapshot 30 March 2017 (data set), 2017.
http://doi.org/10.5281/zenodo.439510.

[Poggi et al., 2008] Antonella Poggi, Domenico Lembo, Diego
Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Riccardo Rosati. Linking data to ontologies. 10:133–173,
2008.

[Tobies, 2001] Stephan Tobies. Complexity Results and Practi-
cal Algorithms for Logics in Knowledge Representation. PhD
thesis, RWTH Aachen, 2001.

[Trivela et al., 2015] Despoina Trivela, Giorgos Stoilos, Alexan-
dros Chortaras, and Giorgos B. Stamou. Optimising
resolution-based rewriting algorithms for OWL ontologies.
J. Web Sem., 33:30–49, 2015.

[Vardi, 1998] Moshe Y. Vardi. Reasoning about the past with
two-way automata. In Proc. ICALP, pages 628–641, 1998.

[Wang et al., 2014] Kewen Wang, Zhe Wang, Rodney W. Topor,
Jeff Z. Pan, and Grigoris Antoniou. Eliminating concepts and
roles from ontologies in expressive descriptive logics. Comput.
Intell., 30(2):205–232, 2014.

[Zhou et al., 2015] Yujiao Zhou, Bernardo Cuenca Grau, Yavor
Nenov, Mark Kaminski, and Ian Horrocks. PAGOdA: Pay-as-
you-go ontology query answering using a Datalog reasoner. J.
Artif. Intell. Res., 54:309–367, 2015.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1122


