Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Model Checking Multi-Agent Systems against LDLK Specifications

Jeremy Kong and Alessio Lomuscio
Department of Computing, Imperial College London
jeremykong91 @gmail.com, a.lomuscio@imperial.ac.uk

Abstract

We define the logic LDLK, a formalism for specify-
ing multi-agent systems. LDLK extends LDL with
epistemic modalities, including common knowl-
edge, for reasoning about evolution of knowledge
states of agents in the system. We show that the
problem of verifying multi-agent systems against
LDLK specifications is PSPACE-complete. We
give an algorithm for practical verification of multi-
agent systems specified in LDLK. We show that
the model checking algorithm, based on alter-
nating automata and e-NFAs, is fixed parameter
tractable, scalable in the size of models analysed,
and amenable to symbolic implementation on OB-
DDs. We introduce MCMAS [, pr ik, an extension
of the open-source model checker MCMAS imple-
menting the algorithm presented, and discuss the
experimental results obtained.

1 Introduction

Linear Dynamic Logic (LDL) has recently been put forward
as an attractive logic for reasoning about processes [Vardi,
2011]. LDL extends Linear Temporal Logic [Pnueli, 1977]
by replacing the linear temporal operators with regular ex-
pressions in a way that is similar to that of Propositional Dy-
namic Logic [Fischer and Ladner, 1977]. From the theoreti-
cal point of view, LDL is attractive because it can express all
w-regular properties and is therefore equivalent to monadic
second-order logic [Vardi, 2011]. From an application point
of view the expressiveness of LDL has been positively eval-
uated in a number of contexts, including monitoring business
processes [De Giacomo et al., 2014]. A major feature of in-
terest in LDL is the fact that its model checking problem is
in PSPACE [Faymonville and Zimmermann, 2015]. So while
LDL is considerably more expressive than LTL, their model
checking problem has the same complexity.

While much progress has been made recently on LDL, in-
cluding an analysis of the synthesis problem on infinite and
finite traces [De Giacomo and Vardi, 2015; 20161, from an
agent perspective we highlight two apparent limitations.

Firstly, from a theoretical standpoint, while LDL can ex-
press sophisticated temporal or action properties, no proposal
has so far been made to augment it with modalities to rep-

1138

resent the agents’ mental states. This has been conducted
successfully for a range of temporal logics in the context of
epistemic logic and has resulted in the specification languages
LTLK [Fagin et al., 1995] and CTLK [Penczek and Lomus-
cio, 2003] which have attracted interests both in theory and
applications. Due to the expressiveness of LDL the same ex-
ercise could be of even higher significance in this context.

Secondly, from an application point of view, no practi-
cal algorithm nor toolkit exists for verifying systems against
LDL specifications. Indeed, while the computational com-
plexity of the logic has been explored, no symbolic model
checking algorithm has so far been put forward. Yet sym-
bolic toolkits [Gammie and van der Meyden, 2004; Kacprzak
et al., 2008; Lomuscio et al., 2015] are essential for verifying
prototype designs in multi-agent systems.

In this paper we attempt to make a contribution addressing
these two aspects. Firstly, in Section 2, we define LDLK, an
extension of LDL with knowledge operators, including com-
mon knowledge, and its semantics. In Section 3 we put for-
ward a model checking algorithm for verifying multi-agent
systems against LDLK specifications. A key feature of the
approach is that the procedure is based on alternating au-
tomata and amenable to symbolic implementation. In Sec-
tion 4 we present MCMAS} pr k., @ model checker for veri-
fication of multi-agent systems against LDLK specifications.
MCMAS | pr i extends the open-source model checker MC-
MAS, by implementing the algorithm of Section 3 for LDLK.
We show the attractiveness of the experimental results ob-
tained and conclude in Section 5.

Related Work. The verification algorithm we introduce
for model checking multi-agent systems against LDLK is in-
spired by the one put forward in [Faymonville and Zimmer-
mann, 2015], which showed that determining satisfiability of
parametric LDL specifications is in PSPACE. However, their
construction is focused on showing decidability as opposed
to practical implementation; specifically, the algorithm does
not explicitly address how to handle a potentially unbounded
number of e-paths when trying to quantify over all prefixes of
a path. The construction we introduce here includes a mecha-
nism for limiting the paths being considered. Our approach is
not polynomial space as we eagerly build the automata; but,
as we show, still leads to an efficient symbolic implemen-
tation in cases of practical interest we tested. Additionally,
[Faymonville and Zimmermann, 2015] does not support epis-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

temic specifications and no implementation is put forward.

Our implementation is based on the open-source model
checker MCMAS [Lomuscio et al., 2015]. However, MC-
MAS currently only supports CTLK; LDLK significantly ex-
tends the range of specifications supported. Note also that
CTLK is implemented in MCMAS by a traditional labelling
algorithm. Instead, we here use alternating automata, which
are then converted to symbolic Biichi automata by using the
symbolic breakpoint construction from [Bloem er al., 2006].
So, while MCMAS b1,k shares with MCMAS the libraries
for parsing the input and constructing some intermediate
structures, the verification algorithm is entirely different.

MCMAS has also been extended to address the problem of
verifying strategic ability in multi-agent systems; support has
been developed for ATL and SL, extended with suitable epis-
temic operators [Cermdk er al., 2014]. However, our work
is focused on improving temporal expressivity (as opposed to
additional modalities).

The model checker NuSMV [Cimatti ef al., 1999] supports
a fragment of Property Specification Language (PSL) which,
like LDL, can express all w-regular properties [Cimatti ef al.,
2006]. However, this is limited to properties also expressible
in LTL or CTL. We are not aware of any open-source model
checker supporting full PSL.

The model checker MCK [Gammie and van der Meyden,
2004] supports the verification of CTL*K properties. Differ-
ently from MCMAS which is limited to observational seman-
tics, MCK also supports clock semantics and perfect recall
(for one agent only). However, CTL*K and LDLK have in-
comparable expressivity (the ability of CTL*K to reason tem-
porally about a specific path is similar to that of LTL, which
cannot express parity [Wolper, 19811]); so the functionality of
MCK is different from that of MCMAS . pr k-

2 Linear Dynamic Logic with Knowledge

Interpreted systems, introduced in [Fagin et al., 1995], pro-
vide a formalism for reasoning about temporal and epistemic
properties of MAS. In the approach given in [Lomuscio et al.,
2015], agents have locally defined transition relations, and the
global transition relation of the system results from the com-
position of these. We take A = {1,...,n} as a set of agents,
and e as a special agent called the environment.

Definition 1 (Interpreted Systems). An interpreted system is
atuple IS = ({L;, Act, P;, Ti}ic auge}» L, h), where:

e [, is afinite set of possible local states of agent 7.

e Act; is a finite set of possible actions of agent i.

e P : L; — 24\{(} is a local protocol for agent i,
specifying which actions agent ¢ can execute from each
local state.

o 7, : L;x Acty X ...x Act,, X Act, — Lj; is alocal tran-
sition function, returning the next local state of agent ¢
following an action by all agents and the environment.
We assume agents’ actions are consistent with their pro-
tocols; i.e., if I} = 7;(I;,a1,...,an,a.) then for each
i€ {1,...,n}, we have that a; € P;(l;).

o | CLyx...xL,x L, isthe set of initial global states.

e h : AP — 2Lix..xLnxLe where AP is a set of
atomic propositions, is a valuation function identifying

1139

the global states in which each atomic proposition holds.

We define the global transition relation T to be the com-
position of the 7;, and the set of global reachable states
G C Ly x...x L, x L, to be the set of states reachable
through zero or more applications of 7" on I. We also define
an evolution path for IS, as an infinite sequence of global
states go, g1, - - - such that for every ¢, g; € G, and if 7 > 0
then there exists actions aq, . . ., a,, a. such that for every lo-
cal state I’ in g;, I, = 7;(l;, a1, ..., an, a.) for each possible
agent j € AU {e} (where [; is the local state of agent j in
state ¢g;_1). Furthermore, we denote with 7 (k) the k-th state
of a path m = go, g1, . . ., and with 7% the k-th suffix of a path
m; i.e., ™ = gk, gk+1,- ... We also define, for each agent
i € A a projection operator I; : G — L; which returns the
local state of agent ¢ in a given global state.

We now introduce Linear Dynamic Logic with Knowledge
(LDLK) by augmenting LDL with epistemic operators.

Definition 2 (LDLK Syntax). An LDLK formula ¢ is con-
structed by the following grammar:

(@) :=p|T[-¢|oNG|Kig| Erg|Dro|Cr| (p) ¢
(pro= o p+plpip|p®

where p is a propositional atom, i € A U {e} an agent, ' C
A U {e} a set of agents and 1) a formula free of dynamic
modalities ({p)¢). We allow the standard abbreviations from
propositional logic, and define [p]¢ = —(p)—¢.

LDLK enables us to express LDL specifications in an epis-
temic setting; these are not expressible in LTLK, CTLK,
nor CTL*K. In the context of the train gate controller sce-
nario [van der Hoek and Wooldridge, 2002], these include:

e Specifications involving parity, as in “At even states in
the run, train 1 is in the tunnel.”: [(T; T)*]tuny;

e Specifications involving alternating sequences, as in “It
is common knowledge between the trains that they will
alternately occupy the tunnel until one breaks down.”:
Cp1,23[(tuny; tung)*|(breaky V breaks);

e Looping constructions, as in “Until train 2 knows train
1 will eventually enter the tunnel, train 2 stays outside
the tunnel; once it knows this, train 2 enters the tunnel.”:
(=Ko (T*Ytun,?; —tung)*; Ko(T *Ytuny ?]tuns;

e Complex regular properties, as in “When train 1 en-
ters the tunnel, it leaves within one step; the con-
troller then knows that the tunnel is intermittently oc-
cupied until train 1 re-enters.”: [T*|(tun; — (T +
T?); —tuny) (Ke[(tuny V tung; T)*tuny));

o Complex combinations of epistemic operators and regu-
lar expressions, as in “The controller knows that after the
tunnel is empty for two rounds, the trains will both know
that the controller breaks in an odd number of rounds.”:
Ko[T*; (empty; empty)| By 23 (T5 (T T)*)breakc.

None of the properties above is expressible in CTL*K. As
previously mentioned, LDL has been employed in a variety of
applications including business processes [De Giacomo et al.,
2014]. By combining LDL with epistemic logic we obtain a
very expressive language for expressing MAS specifications.

We now define the satisfaction relation.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Definition 3 (Satisfaction). Consider the interpreted system
IS = ((Li, Acty, P;, Ti)icauge}, I, h) and let 7 be a path.

IS, m = piff m(0) € h(p).

IS, 7TET.

IS, 7 E —¢iff it is not the case that 1S, 7 = ¢.

IS,TF ': ¢1 A ¢2 lffIS77T ': ¢1 and IS,ﬂ' ': ¢2.

I1S,m = K;¢ iff for every state ¢ € G if l;(g) =
1;(m(0)), then IS, g = ¢.

I1S,m | Er¢ iff for every state ¢ € G if [;(g) =
1;(7(0)) for some agent i € I" then IS, g |= ¢.

IS, m = Dr¢ iff for every state ¢ € G if [;(g) =
1;(m(0)) for all agents ¢ € T then 1S, g |= ¢.

1S, = Cr¢ iff for every state g € G if g1,... are
states such that ;(g) = 1;(91), Ik, (91) = lg, (92), - -
lj(gn) = 1;(m(0)) for some agents i, j, k1,... € I" and
positive integer n, then 1.5, g = ¢.

1S, = {(p) ¢ iff there exists some 7 > 0 such that
(0,i) € R(p,7) and IS, 7" |= ¢.

The relation R C (p x 7) x (N x N) is inductively defined:

R(p,m) = {(ii+1) : 7 b=)
R(¢7,m) = {(i,1) : 0 = ¢}

Ep + /)/,77) - R(,O, S) U R(plv 8)
(

p;p) ={(i,7) : Ik s.t. (i, k) € R(p, m)A(k,j) €
)}
o Rp*,m) ={(i,i)}U{(4,7) : Tk s.t. (i, k) € R(p,7) A
(k,j) € R(p*,m)}
As in LTL, for a global state g € G, we say IS, g = ¢ iff on
every path 7 starting at g we have IS, 7 |= ¢.

R
R
R

Note that, as in mainstream approaches, we here adopt
observational semantics for epistemic modalities; intuitively,
agents’ knowledge is defined on their local state only.

In LDLK the path expressions p in the dynamic modalities
behave similarly to constructs from PDL.:

e ¢ checks if the formula 1 (by definition not contain-
ing dynamic modalities, but possibly containing epist-
mic ones) holds at the current state.

e ¢7? checks if the LDLK formula ¢ holds at the current
state. Unlike 1), though, the evaluation of ¢?7 does not
“progress” along the path — that is, in a composition like
¢7; p we are checking that ¢ is true in this state, and that
the path from this same state satisfies p.

e p + p' models the nondeterministic selection between
two path expressions; it checks whether either of the
path expressions p or p’ is satisfied by this path.

e p; p' models the sequential composition of two path ex-
pressions; it checks whether it is possible for the current
path to satisfy p and then p'.

e (p*) models zero or more instances of p, similarly to
Kleene star for regular expressions.

Given the above, the intuitive meaning of (p)¢ is that there
exists some prefix matching p, after which ¢ holds; the dual
[p]# holds iff after every prefix matching p, ¢ holds.

Given an interpreted system 1.5, a state g and an LDLK
formula ¢, the model checking problem involves determining
whether 1.5, g = ¢.

1140

3 Symbolic Model Checking LDLK

We now introduce an approach for verifying an interpreted
systems 7.5 against an LDLK specification ¢. This is reported
in Algorithm 1. As we show below, we have that IS | ¢ iff
I and the set of states returned by Algorithm 1 on —¢ are
disjoint. Since steps 3 and 4 follow established techniques,
we here report steps 1 and 2 only.

Algorithm 1 Symbolic LDLK Model Checking Algorithm

1. Recursively descend ¢ and construct an LDL formula ¢’
that holds in the same states as ¢ in 1.5.

2. Construct an alternating automaton for ¢', encapsulat-
ing an accepting run.

3. Convert the alternating automaton to a symbolic Biichi
automaton via the constructions in [Bloem et al., 2006].

4. Build the product of the Biichi automaton and 7.5; find
states admitting an accepting run [Burch er al., 1990].

Translating LDLK to LDL. Given an LDLK formula, we
first determine the states in which any epistemic subformulae
hold, and introduce fresh atomic propositions holding in pre-
cisely the same states. This involves recursively computing
the states in which the formula for which we are evaluating
knowledge holds, and then using the bottom-up labelling al-
gorithm presented in [Raimondi and Lomuscio, 2004]. The
construction always terminates, since formulae are of finite
size and thus have a finite nesting depth.

For example, to translate the LDLK formula ¢ =
(Ka(r)? + Ku(q)?); (Kp(q)? + Ki(p)?); T)Ka(r) we first
determine the states in which K,(r), K;(q) and K;(p) each
hold. We then define «, 8 and - to hold in the respective
sets of states, and obtain the formula ¢’ = ((a? + 37); (87 +
~?); T) e, which in our model holds in the same states as ¢.

Constructing the Alternating Automaton. Our approach
builds upon the construction given in [Faymonville and Zim-
mermann, 2015] for constructing an alternating automaton
that accepts the path 7 if and only if 1.5, 7 = ¢. Given an
LDL formula ¢, resulting from the translation above, we first
convert it into negation normal form (NNF), so that all nega-
tions appear before atomic propositions.

The translation of ¢ (in NNF) to an alternating automaton
then largely follows that in [Faymonville and Zimmermann,
2015]. The propositional cases are straightforward. For each
dynamic modality (p)1 or [p]y in ¢, we use an extension of
Thompson’s construction [Thompson, 1968] to build a non-
deterministic finite automaton with silent € moves (e-NFA).

We adopt their definition of marked e-NFA.

Definition 4 (Marked ¢-NFA). A marked e-NFA is a tuple
A= (%,8,s° R, f,m) where ¥ is an alphabet, S is a finite
nonempty set of states, s is an initial state, f is an accepting
state, R : (S x (XU {e})) — 2% is a (partial) transition func-
tion and m : S — ¢ is a (partial) marking function assigning
LDL formulae to states. Further to the above, if 7 = s¢... s,
is a path in a marked e-NFA, we define the markings over 7,
m(m) = {m(s;) | i € {0,...,n}}. In our usage, we build
marked e-NFAs for each dynamic modality {p)t or [p]¢) in
the formula we are checking; the marking function is con-
cerned with tests appearing in the relevant p. The overall

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Figure 1: Marked e-NFA for (a? + 87); (87 +~7); T

construction follows Thompson’s construction, but when we
encounter a test ¢7 (which is not allowed in regular expres-
sions) we generate a single accepting state marked with ¢.

Having constructed the e-NFA, we convert it into an al-
ternating automaton; to do so, we need to remove any e-
transitions as these cannot feature in alternating automata.

To do so, [Faymonville and Zimmermann, 2015] constructs
a transition relation for the alternating automata that features
a disjunction or a conjunction over all possible e-paths. This
may lead to difficulties in any resulting implementation as
the number of e-paths can be unbounded (in cases where we
have a cycle of e-paths, such as (p?)*). To avoid this problem,
we introduce the novel notion of critical sets which give us
a principled way of capturing only the subset of the e-paths
that actually need to be considered. The key intuition behind
critical sets is that we only need to consider the “best case”
sets of tests to match p for (p)@, or the “worst case” for [p]¢.

Definition 5 (Marking Sets). Let s, s’ be nodes in a marked
eNFA A = (X, 5,5, R, f,m). M C range(m) is a marking
set from s to s’ if there exists an e-path 7 from s to " in A,
such that m(7) = M. We say that 7 induces M.

Definition 6 (Critical Sets). Let s, s’ be nodes in a marked
eNFA A = (%,8,5°, R, f,m). M is a minimal critical set
of the markings range(m) from s to &, if M is a marking set
from s to s’, and there does not exist M’ C range(m) such
that M’ C M and M’ is a minimal critical set from s to s.

The maximal critical set is defined dually; M is a maximal
critical set of range(m) if M is a marking set from s to s,
and there does not exist M’ C range(m) such that M C M’
and M’ is a maximal critical set from s to s’.

As an example, consider Figure 1, the marked e-NFA for
(a?+87); (B7+~7?); T. Intuitively, to travel from s to s’, we
need to pass either 8 or both o and ~y. The set of minimal criti-
cal sets from s° to s’ is therefore {{3}, {a, v} }; if B holds we
do not need to test «y to reach s’. Conversely, the set of maxi-
mal critical sets refers to the “worst case” sets of tests to check
to travel from s° to s; here we have {{a, 8}, {a, v}, {B,7}}.
Notice there is no path testing all of «, 3,7, so {a, 8,7} is
not a maximal critical set.

We now exploit critical sets to convert an e-NFA for a given
dynamic modality to an equivalent alternating automaton. We
can achieve this by constructing a suitable transition relation
for each state. In particular, we explain how to use the min-
imal critical sets to construct a transition relation equivalent
to that in [Faymonville and Zimmermann, 2015], which was
shown to be correct. We show this for the diamond case; the
box case is dual. Recall that the transition relations for states

1141

of the constructed alternating automaton in [Faymonville and
Zimmermann, 2015] for (p)¢ are defined as follows:

Ry(s, A) s€ Sy
R(s,A) =< R;(s,A) seSj,je{l,... .k}
DRemain \ DLeave s € Sr

where DRmnain vS/EST\{f’F} \/TFEH(S,S/) Pﬂ" Pﬂ' =
VtERT(s’,A) (t A Qm(‘n’))s Qv = /\QjeM Rj(S?, A) and

Drcave = \/ﬂ—en(syfr) (R¢(S9¢7 A) A Qm(ﬂ))

Theorem 1. Let m; be an e-path from s to s’ in a marked
eNFA A = (2,5, 5%, p, f,m), for the regular expression p.
Let M; be the marking set induced by m; and suppose M;
is not a minimal critical set. The transition relation for the
alternating automaton for (p)¢ without considering 7 is the
same as that considering 7.

Proof. We first show this for Dremain. Consider Py, .
Since M; is not a minimal critical set, by definition there is
some minimal critical set M, C M;. We partition M; into
M, and M, = M; \ M,. Note that M, itself is induced
by some e-path 7, from s to s’ from Definition 6. The inner
disjunct of D pgemains \/ﬂen(s_’s/) Py, includes both P, and
Py, . Consider that Py, V P, =

\/teRws',A) (EAQar. A Qar) V \/tGRT(S’,A) (tA Q)
- \/teRT(S,,A) (EAQur, ANQuar,) V (EA Q)

- \/tERT(s’,A) (t A QIM*) = Pﬂ-*

with the second last step holding by the absorption law. Thus,
\/ﬂ‘GH(S,S’) P, = \/WGH(SA’S,)\{M} Py.. The proof for Dycqqe
is similar; the other cases for s are independent of I(s, s’).

Given the theorem above, we have Dgemain =

Voesaitt Vaeminess,s) Vier, (sr,a) (EA Qu)s
where MinCS(s,s’) denotes the set of mini-
mal critical sets from s to s’ Similarly we have

Drecave = \/MeMmCS(sA,s’) (R¢(Sg7 A) A QM) For
example, for (p)¢ in Figure 1, we only need to consider the
paths 7 = (1,3,4,5,6,8,9) and 7’ = (1,2,4,5,7,8,9) as
opposed to all four e-paths between nodes 1 and 9.

For the [p]¢ case, we can similarly reformulate D gemain =

Nsresngsy Nremazcsis,sy Neer,(sr,a) YV Qar) and

Dreave = /\MeMa:z:CS(s,s’) (R¢(3257 A) v QM)

Our approach eagerly constructs the alternating au-
tomata, and the number of critical sets is potentially super-
polynomial. Hence, we may require more than polynomial
space. However, this is acceptable for our purposes, as we in-
tend to use this algorithm for symbolic model checking with
OBDDs (which themselves already use exponential space).
We believe the empirical efficiency that BDDs provide out-
weighs this disadvantage in practice.

Computing Critical Sets. To compute the set of critical
sets between states in an e-NFA we introduce Algorithm 2,
which can be seen as a variant of breadth-first search (BFS)
over the e-closure of each state in the alternating automaton.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Algorithm 2 Minimal Critical Set Finding Algorithm

INPUT: NFA A, state sin A
OUTPUT: MinCS(s,s’) for each s in the e-closure of s
1: Let C' be a map of states to sets of sets of tests.
2: Let @ be a queue of pairs of states and sets of tests.
3: Q.add((s,{}))
4: while (@ is not empty do
(s',Ts) = Q.dequeue()
if C[s'] = null then C[s'] = {Ts }
else if 3z.z € C[s'] Az C T then
continue > skip line 12, in particular
9: else if 3z.z € C[s'| ATy C x then
10: Cls'] = (C[s"| U{Ts }) \ {z}
11: else C[s'] = (C[s'|U{Ts})
12: for all e-transitions (s',t) do Q.add(t, Ts Um(t))
13: return C'

We maintain C[s'], a cache of sets of tests we know we
can use to reach the node s’ so far. At each step in the BFS,
if C'[s'] contains a subset of the current test set T/, then we
know the current path no longer leads to a (distinct) minimal
critical set, so we prune it. The maximal case is analogous.

We now show Algorithm 2 returns MinC'S(s,).

Theorem 2. Algorithm 2 returns MinCS(s, s') for each s’
in the e-closure of s.

Proof. (sketch) We first observe that C[s] for any s’ only
contains marking sets. This is apparent since only line 12
builds the actual sets, which follows the marking function.

Algorithm 2 cannot skip any minimal critical sets. Firstly,
observe that a minimal critical set cannot be removed (line
10), because there is no marking set that is a subset of it.
Now suppose that a minimal critical set M was not added. It
must be induced by a path m we did not fully traverse (line
7). There must be some node s” where it stopped, and some
path 7" using fewer tests to get to s”. However, the path com-
posed of 7’ from s to s’/ and 7 from s” to s’ must use M (as
M is minimal). This path must be considered or dropped; if
dropped, there must be yet another path using M. Since our
e-NFAs are finite, this cannot repeat indefinitely. We must
consider some path using M, so M is added, a contradiction.

Furthermore, no other sets are returned — it is apparent that
Cs'] for any s’ never contains a pair of sets where one is a
strict subset of the other, and any other marking set would
have as a strict subset some minimal critical set.

Finally, we show our approach is fixed parameter tractable.

Theorem 3. Model checking interpreted systems against
LDLK specifications by using Algorithm 1 requires time lin-
ear in the size of the model (|G|) and exponential in the size
of the formula (||).

Proof. Step 1 requires O(|¢|) recursive runs of Algo-
rithm 1 on formulae known to be smaller. Following ideas
from Theorem 6.4 of [Emerson and Lei, 1985], this will not
affect the overall complexity (which is clearly superadditive).

Step 2 requires polynomially many runs of Algorithm 2
and building the quantification. The runtime of Algorithm 2 is
O(2!#11°g 191 since there are O(2!¢!) possible sets and it is ap-
parent no set is ever added from the same edge twice. Build-

ing the quantification for all states involves iterating over each
critical set a linear number of times; again, O(2!¢1°g),

Step 3 requires time exponential in the size of the alternat-
ing automaton [Bloem et al., 2006]. This automaton has size
linear in ||, so this step is exponential in ||.

Step 4 requires time linear in |G| and of the Biichi automa-
ton (which is exponential in |¢|) [Burch er al., 1990]. Hence,
all steps run in time linear in |G/, and exponential in |¢|.

Note that, while we will show in Section 4 that Algorithm 2
leads to attractive experimental results due to the fact it is
amenable to symbolic encoding, it is actually not optimal.
Theorem 4. Model checking interpreted systems against
LDLK specifications is PSPACE-complete.

Proof. Hardness follows from PSPACE-completeness of
LDL model checking [Faymonville and Zimmermann, 2015].
For membership, the translation above involves model check-
ing polynomially many LDL formulae (requiring polynomial
space) and evaluating polynomially many epistemic operators
(requiring polynomial space under observational semantics).
We can store the labels for polynomially many atomic propo-
sitions introduced; again these are of polynomial size.

4 Implementation and Experimental Results

We implemented the algorithms introduced in Section 3
on top of version 1.2.2 of MCMAS [Lomuscio e al.,
2015], an open-source BDD-based symbolic model checker.
The sources and executables of the resulting toolkit, called
MCMAS; b1 i, are available from [MCMAS prx, 20171.

For usability reasons, MCMAS pr x supports the stan-
dard propositional abbreviations and the box operator. Given
an input formula ¢, MCMAS . prx first transforms —¢ to
NNEF. We then build the alternating automaton, representing
states explicitly but transitions symbolically. We associate
each state with a BDD variable; this is motivated by the fact
that the number of states is polynomial in the formula size.
When processing LDL modalities, we explicitly construct e-
NFAs, find critical sets, and convert them to alternating au-
tomata, using the construction earlier presented.

MCMAS does not use alternating automata. We thus im-
plemented the symbolic breakpoint construction of [Bloem et
al., 2006] to convert our alternating automaton into an equiv-
alent symbolic Biichi automaton. We were able to reuse MC-
MAS’s implementation for CTLK with fairness (by checking
EGT with suitable fairness constraints), to find states) for
which there exists a path satisfying —¢. Following LDLK se-
mantics, Q)’, the complement of (), constitutes the set of states
satisfying ¢. We thus check if ¢ holds in all initial states, by
checking if p — ¢ is valid (where p holds in I and ¢ in Q’).

In addition to the model checking algorithms, we also im-
plemented counterexample generation. We also inherit fair-
ness constraint support from MCMAS; while LDLK can cap-
ture them, we expect native support to be more efficient.

Performance Optimisations. MCMAS prx employs
several optimisations. First, note that the checker’s perfor-
mance is affected by the size of the alternating automata con-
structed. To mitigate this MCMAS pr i employs:
propositional shortcircuiting (PS): instead of constructing the
corresponding alternating automaton, subformulae free of dy-
namic modalities and states where they hold are identified;

1142

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

time (s) BDD memory (MB)
N reach CTLK LDLK unop. | CTLK LDLK unop.
3 0.004 0.001 0.004 0.091 9.34 9.52 1449
4 0.014 0.002 0.007 29.635 9.56 9.60 60.73
5
6

0.034 0.005 0.011 >86400 9.96 10.35 -

0.071 0.005 0.012 - | 10.64 10.99 -

8 0283 0.012 0.031 - | 1193 11.97 -
10 0.802 0.026 0.066 - 1299 1342 -
20 37300 0.262 0.615 - | 5801 58.09 -
30 | 286.829 0.980 2.472 - | 5998 60.09 -
40 | 1854.067 3.216 7.865 - | 167.50 167.60 -
50 | 4081.914 12.667 27.984 - 127099 271.04 -

Table 1: Comparison between MCMAS and MCMAS . prK-

and fresh atomic propositions for these are introduced.
reachability pruning (RP): Since e-NFA states with no in-
bound non-¢ transitions are never transitioned to in alternating
automata, these are not included in the alternating automata
(but are still considered in the e-NFAs to find critical sets).
The automata remain polynomial (so the complexity is un-
affected), but we found these optimisations useful in practice.
We further optimised MCMAS pr i for efficiently com-
puting conjuncts (ECC) for the symbolic breakpoint construc-
tion, which involves computing 77 AT, ATk (notation from
[Bloem et al., 2006]). We initially computed each term sep-
arately, but found it cheaper to first compute a BDD T, and
then use it as an accumulator, taking conjunctions with each
term of 77 and T . We believe this is because our orig-
inal approach involves conjunctions of large BDDs (which
has complexity in the product of BDD sizes [Bryant, 1986]).
Experimental Setup. We report below experiments run
on virtual machines with two 2.70GHz CPUs and 16 GB
of RAM running Ubuntu v15.10 (Linux kernel v4.2). As
a testbed we took the prisoners and lightbulb scenario [Dit-
marsch ef al., 2010]. We compared MCMAS, prx’s per-
formance against MCMAS’s for specifications expressible in
both CTLK and LDLK, and evaluated the scalability of the
approach on suitable LDLK specifications with the number
of prisoners N. We report results for both optimised and un-
optimised versions of MCMAS; prx-
Comparison with MCMAS. We verified ¢y (CTLK) with
MCMAS and ¢; (LDLK) with MCMASprx; it can be
checked that the two formulas are equivalent.

oo = AG (announce — Ky (/\111_01 interrogatedi)>

&p = [T*] (announce — Ko (/\fi?)l interrogatedi))

In both cases, agent 0 is the counter agent. Both specifica-
tions hold for all N, expressing that the counter knows that
all prisoners have been interrogated whenever he announces
this. The results are reported in Table 1.

Observe that, while the CTLK algorithm performs better
than the optimised LDLK algorithm, both algorithms require
time on the same order of magnitude. This is in sharp contrast
with the underlying complexity of the corresponding decision
problems. Further observe that the runtime is dominated by
the computations for reachability making the difference in the
performance for labelling practically insignificant.

The experiments also show that the optimisations above are
essential for the scalability of the tool. In the cases presented
PS was particularly significant as the expression within the
box modality can be treated as a single atomic proposition.

1143

time (s) BDD memory (MB)

N reach LDLK unop. | LDLK unop.
3 0.004 0.017 0.0609 | 10.24 13.75
4 0.014 0.031 0.087 | 10.58 14.20
5 0.034 0.108 0.244 12.49 19.09
6 0.071 0.115 0.205 12.52 18.29
8 0.283 0.376 0.572 | 15.59 35.50
10 0.802 1.091 1.500 | 20.38 46.84
20 37.300 23.197 23943 | 58.36 58.94
30 | 286.829 310.658 323992 | 60.09 60.35
40 | 1854.067 1127.992 1067.446 | 167.57 167.97
50 | 4081.914 7618.838 7866.579 | 271.40 271.94

Table 2: Verification results for MCMAS prx on ¢1.

Scalability assessment. We now report the results ob-
tained when verifying the same scenario against the property
1 = —{(—on; —on; on; on)*) Kgrelease

¢1 holds iff on all paths the lightbulb is not repeatedly tog-
gled until the counter knows the prisoners are released. In the
scenario we can realise such a path by alternating the selec-
tion of a fresh non-counter with the counter; so ¢; is false for
any IN. The results obtained are in Table 2.

As before, we observe that the LDLK algorithm appears
able to scale reasonably well with the size of the model (for
N = 50, we have 2.19 x 1025 reachable states). The optimisa-
tions implemented provide a small performance improvement
(largely due to RP and ECC). The case N = 40 is an excep-
tion, probably owing to optimisation overheads that in this
case perform poorly. Further experiments, not here discussed
but included in the software package [MCMAS . prx, 20171,
demonstrate that MCMAS| pr i scales well with large mod-
els but not so with long formulae. This is to be expected given
Theorem 3 and, for similar reasons, it is also a feature of LTL
model checkers. This is not normally considered to be too
problematic since specifications are typically rather short.

5 Conclusions

As stated in the Introduction, LDL has recently been put for-
ward as a powerful specification language for distributed sys-
tems and Al systems. A key attractiveness of LDL is that
while it has the same expressivity as w-regular languages, the
complexity of the associated model checking problem is the
same as LTL.

In this paper we have augmented LDL with epistemic op-
erators and provided a semantics of the logic in terms of in-
terpreted systems. The key contribution of the paper rests
in the formulation of a model checking procedure for LDLK
that is amenable to symbolic implementation. In fact, while
the complexity of the model checking problem for LDL is
known, no symbolic procedure, nor implementation is avail-
able. The resulting algorithm, based on the notion of critical
sets for e-NFA, was implemented as MCMAS prk, an ex-
tension of the open-source model checker MCMAS. Our test-
ing and the experimental results showed that MCMAS prx
correctly supports LDLK, offers attractive performance and
has little overhead on the fragments of LDLK also express-
ible in CTLK (already supported by MCMAS). To achieve
efficiency, particular effort was devoted to several optimisa-
tions to handle the automata and OBDDs during verification.

In future work we intend to extend the results here pre-
sented to support finite traces, which is the object of recent
work in the area [De Giacomo and Vardi, 2015].

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Bloem et al., 2006] R. Bloem, A. Cimatti, I. Pill, M. Roveri,
and S. Semprini. Symbolic implementation of alternating
automata. In International Conference on Implementation
and Application of Automata, pages 208-218. Springer,
2006.

[Bryant, 1986] R. Bryant.
boolean function manipulation.
Computers, 35(8):677-691, 1986.

[Burch et al., 1990] J. R. Burch, E. M. Clarke, K. L. McMil-
lan, D. L. Dill, and L. J. Hwang. Sequential circuit verifi-
cation using symbolic model checking. In Design Automa-
tion Conference, 1990. Proceedings., 27th ACM/IEEE,
pages 46-51. IEEE, 1990.

[Cermék ef al., 2014] P. Cermdk, A. Lomuscio, F. Mo-
gavero, and A. Murano. MCMAS-SLK: A model checker
for the verification of strategy logic specifications. In Pro-
ceedings of the 26th International Conference on Com-
puter Aided Verification (CAVI4), volume 8559 of Lec-
ture Notes in Computer Science, pages 525-532. Springer,
2014.

[Cimatti et al., 1999] A. Cimatti, E. Clarke, F. Giunchiglia,
and M. Roveri. NuSMV: A new symbolic model verifier.
In Proceedings of the 11th International Computer Aided
Verification Conference, pages 495-499, 1999.

[Cimatti et al., 2006] A. Cimatti, M. Roveri, S. Semprini,
and S. Tonetta. From PSL to NBA: a modular symbolic
encoding. In 2006 Formal Methods in Computer Aided
Design, pages 125-133. IEEE, 2006.

[De Giacomo and Vardi, 2015] G. De Giacomo and M. Y.
Vardi. Synthesis for LTL and LDL on finite traces. In
Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAILS), pages 1558-1564. AAAI
Press, 2015.

[De Giacomo and Vardi, 2016] G. De Giacomo and M. Y.
Vardi. LTL¢ and LDL¢ synthesis under partial observabil-
ity. In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence (IJCAII6), pages 1044—
1050. ICAI/AAALI Press, 2016.

[De Giacomo et al., 2014] G. De Giacomo, R. De Masellis,
M. Grasso, F. M. Maggi, and M. Montali. Monitoring
business metaconstraints based on LTL and LDL for finite
traces. In Proceedings of the 12th International Confer-
ence on Business Process Management (BPM14), volume
8659 of Lecture Notes in Computer Science, pages 1-17.
Springer, 2014.

[Ditmarsch et al., 2010] H. van Ditmarsch, J. van Eijck, and
W. Wu. Verifying one hundred prisoners and a lightbulb.
Journal of Applied Non-Classical Logics, 20(3):173-191,
2010.

[Emerson and Lei, 1985] E. A. Emerson and C. L. Lei.
Modalities for model checking: Branching time logic
strikes back. In Proceedings of the 12th ACM Symposium
on Principles of Programming Languages, pages 84-96,
1985.

Graph-based algorithms for
IEEE Transaction on

1144

[Fagin et al., 1995] R. Fagin, J. Y. Halpern, Y. Moses, and
M. Y. Vardi. Reasoning about Knowledge. MIT Press,
Cambridge, 1995.

[Faymonville and Zimmermann, 2015] P. Faymonville and
M. Zimmermann. Parametric linear dynamic logic (full
version). arXiv preprint arXiv:1504.03880, 2015.

[Fischer and Ladner, 1977] M. J. Fischer and R. E. Ladner.
Propositional modal logic of programs (extended abstract).
In Proceedings of the 9th Annual ACM Symposium on The-
ory of Computing (STOC77), pages 286-294. ACM, 1977.

[Gammie and van der Meyden, 2004] P. ~ Gammie and
R. van der Meyden. MCK: Model checking the logic
of knowledge. 1In Proceedings of 16th International
Conference on Computer Aided Verification (CAV04),
volume 3114 of Lecture Notes in Computer Science, pages
479-483. Springer, 2004.

[van der Hoek and Wooldridge, 2002] W. van der Hoek and
M. Wooldridge. Tractable multiagent planning for epis-
temic goals. In Proceedings of the First International Joint

Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS02), pages 1167-1174. ACM Press, 2002.

[Kacprzak ef al., 2008] M. Kacprzak, = W. Nabialek,
A. Niewiadomski, W. Penczek, A. Pélrola, M. Szreter,
B. WozZna, and A. Zbrzezny. Verics 2007 - a model
checker for knowledge and real-time. Fundamenta
Informaticae, 85(1):313-328, 2008.

[Lomuscio et al., 2015] A. Lomuscio, H. Qu, and F. Rai-
mondi. MCMAS: A model checker for the verification of
multi-agent systems. Software Tools for Technology Trans-
fer, 2015. http://dx.doi.org/10.1007/s10009-015-0378-x.

[MCMAS; prk, 20171 MCMAS.prK.
http://vas.doc.ic.ac.uk/, 2017.

[Penczek and Lomuscio, 2003] W. Penczek and A. Lomus-
cio. Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundamenta Informaticae,
55(2):167-185, 2003.

[Pnueli, 1977] A. Pnueli. The temporal logic of programs. In
Proceedings of the 18th International Symposium Founda-
tions of Computer Science (FOCS77), pages 4657, 1977.

[Raimondi and Lomuscio, 2004] F. Raimondi and A. Lo-
muscio. Automatic verification of deontic interpreted sys-
tems by model checking via OBDDs. In Proceedings of
the Sixteenth European Conference on Artificial Intelli-
gence (ECAIO4), pages 53-57. 10S Press, 2004.

[Thompson, 1968] Ken Thompson. Programming tech-
niques: Regular expression search algorithm. Communi-
cations of the ACM, 11(6):419-422, 1968.

[Vardi, 2011] M. Y. Vardi. The rise and fall of linear time
logic. In 2nd International Symposium on Games, Au-
tomata, Logics, and Formal Verification, 2011.

[Wolper, 1981] P. Wolper. Temporal logic can be more ex-
pressive. In 22nd Annual Symposium on Foundations of
Computer Science (SFCS81), pages 340-348. IEEE, 1981.

