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Abstract

AGM theory is the most influential formal account
of belief revision. Nevertheless, there are some
issues with the original proposal. In particular,
Parikh has pointed out that completely irrelevant
information may be affected in AGM revision. To
remedy this, he proposed an additional axiom (P)
aiming to capture (ir)relevance by a notion of syn-
tax splitting. In this paper we generalize syntax
splitting from logical sentences to epistemic states,
a step which is necessary to cover iterated revi-
sion. The generalization is based on the notion of
marginalization of epistemic states. Furthermore,
we study epistemic syntax splitting in the context
of ordinal conditional functions. Our approach sub-
stantially generalizes the semantical treatment of
(P) in terms of faithful preorders recently presented
by Peppas and colleagues.

1 Introduction
AGM theory [Alchourrón et al., 1985; Gärdenfors and
Makinson, 1988], named after its inventors Alchourrón,
Gärdenfors and Makinson, is by far the most influential
formal account of belief revision, and the AGM postulates
are widely accepted as properties rational revision functions
should possess. In spite of its popularity, there are two main
problems with the original AGM approach. First of all, AGM
specifies revision in dependance of the prior belief set only
rather than as a fully binary operator: there is no connection
between revision operators on different prior belief sets of a
given language. If we think of a binary AGM operator as a
family of revision operators, each being based on some be-
lief set of L, no connections are imposed between different
operators by AGM. This issue has been addressed in iterated
revision (for a seminal paper, see [Darwiche and Pearl, 1997])
where AGM theory was extended in a way such that also such
connections are captured. A crucial point for this extension is
that iterated revision works on epistemic states and their asso-
ciated total preorders rather than on belief sets. This way ad-
equate semantical structures on possible worlds are provided
which allow us to perform AGM revision without losing the
connections missing in the original AGM approach.

There is a second problem, first pointed out by Parikh
[Parikh, 1999]: AGM revision is not local: beliefs which are
entirely irrelevant to the new information may be affected.
In a nutshell, in AGM new information about, say, your
favourite soccer team my affect your beliefs on the breeding
behaviour of penguins in the arctic. To avoid such undesired
effects, Parikh proposed to extend the AGM postulates with
an additional axiom (P) building on the notion of syntax split-
ting. This allows to set up local contexts for revision.

Recent work [Peppas et al., 2015] elaborates on constraints
on total preorders that implement the strong version of (P).
Strong (P) not only considers revision as a fully binary opera-
tor taking a prior belief set and a new sentence, but also claims
relations between revision on different prior belief sets. [Pep-
pas et al., 2015] aims at characterizing the subclass of faithful
preorders that induce revision operators satisfying axiom (P)
in addition to the AGM postulates. However, this work is
based on belief sets, not on epistemic states, and uses total
preorders as structures providing meta information for AGM
revision. Therefore, it cannot capture iterated belief revision.

The analysis we provide in this paper goes significantly
beyond [Peppas et al., 2015] in various respects. Our contri-
butions are the following:
• We introduce a concept of syntax splitting for the revi-

sion of epistemic states. This concept is in compliance
with AGM and [Darwiche and Pearl, 1997]. In partic-
ular, we show that marginalization of epistemic states
(well-known from probabilistics) is a perfect means to
implement techniques of syntax splitting.
• We generalize the properties considered in [Peppas et

al., 2015] for epistemic states and hence for iterated revi-
sion. Moreover, we study revision by sets of sentences.
• We study the concept of epistemic syntax splitting in

the specific framework of ordinal conditional functions
(OCFs, [Spohn, 1988]), and present c-revisions as a
proper means to realize epistemic syntax splitting. This
also provides connections to revision via the principle of
minimum cross-entropy in probability theory.

The rest of the paper is organized as follows. In Sect. 2
we introduce relevant formal preliminaries. Sect. 3 discusses
aspects of AGM theory and related work relevant to the topic
of this paper. Our generalization of syntax splitting to epis-
temic states is presented in Sect. 4. Sect. 5 then studies epis-
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temic syntax splitting in the context of ordinal conditional
functions. Finally, Sect. 6 concludes.

For lack of space all proofs are omitted.

2 Formal Preliminaries
Let L be a finitely generated propositional language over
an alphabet Σ with atoms a, b, c, . . ., and with formulas
A,B,C, . . .. For conciseness of notation, we will omit the
logical and-connector, writing AB instead of A ∧ B, and
overlining formulas will indicate negation, i.e. A means ¬A.
Let Ω denote the set of possible worlds over L; Ω will be
taken here simply as the set of all propositional interpreta-
tions over L. ω |= A means that the propositional formula
A ∈ L holds in the possible world ω ∈ Ω; then ω is called
a model of A, and the set of all models of A is denoted by
Mod (A). For propositions A,B ∈ L, A |= B holds iff
Mod (A) ⊆ Mod (B), as usual. By slight abuse of notation,
we will use ω both for the model and the corresponding con-
junction of all positive or negated atoms. This will allow us to
use ω both as an interpretation and a proposition, which will
ease notation a lot. Since ω |= A means the same for both
readings of ω, no confusion will arise.

Given a set of possible worlds Ω′ ⊆ Ω, T (Ω′) denotes the
set of formulas which are true in all elements of Ω′,

T (Ω′) = {A ∈ L | ω |= A for all ω ∈ Ω′}.

For subsets Θ of Σ, let L(Θ) denote the propositional lan-
guage defined by Θ, with associated set of interpretations
Ω(Θ). Note that while each sentence of L(Θ) can also be
considered as a sentence of L, the interpretations ωΘ ∈ Ω(Θ)
are not elements of Ω if Θ 6= Σ. But each interpretation
ω ∈ Ω can be written uniquely in the form ω = ωΘωΘ with
concatenated ωΘ ∈ Ω(Θ) and ωΘ ∈ Ω(Θ), where Θ = Σ\Θ
is the complement of Θ in Σ. Note that the syntactical read-
ing of interpretations as conjunctions makes perfect sense
here: According to this reading, ω is a conjunction of ωΘ

and ωΘ (with omitted ∧ symbol). We also call ωΘ the re-
striction of ω to Θ. If Ω′ ⊆ Ω is a subset of models, then
Ω′|Θ = {ωΘ|ω ∈ Ω′} ⊆ Ω(Θ) restricts Ω′ to a subset of
Ω(Θ).

For a proposition A ∈ L, let Σ(A) be the minimal sub-
set of atoms of Σ in which A can be expressed. Note that
tautologies > are part of any sublanguage L(Θ) of L.

Ordinal conditional functions (OCFs), (also called ranking
functions) κ : Ω → N ∪ {∞} with κ−1(0) 6= ∅, were intro-
duced (in a more general form) first by [Spohn, 1988]. They
express degrees of plausibility of propositional formulasA by
specifying degrees of disbeliefs of their negations A. More
formally, we have κ(A) := min{κ(ω) | ω |= A}, so that
κ(A ∨ B) = min{κ(A), κ(B)}. Hence, due to κ−1(0) 6= ∅,
at least one of κ(A), κ(A) must be 0. A proposition A is
believed if κ(A) > 0 (which implies particularly κ(A) = 0).

In more general settings, epistemic states Ψ will be repre-
sented by a total preorder �Ψ on Ω which is most suitable in
the context of belief revision (cf. Section 3). �Ψ can be lifted
to a total preorder on the set of propositions via A �Ψ B iff
there is a (minimal) ω ∈ Mod (A) such that ω �Ψ ω′ for all

ω′ ∈ Mod (B). As usual, ω ≺Ψ ω′ iff ω �Ψ ω′ and not
ω′ �Ψ ω, and ω ≈Ψ ω′ iff both ω �Ψ ω′ and ω′ �Ψ ω.

Note that also OCFs κ induce total preorders on Ω via
ω1 �κ ω2 iff κ(ω1) 6 κ(ω2), so everything we state on gen-
eral epistemic states will apply to OCFs, but OCFs allow for
more expressive statements because of their usage of natural
numbers and the corresponding arithmetics.

If Ω′ ⊆ Ω, then min(Ψ,Ω′) = min(�Ψ,Ω
′) = {ω′ ∈

Ω′ |ω′ �Ψ ω′′ for all ω′′ ∈ Ω′} denotes the set of min-
imal models in Ω′. If Ω′ = Ω, then we simply write
min(Ψ) instead of min(Ψ,Ω). If A ∈ L, then min(Ψ, A) =
min(Ψ,Mod (A)). The minimal models of an epistemic state
form its associated belief set: Bel (Ψ) = T (min(Ψ)), i.e.,
the agent believes exactly the propositions that are valid in all
most plausible models. For an OCF κ, we have accordingly
Bel (κ) = T ({ω ∈ Ω | κ(ω) = 0}).

Note that all these definitions depend crucially on the given
language, i.e., if the logical language changes, the format of
epistemic states will change, too. Sometimes we write Ψ =
(Ω(Σ),�Ψ) to make the format of Ψ explicit.

3 Syntax Splitting in Belief Revision and
Related Work

The basic AGM theory [Alchourrón et al., 1985] deals with
belief revision in the context of belief sets, i.e., deductively
closed sets of propositions, but also probability or possibility
distributions have been considered already in the early years
of belief revision as interesting and useful kinds of epistemic
states (cf. [Gärdenfors, 1988; Dubois and Prade, 1992]).

Whatever the type of epistemic state is, the question which
epistemic structure is needed to guarantee that belief revi-
sion complies with AGM theory has been answered by [Kat-
suno and Mendelzon, 1991] and [Darwiche and Pearl, 1997]:
AGM revision of an epistemic state Ψ can be ensured by as-
suming that a so-called faithful ranking underlies Ψ such that
the revised beliefs can be computed from minimal models
according to the ranking. Here, a faithful ranking is a to-
tal preorder �Ψ on the possible worlds that is assigned to
Ψ in such a way that the minimal models of �Ψ (denoted
by min(Ω,�Ψ) are precisely the models of the belief set
K = Bel (Ψ) associated with Ψ.

Proposition 1 ([Darwiche and Pearl, 1997]) A revision op-
erator ∗ that assigns a posterior epistemic state Ψ ∗ A to
a prior state Ψ and a proposition A is an AGM revision
operator for epistemic states iff there exists a faithful pre-
order �Ψ for an epistemic state Ψ with associated belief set
K = Bel (Ψ), such that for any proposition C it holds that

K ∗ C = Bel (Ψ ∗ C) = T (min(Ψ, C)) (1)

This proposition allows us to study AGM-style revisions by
focussing on total preorders. An extension of this theorem
for multiple revision of epistemic states by sets of proposi-
tions C = {C1, . . . , Cn} has been proved in [Delgrande and
Jin, 2012]. Throughout this paper, we will assume that any
(iterated, multiple) revision operator ∗ satisfies the epistemic
AGM postulates, i.e. in particular, that Proposition 1 (re-
spectively its appropriate extension) applies. Since epistemic
states equipped with total preorders on worlds also encode
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implicitly revision strategies, revision of such epistemic states
also deals with iterated revision (for further details, please cf.
[Darwiche and Pearl, 1997]).

Parikh [Parikh, 1999] was the first to introduce syntax split-
ting in AGM-style revision. His axiom (P) [Parikh, 1999]
aims to capture the intuition that whenever an agent’s beliefs
split over two disjoint sublanguages and the new information
is expressed in one of the two, revision should not affect any
belief expressed in the other sublanguage:
(P) If K = Cn(A,B) with Σ(A) ∩ Σ(B) = ∅, and C ∈
L(A), then K ∗ C = Cn((CnΣ(A)(A) ◦ C) ∪ {B})),
where ◦ is a revision operator of L(Σ(A)).

Parikh’s notion of syntax splitting can be generalized as fol-
lows [Peppas et al., 2015]: Let (Σ1, . . . ,Σn) be a partition of
Σ, i.e., Σ = Σ1 ∪ . . .∪Σn, and Σi ∩Σj = ∅ for i 6= j. A be-
lief set K splits over (Σ1, . . . ,Σn) iff there are propositions
φi ∈ L(Σi), i = 1, . . . , n, such that K = Cn(φ1, . . . , φn).
(Σ1, . . . ,Σn) is then called a K-splitting. In [Peppas et al.,
2015] a weak and a strong reading of (P) were identified:

(R1) If K = Cn(A,B), Σ(A) ∩ Σ(B) = ∅, and C ∈ L(A)

then (K ∗ C) ∩ L(Σ(A)) = K ∩ L(Σ(A)).
(R2) If K = Cn(A,B), Σ(A) ∩ Σ(B) = ∅, and C ∈ L(A),

then (K ∗ C) ∩ L(Σ(A)) = (Cn(A) ∗ C) ∩ L(Σ(A)).
Strong (P) is equivalent to (R1) and (R2) (Theorem 1 of [Pep-
pas et al., 2015]). Peppas et al. [Peppas et al., 2015] identified
three conditions, called (Q1) - (Q3), that characterize faith-
ful preorders � which induce revision operators that satisfy
strong (P), i.e., (R1) and (R2). For presenting these condi-
tions, we need to recall some technical details from [Peppas
et al., 2015]). Let a theory K be given, and let F = (Fi)i∈I
be its unique finest K-splitting [Parikh, 1999], i.e., for every
other K-splitting (Σj)j∈J , each Fi is contained in some Σj .
Then for a world ω, Diff(K,ω) =

⋃
{Fi ∈ F | for some φ ∈

L(Fi),K |= φ and ω |= ¬φ}. For two worlds ω, ω′, let
diff(ω, ω′) denote the set of atoms that have different truth
values in the two worlds. For a (contingent) proposition A
and a world ω, ωA is the restriction of ω to L(A); for a pre-
order � on Ω, the A-filtering �A of � is defined by ω �A ω′
iff there is ω1 |= ωA such that for all ω′1 |= ω′

A, ω1 � ω′1.
(Q1) If Diff(K,ω) ⊂ Diff(K,ω′) and diff(ω, ω′) ∩

Diff(K,ω) = ∅, then ω ≺ ω′.
(Q2) If Diff(K,ω) = Diff(K,ω′) and diff(ω, ω′) ∩

Diff(K,ω) = ∅, then ω ≈ ω′.
(Q3) If K = Cn(A,B) and Σ(A) ∩ Σ(B) = ∅, then

�AK=�ACn(A).

The main result of [Peppas et al., 2015] is the following the-
orem, slightly modified to match the notations of this paper:
Theorem 1 ([Peppas et al., 2015], Theorem 6) Let ∗ be an
AGM revision operator, and let {�K}K be a family of faithful
preorders (one for each consistent belief set K, correspond-
ing to ∗ by means of (1). Then ∗ satisfies (R1) and (R2) (i.e.,
strong (P)) iff {�K}K satisfies (Q1) - (Q3).
We summarize the main ideas of syntax splitting in belief re-
vision that have been presented so far in a slightly more ab-
stract and general way:

If the prior belief state splits over (Σ1, . . . ,Σn),
and the new information concerns exactly one Σi,
then the revised belief state should also split over
(Σ1, . . . ,Σn), and only its Σi-part is affected by
revision.

In the next section, we present a framework that implements
this idea for revision of epistemic states and broadens the
scope of (P) to deal with cases where the new information
also splits up and triggers revisions on substates.

4 Syntax Splitting for Epistemic State
Revision

In this section, we will generalize the approach of [Peppas et
al., 2015] to syntax splitting of revision operators for epis-
temic states represented by total preorders. On the one side,
we define a strong (P) axiom for the revision of epistemic
states, and on the other side, we generalize the semantic con-
ditions (Q1) – (Q3) of [Peppas et al., 2015] (see the previ-
ous section) appropriately. As a first step we will carry over
the concept of marginalization which is well-known in prob-
abilistics to general epistemic states Ψ and allows for an easy
implementation of A-filtering and axiom (Q3) of [Peppas et
al., 2015]:
Definition 1 (Marginalization of Ψ, Ψ|Θ) Let Ψ = (Ω =
Ω(Σ),�Ψ) be an epistemic state given by a total preorder
�Ψ on Ω = Ω(Σ), let Θ ⊆ Σ. The marginalization of Ψ on
Θ, denoted by Ψ|Θ, is defined via the induced total preorder
on Ω(Θ):

Ψ|Θ = (Ω(Θ),�Ψ|Θ), ωΘ
1 �Ψ|Θ ωΘ

2 iff ωΘ
1 �Ψ ωΘ

2 .

Note that on the right hand side of the iff condition above
ωΘ

1 , ω
Θ
2 are considered as propositions in the superlanguage

L(Ω), hence ωΘ
1 �Ψ ωΘ

2 is well defined and allows for a
more concise notation of A-filtering [Peppas et al., 2015].
In this way, each epistemic state on Ω induces epistemic
states on each sublanguage, ensuring (Q3) in a straightfor-
ward way. Indeed, marginalization turns out to be the basic
concept needed for syntax splitting in the context of epistemic
states.

Let (Σ1, . . . ,Σn) be a partition of Σ. Then each ω ∈ Ω(Σ)
can be written uniquely as ω = ω1 . . . ωn with ωi = ωΣi ∈
Ω(Σi). If the considered partition is fixed, then we also call
ωi the i-part of ω. The following two conditions establish a
compatibility between the marginalized epistemic states Ψ|Σi

and the original state Ψ by considering the i-parts of possible
worlds. These conditions are equivalent to (Q1) and (Q2) in
[Peppas et al., 2015] and are denoted as (EQ1) and (EQ2):
(EQ1) Let ω1, ω2 ∈ Ω be possible worlds. If for all i, 1 6

i 6 n, ω1
Σi ∈ min(Ψ|Σi

) or ω1
Σi = ω2

Σi , and there is
i, 1 6 i 6 n, such that ω1

Σi ∈ min(Ψ|Σi
) and ω2

Σi 6∈
min(Ψ|Σi

), then ω1 ≺Ψ ω2.
(EQ2) Let ω1, ω2 ∈ Ω be possible worlds. If for all i, 1 6

i 6 n, both ω1
Σi , ω2

Σi ∈ min(Ψ|Σi
) or ω1

Σi = ω2
Σi ,

then ω1 ≈Ψ ω2.
These conditions allow us to lift relationships from the

level of marginalizations to complete epistemic states. Ac-
cording to (Q1) and (Q2), the latter relationships should only
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depend on the i-parts of two possible worlds that differ from
each other. However, these axioms rephrased from [Peppas
et al., 2015] deal just with minimal worlds and hence are too
weak in the context of epistemic, or iterated revision. We gen-
eralize the rationale underlying (EQ1) and (EQ2) to define a
semantic version of strong syntax splitting:

Definition 2 Let (Σ1, . . . ,Σn) be a partition of Σ, let Ψ be
an epistemic state defined on Σ. For each ω ∈ Ω(Σ), define
that part of ω that excludes exactly the i-part ωi as

ω̂i = ∧j 6=iωj ,

where, as before, ωj = ωΣj .
Ψ splits over (Σ1, . . . ,Σn) if the following condition holds

for all i:

ω1 �Ψ ω2 iff ωi1 �Ψ|Σi
ωi2 whenever ω̂1

i
= ω̂2

i
. (2)

In our approach, syntax splitting for epistemic states means
that ceteris paribus (i.e., if ω̂1

i
= ω̂2

i holds), relationships
between marginalized worlds can be lifted. The next propo-
sition shows that epistemic syntax splitting according to (2)
generalizes (EQ1) and (EQ2):

Proposition 2 If the epistemic state Ψ splits over
(Σ1, . . . ,Σn), then (EQ1) and (EQ2) hold.

Moreover, syntax splitting of epistemic states also generalizes
K-splitting:

Proposition 3 Let (Σ1, . . . ,Σn) be a partition of Σ, let
Ψ be an epistemic state defined on Σ. If Ψ splits over
(Σ1, . . . ,Σn), then Bel (Ψ) splits over (Σ1, . . . ,Σn). More
precisely: if Bel (Ψ|Σi

) = Cn(Ci) for Ci ∈ L(Σi), 1 6 i 6
n, then Bel (Ψ) = Cn(C1, . . . , Cn).

To summarize what we achieved so far, Definition 2 ex-
tends the semantic axioms (Q1) - (Q3) of [Peppas et al., 2015]
to full epistemic states. Now, we will elaborate on what syn-
tax splitting means for (iterated) revision operators. First, we
lift (R1) and (R2) from [Peppas et al., 2015] to the level of
revising epistemic states.

Theorem 2 Let Ψ be an epistemic state defined on Ω(Σ)
such that Bel (Ψ) = Cn(A,B) with Σ(A) ∩ Σ(B) = ∅. Let
C ∈ L(Σ(A)), let Ψ ∗ C be a revision of Ψ by C. Let the
conditions (ER1) and (ER2) be defined as follows:

(ER1) (Ψ ∗ C)|
Σ(A)

= Ψ|
Σ(A)

.

(ER2) (Ψ ∗ C)|Σ(A) = (Ψ|Σ(A)) ∗ C.

Then (ER1) and (ER2) imply (R1) and (R2) for K = Bel (Ψ),
i.e., (ER1) and (ER2) are the epistemic versions of (R1), (R2).

According to [Peppas et al., 2015], particularly (R2) was
crucial to establish the strong version of the (P) axiom be-
cause it allows to make connections between revisions in dif-
ferent contexts. So does (ER2) by postulating that marginal-
ization and revision can be swapped. Indeed, in this pa-
per we argue that this is a fundamental principle of syn-
tax splitting since it allows to focus on relevant parts of the
language. Generalizing the original ideas of [Parikh, 1999;
Peppas et al., 2015] where syntax splitting meant to change

just the part of the beliefs which are directly relevant to
the new information and maintain the other parts, we will
broaden the scope of syntax splitting by considering changes
on (syntactically) different parts of the beliefs affected by
(syntactically) different parts of the new information. This re-
quires the usage of multiple revision operators which are able
to take sets of propositions as input for the new information
[Kern-Isberner and Huvermann, 2017; Delgrande and Jin,
2012]. Note that due to the version of Proposition 1 for multi-
ple revision, Bel (Ψ∗{C1, . . . , Cn}) = Bel (Ψ∗C1∧ . . . Cn),
so our results and techniques still generalize the approaches
of [Parikh, 1999; Peppas et al., 2015] which concern mainly
belief sets. In the framework of multiple revision, we are now
able to formalize an axiom that covers and generalizes both
(ER1) and (ER2):

Marginalized Revision (MR) Let (Σ1, . . . ,Σn) be a parti-
tion of Σ, let ∗ be a binary revision operator that takes
as input an epistemic state and a set of propositions (all
based on Σ) and returns an epistemic state based on Σ.
Let Ψ be an epistemic state that splits over a partition
(Σ1, . . . ,Σn) of Σ, and let C = {C1, . . . , Cn} with
Ci ∈ L(Σi) be the new information. Then

Ψ ∗ C|Σi
= (Ψ|Σi

) ∗ Ci. (3)

(MR) postulates that revision can be interchanged with
marginalization. This is a very strong but also very intuitive
postulate for (iterated, multiple) revision since it allows the
agent to revise its beliefs and hence to reason in local con-
texts. Instead of syntax splitting, one might more appropri-
ately call it a local revision postulate. A connection to both
(ER1) and (ER2) can be shown if the revision operator satis-
fies quite a trivial postulate claiming that revising by a tautol-
ogy should not change anything:

(Trivial Vacuity) Ψ ∗ > = Ψ

Theorem 3 If ∗ satisfies (Trivial Vacuity) then (MR) implies
both (ER1) and (ER2).

Therefore, in cases when ∗ satisfies (Trivial Vacuity), we can
unambigously write Ψ ∗ Ci for Ci ∈ L(Σi) to study syntax
splitting when just one part of the language is affected by the
new information, as in [Parikh, 1999; Peppas et al., 2015].

(MR) thus extends the axioms (R1) and (R2) of [Peppas
et al., 2015] to iterated revision operators; these axioms are
meant to implement the strong (P) axiom. Likewise, Defini-
tion 2 defines syntax splitting for epistemic states as a gener-
alization of (Q1)-(Q3) from [Peppas et al., 2015]. The ques-
tion now is whether these two generalizations fully match, in
the sense that (MR) helps preserving, or even ensures syntax
splitting, as made precise by the following version of strong
(P) for (multiple) iterated revision:

Strong iterated P (Pit) Let (Σ1, . . . ,Σn) be a partition of
Σ, let Ψ be an epistemic state defined on Σ that splits
over (Σ1, . . . ,Σn). Let C = {C1, . . . , Cn} with Ci ∈
L(Σi) be the new information. Then Ψ ∗ C splits over
(Σ1, . . . ,Σn).

The following example shows that (MR) does not imply
(Pit).
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ω Ψ Ψ ∗A ω1 Ψ|Σ1
Ψ ∗A|Σ1

ω2 Ψ|Σ2
Ψ ∗A|Σ2

abc 3 2 ab 1 0 c 2 2
abc 1 0 ab 1 0 c 0 0
abc 4 3 ab 3 2 c 2 2
abc 3 2 ab 3 2 c 0 0
abc 4 3 ab 3 2 c 2 2
abc 3 2 ab 3 2 c 0 0
abc 2 3 ab 0 1 c 2 2
abc 0 1 ab 0 1 c 0 0

Table 1: Example showing that (MR) does not imply (Pit) (see Ex-
ample 1); the numbers just represent preorderings.

Example 1 Let Σ = {a, b, c},Σ1 = {a, b},Σ2 = {c}, and
A = a∨b. Table 1 shows an epistemic state Ψ and its revision
Ψ ∗ A as well as the induced marginalized epistemic states
and marginalized revisions over Σ1 and Σ2 such that Ψ splits
over (Σ1,Σ2), (MR) is fulfilled, but Ψ ∗A does not split over
(Σ1,Σ2), since for ω1 = abc and ω2 = abc, we have ω̂1

1
=

c = ω̂2
1 and ω1 �Ψ∗A ω2, but ω1

2 = ab ≺Ψ∗A|Σ1
ab = ω1

1 .

It is even easier to find examples for epistemic states Ψ where
both Ψ and Ψ ∗ C split, i.e., (Pit) is fulfilled, but Ψ ∗ C|Σi

and
Ψ|Σi

∗Ci differ, so that (MR) is violated. This also holds even
if we presuppose that all involved revision operators satisfy
the Darwiche-Pearl postulates [Darwiche and Pearl, 1997] for
iterated revision. This failure is caused by the fact that our
extension of the syntactical part of strong (P) in its current
form (i.e., via (MR) or (ER1), (ER2), respectively) only re-
stricts the revisions of the marginalized epistemic state. How-
ever, marginalization is not reversible in general, that is, while
an epistemic state induces uniquely marginalized epistemic
states, there is no way to reconstruct the full epistemic state
from its marginals in a purely qualitative setting. To solve
this problem, more arithmetic quality is needed, as we find it,
e.g., in the framework of ordinal conditional functions which
we will study in the next section.

5 Syntax Splitting for OCFs and c-Revisions
Syntax splitting in revision, in a nutshell, means that if both
the prior epistemic state and the new information can be split
up according to some partition of the signature, then it should
also be possible to split up the revised epistemic state accord-
ingly. For general epistemic states, which we dealt with in the
previous section, we were unable to fully capture epistemic
syntax splitting under revision. In this section, we focus on
the OCF framework. This will allow us to strengthen con-
siderably the concepts presented in the previous section by
making use of the arithmetic properties of OCFs. In partic-
ular, we are able to state a strong iterated (P) axiom, called
(Pocf ), for OCF revision operators. The axiom allows us to
build up a full revised OCF from its revised marginals while
observing syntax splitting, as formalized generally by (Pit).
With this strengthened (P) axiom we will be able to establish
a connection to (MR) for OCFs. As a proof of concept, we
will use the approach of c-revisions to illustrate how syntax
splitting can be implemented for iterated revision.

In the context of OCFs, splitting can be defined to preserve
syntactical independencies even more accurately:
Definition 3 Let (Σ1, . . . ,Σn) be a partition of Σ, let κ be
an OCF defined on Σ. κ ocf-splits over (Σ1, . . . ,Σn) iff there
are OCFs κi defined on Σi such that

κ(ω) = κ(ω1 . . . ωn) = κ1(ω1) + . . .+ κn(ωn). (4)
In this case, we write κ = κ1 ⊕ . . .⊕ κn.
It is straightforward to check that if κ = κ1⊕. . .⊕κn, then κi
is the marginal of κ on Σi, i.e., κi = κ|Σi

. Moreover, this def-
inition specifies the notion of splitting for general epistemic
states (see Def. 2) appropriately in the context of OCFs:
Proposition 4 If κ ocf-splits over (Σ1, . . . ,Σn), then �κ
splits over (Σ1, . . . ,Σn).

After having formalized syntax splitting for OCFs, we now
make (Pit) precise for revising OCFs by sets of propositions:
(Pocf ) Let (Σ1, . . . ,Σn) be a partition of Σ, let C =
{C1, . . . , Cn} with Ci ∈ L(Σi) be a set of proposi-
tions of L. Let κ be an OCF defined on Σ such that
κ = κ1 ⊕ . . . ⊕ κn with marginal OCFs κi defined on
Σi. Then

κ ∗ C = (κ1 ∗ C1)⊕ . . .⊕ (κn ∗ Cn).

(Pocf ) perfectly shows what syntax splitting means: A syn-
tax splitting revision operator should not introduce unjustified
logical dependencies. Now, we are able to establish the de-
sired connection between the (P) and (MR) axioms:
Theorem 4 Let ∗ be a (binary) revision operator taking
OCFs and sets of propositions as inputs. If ∗ satisfies (Pocf ),
then it also satisfies an OCF-version of (MR):
(MRocf ) Let (Σ1, . . . ,Σn) be a partition of Σ, let κ be

an OCF defined on Σ such that κ = κ1 ⊕ . . . ⊕ κn
with marginal OCFs κi defined on Σi. Let C =
{C1, . . . , Cn} with Ci ∈ L(Σi). Then

κ ∗ C|Σi
= (κ|Σi

) ∗ Ci = κi ∗ Ci. (5)

In the rest of this section, we illustrate OCF revision sat-
isfying (Pocf ) by making use of c-revisions [Kern-Isberner,
2004]. The latter provide a highly general framework for re-
vising OCFs by sets of conditionals. For the purposes of this
section it will be sufficient to consider a simplified version
of the definition which is obtained from the original one by
identifying a propositionAwith the conditional (A|>) [Kern-
Isberner and Huvermann, 2017]. We will return to the topic
of revision by sets of conditionals in Sect. 6.
Definition 4 (Propositional c-revisions for OCFs) Let κ be
an OCF specifying a prior epistemic state, and let C =
{C1, . . . , Cn} represent new information. Then a (proposi-
tional) c-revision of κ by C is given by the OCF

κ ∗ C(ω) = κ∗(ω) = −κ(C1 . . . Cn) + κ(ω) +
n∑

i=1
ω|=Ci

ηi (6)

with non-negative integers ηi satisfying

ηi > κ(C1 . . . Cn)− min
ω|=Ci

{κ(ω) +
∑

j 6=i,ω|=Cj

ηj}. (7)

If (6) holds then we write κ∗ = κ∗~ηR with ~η = (η1, . . . , ηn).
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ω κ κ ∗ C (κ ∗ C)min (κ ∗ abcd)min

abcd 4 −6 + 4 + η1 1 5
abcd 3 −6 + 3 + η1 + η3 2 4
abcd 2 −6 + 2 + η1 + η2 3 3
abcd 1 −6 + 1 + η1 + η2 + η3 4 2

abcd 1 −6 + 1 + η1 + η2 2 2
abcd 0 −6 + 0 + η1 + η2 + η3 3 1
abcd 3 −6 + 3 + η1 + η2 4 4
abcd 2 −6 + 2 + η1 + η2 + η3 5 3
abcd 6 −6 + 6 0 0
abcd 5 −6 + 5 + η3 1 6
abcd 4 −6 + 4 + η2 2 5
abcd 3 −6 + 3 + η2 + η3 3 4

abcd 3 −6 + 3 + η2 1 4
abcd 2 −6 + 2 + η2 + η3 2 3
abcd 5 −6 + 5 + η2 3 6
abcd 4 −6 + 4 + η2 + η3 4 5

Table 2: OCF κ and c-revised κ ∗ C, both as a schema (6) and with
minimal ηi, for Example 2; also a c-revision (κ∗abcd)min is shown.

κ(C1 . . . Cn) in (6) is a normalization factor, and (7) en-
sures that a c-revision κ ∗ C satisfies κ ∗ C |= C. The ηi can
be considered as impact factors of the single propositions, or
as penalty factors for falsifying the propositions in C. Each c-
revision is an iterated revision in the sense of [Darwiche and
Pearl, 1997], and it also satisfies (Pocf ):

Theorem 5 Let (Σ1, . . . ,Σn) be a partition of Σ, let C =
{C1, . . . , Cn} with Ci ∈ L(Σi) be a set of propositions of L.
Let κ be an OCF defined on Σ such that κ = κ1 ⊕ . . . ⊕ κn
with marginal OCFs κi defined on Σi. Then any c-revision of
κ by C satisfies (Pocf ). More precisely,

κ ∗(η1,...,ηn) C = (κ1 ∗η1
C1)⊕ . . .⊕ (κn ∗ηn Cn),

where the ηi’s are the impact factors associated with the
propositions Ci.

We exemplify syntax splitting for c-revisions.

Example 2 Let Σ = {a, b, c, d} with splitting (Σ1 =
{a},Σ2 = {b, c},Σ3 = {d}). The OCF κ in Table 2 ocf-
splits over (Σ1,Σ2,Σ3) (the marginals κi = κ|Σi

, i =
1, 2, 3, can be found in Table 3. Then κ is c-revised by
the new information C = {a, bc, d} which is also split over
(Σ1,Σ2,Σ3). The schematic c-revision (according to (6))
with the parameters η1, η2, η3 is shown in the third column
of Table 2 (note that κ(abcd) = 6), and the fourth column
contains a c-revision (κ ∗ {a, bc, d})min with (Pareto) mini-
mal parameters η1 = 3, η2 = 4, η3 = 2. It is straightforward
to check that (κ ∗ {a, bc, d})min satisfies (Pocf ) and (MRocf )
(the revised marginals can also be found in Table 3. To illus-
trate the difference that is made by using multiple revision,
also a c-revised (κ∗abcd)min with a minimal change param-
eter is shown in column five of Table 2. While it has the same
minimal world(s) as (κ∗{a, bc, d})min, it is substantially dif-
ferent otherwise and does not ocf-split over (Σ1,Σ2,Σ3).

Σ1 κ1 κ1 ∗ a Σ2 κ2 κ2 ∗ bc Σ3 κ3 κ3 ∗ d
a 0 1 bc 3 0 d 1 0
a 2 0 bc 1 2 d 0 1

bc 0 1
bc 2 3

Table 3: The marginals κ1, κ2, κ3 of κ from Table 2 and their mini-
mal c-revisions, for Example 2.

6 Conclusions
Syntax splitting aims to capture the intuition that whenever
beliefs are revised with a new piece of information φ only
those beliefs should be affected which are relevant to φ. In
this paper we have shown how syntax splitting can be gener-
alized - in compliance with AGM and the postulates of [Dar-
wiche and Pearl, 1997] - to the revision of epistemic states,
a necessary prerequisite for covering iterated revision. The
key to our approach is marginalization, a concept well-known
from probability theory.

On the more technical side, we generalized various prop-
erties considered in [Peppas et al., 2015] to epistemic states.
It turned out that in the general setting where an epistemic
state is taken to be a total preorder on the set of worlds, there
is a certain mismatch between postulate (MR) which basi-
cally states that revision and marginalization should be in-
terchangeable, and (Pit), the iterated version of strong (P):
(MR) does not imply (Pit), nor the other way round. This
was one of our main motivations for studying the concept of
epistemic syntax splitting in the specific framework of ordinal
conditional functions (OCFs, [Spohn, 1988]). For OCFs, we
were able to show that the mismatch observed in the general
setting can be overcome and illustrated syntax splitting with
c-revisions.

The original definition of c-revisions in [Kern-Isberner,
2004] actually allows for revisions of epistemic states (imple-
mented by OCFs) by a set of (plausible) conditionals of the
form (B|A) which are meant to express plausible, defeasible
rules “If A then plausibly (usually, typically etc.) B”. We
did not use this additional generality of c-revisions in Sect. 5,
but would like to point out that, given our results, it is rather
straightforward to formulate a variant of (Pocf ) which also
covers conditionals. Moreover, it can be shown that Theo-
rem 5 also holds in this very general setting.

In [Kern-Isberner, 2001] c-revisions were devised as a
qualitative counterpart to probabilistic revision via the prin-
ciple of minimum cross-entropy (MinCEnt) and thus inherit
many high quality properties of that revision operator. Also
our (Pocf ) axiom is inspired by results from MinCEnt revi-
sion: it is the OCF-version of the so-called system indepen-
dence property which is one of the characterizing axioms of
MinCEnt revision, according to [Shore and Johnson, 1980].
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