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Abstract

Several computational problems of abstract argu-
mentation frameworks (AFs) such as skeptical and
credulous reasoning, existence of a non-empty ex-
tension, verification, etc. have been thoroughly an-
alyzed for various semantics. In contrast, the enu-
meration problem of AFs (i.e., the problem of com-
puting all extensions according to some semantics)
has been left unexplored so far. The goal of this pa-
per is to fill this gap. We thus investigate the enu-
meration complexity of AFs for a large collection
of semantics and, in addition, consider the most
common structural restrictions on AFs.

1 Introduction
Within the area of Artificial Intelligence, argumentation has
become one of the major fields over the last two decades
[Rahwan and Simari, 2009; Bench-Capon and Dunne, 2007].
Its most prominent approach is given by abstract argumen-
tation frameworks (AFs) due to Dung [1995], a simple, yet
powerful formalism for modeling and deciding problems that
are integral to various advanced argumentation systems, see
e.g. [Caminada and Amgoud, 2007]. In AFs one abstracts
away from the actual contents of arguments and from the
concrete reason of conflicts. Many different semantics have
been proposed in the literature to define the set of possible
extensions of an AF – each representing a coherent set of
arguments that “jointly survive” the conflicts given by the
AF. In contrast to other communities, the multitude of se-
mantics is seen as a virtue of formal argumentation rather
than a weakness and thus a significant amount of research
has been done in order to understand particular features
of the available semantics, see e.g. [Baroni et al., 2011a;
Dunne et al., 2015].

Also several computational problems of AFs have been
thoroughly analyzed such as skeptical and credulous reason-
ing, existence of a non-empty extension, and the verification
problem [Dimopoulos and Torres, 1996; Dunne and Bench-
Capon, 2002; Dvořák and Woltran, 2010; Gaggl and Woltran,
2013; Dvořák and Gaggl, 2016; Baroni et al., 2011b]. Since
these problems tend to be intractable for most semantics,
structural restrictions on the AFs have been investigated and

their potential for reducing the complexity of the aforemen-
tioned problems has been pinpointed [Coste-Marquis et al.,
2005; Dunne, 2007]. For an overview on complexity results,
see also [Dvořák, 2012]. The only complexity analysis we
are aware of that goes beyond decision problems is about the
counting complexity for AFs [Baroni et al., 2010].

In 2015, the first edition of the International Competition
on Computational Models of Argumentation (ICCMA) took
place and compared the performance of 18 submitted solvers
in terms of skeptical and credulous reasoning, finding one ex-
tension, and enumerating all extensions [Thimm et al., 2016].
For the next edition of ICCMA1, in total seven semantics will
be considered. This not only shows the increasing interest
in solvers that are capable of dealing with multiple seman-
tics, but also witnesses that the enumeration problem is in-
deed considered to be important by the community. How-
ever, in contrast to the detailed picture of the complexity of
decision problems, the enumeration complexity has been left
unexplored so far.

Formal tools for the complexity analysis of enumeration
problems date back to [Johnson et al., 1988] and have been
further refined in recent years [Strozecki, 2010; Creignou et
al., 2013]. In particular, several notions of tractability have
been introduced, since a complexity classification of enumer-
ation problems has to take the size of the output into account.

The interest in enumeration problems spans various fields,
with some of the most prominent and natural examples com-
ing from the database area: in query answering, one is typ-
ically interested in obtaining all answers to a query rather
than asking if some answer exists. See [Bulatov et al., 2012;
Kazana and Segoufin, 2013; Durand et al., 2014; Kröll et al.,
2016] for recent works along this line. Enumeration complex-
ity of graph problems has been studied by Goldberg [1991].

As emphasized above, enumeration is a central task for ar-
gumentation systems and, in order to understand their ade-
quacy from a complexity theoretic point of view, a systematic
study of the enumeration problem of AFs is needed. It is ex-
actly the goal of this paper to provide such an analysis.
Main Contributions. We investigate the enumeration com-
plexity for a total number of 11 multiple-status semantics and,
in addition, consider 5 common structural restrictions on AFs,
namely bipartite AFs, symmetric AFs (with or without the ad-

1http://www.dbai.tuwien.ac.at/iccma17/
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ditional restriction of irreflexivity), AFs without even cycles,
and implicitly also acyclic AFs. Our main result is a complete
picture of the complexity of the enumeration problem of AFs
for all these semantics for unrestricted AFs and for AFs with
the above listed restrictions. We thus provide an exact sep-
aration between tractable and intractable enumeration for all
the resulting 66 settings.

Structure. After this introduction, we recall the most rele-
vant basic definitions on abstract argumentation frameworks
and on enumeration problems in Section 2. In Section 3, we
present an overview of our results. The proof strategy and the
main proof ideas will be presented in Section 4. We conclude
with Section 5.

2 Background
Abstract argumentation. We first recall some fundamental
concepts related to abstract argumentation frameworks (AFs).
This will enable us, in Table 1, to give concise definitions of
the various semantics of AFs studied in this work.

Formally, an AF is a directed graph (A,R) where A is a
finite set of arguments and R ⊆ A×A is the attack relation.

Given an AF F = (A,R), we define S+
F = {a | ∃s ∈ S :

(s, a) ∈ R}, S−F = {a | ∃s ∈ S : (a, s) ∈ R} and S⊕F =

S ∪ S+
F . The characteristic function FF of AF F is defined

as FF : 2A → 2A with FF (S) = {a ∈ A | {a}−F ⊆ S
+
F }.

A full resolution β of F is a subset β ⊆ R such that for any
two distinct arguments a, b ∈ A with {(a, b), (b, a)} ⊆ R,
exactly one of (a, b) and (b, a) is contained in β. We write
γ(F ) to denote the set of all full resolutions of F . For
S ⊆ A, we write F |S for the restriction of F to S, i.e.,
F |S = (A ∩ S,R ∩ (S × S)). By SCCs(F ) we denote
the strongly connected components of the directed graph F .
For a ∈ A, let CF (a) denote the strongly connected com-
ponent containing a, i.e., CF (a) ∈ SCCs(F ) unique with
a ∈ CF (a). An argument b ∈ A is called component-
defeated by S (in F ), if there exists a ∈ S with (a, b) ∈ R and
a 6∈ CF (b). We write DF (S) to denote the set of arguments
component defeated by S.

For a set of sets M, we write min(M) to denote the set
of inclusion-minimal sets inM and max(M) for the set of
inclusion-maximal sets inM.

The semantics of an AF is defined in terms of coherent sets
of arguments (so-called “extensions”) that jointly survive the
conflicts given by the AF. In this work, we study the following
semantics [Dung, 1995; Verheij, 1996; Caminada et al., 2012;
Baroni et al., 2011b; 2005; Dvořák and Gaggl, 2016], which
are defined via the extensions of a given AF F : the set
of conflict-free sets cf (F ), naive sets naive(F ), admissi-
ble extensions adm(F ), preferred extensions pref (F ), sta-
ble extensions stable(F ), complete extensions comp(F ),
semi-stable extensions semi(F ), stage extensions stage(F ),
resolution-based grounded extensions resGr(F ), stage2 ex-
tensions stage2 (F ), and cf2 extensions cf2 (F ). The formal
definitions are given in Table 1. Note that all semantics are
multiple-status, i.e. they provide in general more than one ex-
tension. We will also occassionally refer to the grounded ex-
tension of an AF F , denoted by grd(F ); recall that this ex-

cf (F ) = {S ⊆ A | ∀a, b ∈ S, (a, b) 6∈ R}
naive(F ) = max(cf (F ))

adm(F ) = {S ∈ cf (F ) | S ⊆ FF (S)}
pref (F ) = max(adm(F ))

stable(F ) = {S ∈ adm(F ) | S⊕F = A}
comp(F ) = {S ∈ adm(F ) | FF (S) ⊆ S}
semi(F ) = {S ∈ adm(F ) | ∀T ⊆ A :

if S⊕F ⊂ T
⊕
F then T 6∈ adm(F )}

stage(F ) = {S ∈ cf (F ) | ∀T ⊆ A :

if S⊕F ⊂ T
⊕
F then T 6∈ cf (F )}

resGr(F ) = min
( ⋃
β∈γ(F )

min(comp((A,R \ β))
)

S ∈ stage2 (F ) iff:
in case |SCCs(F )| = 1: S ∈ stage(F )
else: ∀C ∈ SCCs(F ), (S ∩ C) ∈ stage2 (F |C\DF (S))

S ∈ cf2 (F ) iff:
in case |SCCs(F )| = 1: S ∈ naive(F )
else: ∀C ∈ SCCs(F ), (S ∩ C) ∈ cf2 (F |C\DF (S))

Table 1: Semantics of AFs, given F = (A,R).

tension is unique for each AF. Formally, grd(F ) is given by
the subset-minimal complete extension of F .

Several decision problems on AFs have been investigated
in the literature. We briefly recall the complexity classifica-
tion of two of the most prominent decision problems defined
as follows: given an AF F , semantics σ, and argument a, de-
cide whether a is contained (i) in at least one σ-extension of
F (credulous reasoning); (ii) in all σ-extensions of F (skepti-
cal reasoning). Both problems are tractable for cf and naive ,
and skeptical reasoning is tractable for comp and trivial for
adm (since ∅ ∈ adm(F ) for any AF). Credulous reasoning
is NP-complete for adm , pref , stable , comp, resGr , and
cf2 , and ΣP2 -complete for semi , stage and stage2 . Skepti-
cal reasoning is coNP-complete for stable , resGr , and cf2
and ΠP

2 -complete for pref , semi , stage and stage2 ; see e.g.
[Dvořák, 2012; Dvořák and Gaggl, 2016] for further details.

Enumeration problems and their complexity. An enumer-
ation problem is a pair (L, Sol) such that L ⊆ Σ∗ (for an
alphabet Σ containing at least two symbols) and Sol : Σ∗ →
2Σ∗ is a function such that for all x ∈ Σ∗, we have that Sol(x)
(the set of “solutions”) is finite and Sol(x) = ∅ iff x /∈ L.

An enumeration algorithm A for an enumeration problem
P = (L, Sol) is an algorithm which, on input x, outputs ex-
actly the elements from Sol(x) without duplicates. We denote
the output of algorithm A on x by A(x).

As far as the computation model of enumeration algo-
rithms is concerned, it is common (cf. [Strozecki, 2010]) to
use the RAM model. This is motivated by the fact that a RAM
can access parts of exponential-size data in polynomial time.
As we will see below, this may be needed to efficiently detect
(and avoid the output of) duplicates. We restrict ourselves to
polynomially bounded RAM machines, i.e., the size of each
register is polynomially bounded in the size of the input.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1146



Let A be an enumeration algorithm for some problem P .
For an input x, let n = |A(x)|. For 0 ≤ i ≤ n, we define
delay(i) as follows: delay(0) (“preprocessing”) is the time
between the start of the algorithm and the first output (or ter-
mination of A, if n = 0). For 0 < i < n, delay(i) is the time
between outputting solution i and (i + 1). Finally, delay(n)
is the time between the last output and the termination of A.

Several notions of tractability have been proposed in
the literature [Johnson et al., 1988; Creignou et al., 2013;
Strozecki, 2010]. We recall the two most relevant ones for
our purposes below, namely DelayP (“polynomial delay”)
and OutputP (“output-polynomial time”). Alternatively, the
latter class is sometimes referred to as TotalP (“total polyno-
mial time”) [Strozecki, 2010].

The classes DelayP and OutputP are defined as follows.
Let P = (L, Sol) be an enumeration problem.

• P ∈ OutputP, if there exists an enumeration algorithm
A for P and some m ∈ N, such that on every input x,
algorithm A terminates in time O((|x|+ |Sol(x)|)m).

• P ∈ DelayP, if there exists an enumeration algorithmA
for P and some m ∈ N, such that on every input x and
for every i ∈ {0, . . . , |Sol(x)|}, delay(i) is in O(|x|m).

Clearly, DelayP ⊆ OutputP holds. This inclusion can be
seen as follows: suppose that an enumeration algorithm A
for some problem P works with delay O((|x|m)) for some
m ≥ 1. Moreover, letN = |Sol(x)|. Then the total time ofA
to output all solutions for input x isO((N+1)∗|x|m). Recall
that the factor (N + 1) rather than N is needed for the time
between the last output and termination of A. For N = 0,
we have O((N + 1) ∗ |x|m) = O(|x|m) = O((N + |x|)m).
For N > 0, the sequence of equalities O((N + 1) ∗ |x|m) =

O(N ∗ |x|m) = O((N + |x|)m′) with m′ = m + 1 holds,
which proves the desired OutputP-membership of P .

Hence, membership in DelayP is the stronger tractability
result, which entails membership in OutputP. Conversely,
the stronger intractability result is to show that a problem
is not in OutputP (under the common assumption that P 6=
NP), which entails non-membership in DelayP.

Note that membership in DelayP does not impose a restric-
tion on the space consumption of an enumeration algorithm.
More specifically, a DelayP algorithm may require the con-
struction of an index structure for the already found solutions
to avoid the output of duplicates. Hence, if there are exponen-
tially many solutions, this index structure and, therefore, the
space consumption of the algorithm may become exponen-
tial. We will use the notation DelayPP to refer to the class of
enumeration problems which can be enumerated with poly-
nomial delay using only polynomial space. In contrast, when
we state DelayP membership of a problem, this means that
the enumeration may potentially use exponential space.

3 Overview of Results
The overall goal of this work is to study the complexity of
the enumeration problem of abstract argumentation under the
various semantics recalled in the previous section. We denote
by EnumExt(C, σ) the enumeration problem of σ-extensions

C0 Cbip Csym C(ir,sym) Cnoev
cf DelayPP → → → →
naive DelayPP → → → →
adm nOP DelayP DelayPP → DelayP
pref ← nOP DelayPP → trivial
stable ← nOP nOP DelayPP trivial
comp ← nOP DelayPP → trivial
semi ← nOP nOP DelayPP trivial
stage ← nOP nOP DelayPP nOP
resGr DelayPP → → → →
stage2 ← nOP nOP DelayPP nOP
cf2 DelayPP → → → →

Table 2: Summary of tractability/intractability results. Entry “←”
means that hardness carries over from some special case. “→”
means that membership carries over from a more general case.

of argumentation frameworks in a class C of AFs. An algo-
rithm for the EnumExt(C, σ) problem thus takes F ∈ C as
input and outputs σ(F ).

Recall from Section 2 that, for most of the semantics σ con-
sidered here, the principal decision problems such as credu-
lous and skeptical reasoning are intractable. Consequently,
several structural restrictions on the AFs have been studied
in the literature. In this work, we study three of the most
commonly used subclasses of AFs, namely: the restrictions
to bipartite graphs, to symmetric graphs and to graphs with-
out even cycles. As far as the restriction to symmetric graphs
is concerned, one has often imposed the further restriction of
irreflexivity, see e.g. [Coste-Marquis et al., 2005]. In total,
we thus consider the following 5 classes of AFs: AFs without
any restrictions (which we will denote as C0), AFs restricted
to bipartite graphs (denoted as Cbip), irreflexive, symmetric
AFs (denoted as C(ir,sym)), symmetric AFs without irreflexiv-
ity restriction (denoted as Csym), and AFs restricted to graphs
with no even cycles (denoted as Cnoev).

Our results are summarized in Table 2. Each of the 11 se-
mantics is treated in a separate row. We then have 5 columns
for the 5 classes of AFs mentioned above. Table 2 pro-
vides a complete complexity classification of the enumera-
tion problem – separating the tractable cases (marked with
one of the entries “DelayP”, “DelayPP” or “trivial”) from the
intractable ones (marked with “nOP”, which is short for “not
in OutputP” under the common assumption that P 6= NP).

Clearly, if tractability even holds in the unrestricted case
(e.g. for cf semantics), then tractability propagates to the re-
stricted cases. Likewise, tractability for AFs in Csym (e.g.,
for pref semantics) carries over to AFs in C(ir,sym). We mark
this with the entry “→” in Table 2. Conversely, if at least one
of the restricted cases is intractable, then intractability prop-
agates to the unrestricted case. We mark this with the entry
“←”. The cases where the structural restriction causes the
semantics to have at most one nonempty extension (namely
the grounded extension, which can always be computed effi-
ciently) are marked with “trivial”.

When filling in the remaining entries in Table 2, we can
make use of further dependencies between the different cases.
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In particular, under various restrictions, some of the seman-
tics coincide. For instance, in symmetric AFs, every conflict-
free extension is admissible. Hence the DelayPP-membership
of enumerating admissible extensions in case of symmetric
AFs requires no separate proof. Similarly, for bipartite AFs,
every preferred extension is stable. Hence, the intractabil-
ity of enumerating stable extensions in case of bipartite AFs
carries over to preferred extensions. To distinguish the en-
tries in Table 2 which require a separate proof from the ones
which follow by the collapse of different semantics in some
restricted case, we display the former results in boldface.

Note that the restriction to acyclic graphs, which has also
been used in the literature to achieve tractability of decision
problems, is implicitly covered by our results: First, since
acyclic AFs are a special case of AFs without even cycles, all
the tractability results of the latter case carry over to acyclic
AFs. Moreover, the only intractable cases for AFs without
even cycles are stage and stage2 semantics. However, for
acyclic AFs, these two coincide with grounded semantics (cf.
[Dvořák and Gaggl, 2016]), which is a trivially tractable case.

4 Proof Strategy and Main Proof Ideas
Before we start discussing the various entries in Table 2, we
define the decision problem ManySol(P), which is strongly
related to an enumeration problem P . For an arbitrary enu-
meration problem P = (L, Sol), it is defined as follows:

• ManySol(P): Given x ∈ L and a positive integer m in
unary notation, is |Sol(x)| ≥ m?

The following property of the ManySol problem will make it
a useful tool for our intractability proofs.

Proposition 1. LetP = (L, Sol) be an enumeration problem.
If ManySol(P) 6∈ P, then P 6∈ OutputP.

Proof Sketch. Let P = (L, Sol) be an enumeration problem.
We prove the contrapositive, i.e., assume that P ∈ OutputP.
We have to show that then ManySol(P) ∈ P also holds. By
P ∈ OutputP, there is an algorithm A computing A(x) =
Sol(x) for any x ∈ L in time p(|x|+ |Sol(x)|) for some poly-
nomial p. Let x ∈ L, m ≥ 0. Then we can decide whether
|Sol(x)| ≥ m as follows: we run algorithm A on input x for
at most s = p(|x| + m) many steps. If the algorithm ter-
minates before s many steps, it outputs Sol(x) and we can
check whether |Sol(x)| ≥ m. If A has not terminated after s
many steps, we must have that |Sol(x)| > m as A produces
an output after p(|x|+ |Sol(x)|) computational steps.

Since m is given in unary, the size of the input to the
ManySol problem equals |x|+m. Hence, we have shown that
ManySol(P) can indeed be decided in polynomial time.

The following decision problem, which is parameterized
by a semantics σ, is a special case of ManySol(P), provided
that σ is guaranteed to have the empty set as an extension.

• Exists¬∅σ : Given an AF F = (A,R), does there exist a
set ∅ 6= S ⊆ A with S ∈ σ(F )?

The following property is an immediate consequence of
Proposition 1.

Corollary 1. Let σ be a semantics such that ∅ ∈ σ(F ) for all
AFs F and let C be a class of AFs. If Exists¬∅σ 6∈ P for AFs
restricted to C, then EnumExt(C, σ) 6∈ OutputP.

We are now ready to present the main proof ideas of the
results summarized in Table 2. To this end, we inspect one
column of the table after the other.

Unrestricted AFs. First consider the complexity of enumer-
ating conflict-free and naive extensions. For an AF F =
(A,R), S ⊆ A is a (maximal) conflict-free set iff it is a (max-
imal) independent set in the corresponding undirected graph.
It was shown in [Johnson et al., 1988] that the maximal inde-
pendent sets can be enumerated in DelayPP. The same result
holds for enumerating all independent sets. Hence, we get
EnumExt(C0, σ) ∈ DelayPP with σ ∈ {naive, cf }.

The tractability result for cf2 semantics is obtained by ap-
plying standard algorithms for recursively enumerating ex-
tensions, see e.g. [Cerutti et al., 2014].

Theorem 1. EnumExt(C0, cf2 ) ∈ DelayPP holds.

Proof Sketch. Let F = (A,R) with strongly connected com-
ponents S1, . . . , Sm ⊆ A. W.l.o.g., assume that S1, . . . , Sn
are the bottom components for some n ≤ m, i.e. strongly
connected components without an incoming edge from an-
other component. By the definition of cf2, every naive ex-
tension on a bottom component is part of some S ∈ cf2 (F ).
As for each such bottom component the naive extensions are
enumerable with polynomial delay using polynomial space,
we can fix some naive set Ni ⊆ Si for 1 ≤ i ≤ n. Next we
get rid of the arguments of the bottom components S1 =

⋃
Si

and the ones which are component defeated by N1 =
⋃
Ni,

resulting in the AF F 1 = F |A\(S1∪N1). As before, we choose
a naive extension for every bottom component of F 1, thus
again obtaining a union of naive extensionsN2. After repeat-
ing this process at most k many times for some k ≤ |A|, we
have that F k 6= ∅ and F k+1 = ∅. Then S =

⋃k
i=1Ni is a cf2

extension of F . By selecting a single different naive exten-
sion of a bottom component of some F j , the same procedure
obtains an S′ ∈ cf2 (F ) with S′ 6= S. Through backtrack-
ing, we can thus enumerate all extensions S ∈ cf2 (F ) with
polynomial delay using polynomial space.

It only remains to establish the tractability of resGr and
the intractability of adm semantics, since for all further se-
mantics, the intractability in the unrestricted case carries over
from the intractability of some restricted case.

For resGr , an enumeration algorithm is given in [Baroni et
al., 2011b, Algorithm 2]. This algorithm can be refined to an
algorithm with polynomial delay using polynomial space by
making use of an algorithm for maximal independent sets and
backtracking. For adm , we recall that the Exists¬∅adm problem
is NP-complete, which follows from results in [Dimopoulos
and Torres, 1996]. Hence, by Corollary 1, we may conclude
that EnumExt(C0, adm) 6∈ OutputP holds unless P = NP.

Bipartite AFs. We first inspect the tractability for adm se-
mantics. It is easy to verify that, given an admissible set S
in a bipartite AF F = (A1 ∪ A2, R), the restrictions S ∩ A1
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and S ∩ A2 are also admissible. The crucial properties of bi-
partite AFs used here are that, for i ∈ {1, 2}, all subsets of
Ai are conflict-free and all defenders of an argument in Ai
must also be in Ai. To compute all admissible sets of F , we
have to find the sets Ai of admissible subsets of Ai for each
i ∈ {1, 2} separately and then find all conflict-free combina-
tions S1 ∪ S2 with Si ∈ Ai. For the computation of Ai, the
following lemma, which holds for arbitrary AFs, is crucial.
Lemma 1. Given an AF (A,R) and a conflict-free set M ⊆
A, enumerating all admissible subsets S ⊆M is in DelayP.

Proof Sketch. It is shown in [Dunne et al., 2013, Lemma 1]
that, given a conflict-free set M ⊆ A, there exists a unique
maximal admissible subset S∗ ⊆ M , which can be com-
puted in polynomial time. Then the desired algorithm for
enumerating all admissible subsets of M works as follows:
we maintain two queues P and Q of admissible sets, such
that P contains the already printed and processed ones while
Q contains those which have been found but not printed and
processed yet. Initially, P = ∅ and Q = {S∗}. As long as
Q is not empty, we take an element from Q, output it and
search recursively for admissible subsets of S \ {x} for each
x ∈ S. For every admissible set S′ thus found, we check if
S′ 6∈ P ∪ Q and, if so, add it to Q.

The correctness of this algorithm is easy to verify. The
polynomial delay can be seen as follows: the already found
extensions have to be organized in some index structure.
In principle, any balanced search tree formalism (e.g., AVL
trees) can be used. Yet simpler, we can arrange extensions
of an AF with n arguments in a binary tree of depth n where
each leaf node (or, equivalently, each path from the root to a
leaf) represents an already found extension. A node at depth
i is either labelled with “ai in” or with “ai out” depending
on whether argument ai is contained in the extension or not.
Checking if the current extension is new and extending the
tree in case it is, can thus be done in time O(n).

Note that Lemma 1 only states DelayP membership rather
than DelayPP membership. Indeed, the algorithm in the proof
of Lemma 1 crucially depends on an index structure of all
the already found solutions to avoid the output of duplicates.
Hence, if there are exponentially many solutions, the space
requirement of the algorithm becomes exponential as well.
Theorem 2. EnumExt(Cbip, adm) ∈ DelayP holds.

Proof Sketch. Consider a bipartite AF F = (A1 ∪ A2, R).
Then each of the two setsAi is conflict-free. As mentioned in
the proof of Lemma 1, we can thus compute the unique max-
imal admissible set S∗i ⊆ Ai efficiently by applying [Dunne
et al., 2013, Lemma 1]. In principle, using our Lemma 1
above, we could compute with polynomial delay the set Ai
of all admissible subsets of Ai and finally check each pair
(S1, S2) ∈ A1 × A2 for conflict-freeness to find and output
all admissible sets S1 ∪ S2 with elements from both sides A1

and A2. However, the challenge with bipartite AFs is that
there may exist exponentially many pairs (S1, S2) but only a
small number of them yields a conflict-free set S1 ∪ S2.

Hence, we have to be careful to get an overall enumera-
tion algorithm which works in polynomial delay. The solu-
tion to overcome this problem is an interleaved output of the

admissible subsets Si ofAi with i ∈ {1, 2} and of admissible
subsets of the form S1 ∪ S2:

Whenever an admissible subset S1 ⊆ A1 is processed,
we search recursively for the maximal admissible subsets of
S1 \ {x} for each x ∈ S1 as in the proof sketch of Lemma 1
and, moreover, we also search for all admissible subsets
S2 ⊆ A2 such that S1 ∪ S2 is conflict-free. For the latter
task, we first compute M ⊆ A2 containing all arguments that
have no conflict with S1. Clearly M is conflict-free, since it
only has arguments from one side of the bipartite AF. We can
then find all admissible subsets S2 ⊆M with polynomial de-
lay by Lemma 1. For every S2 thus found, we output S1∪S2.
Note that in this way also all admissible subsets S1 ⊆ A1

are output (namely when we combine S1 with S2 = ∅) and
also admissible subsets S2 ⊆ A2 are output (namely when we
combine S2 with S1 = ∅), since ∅ is guaranteed to be among
the admissible subsets of A1 and A2, respectively.

Before we switch to intractability, we recall that the stable ,
stage , semi , and pref semantics all coincide for bipartite
AFs. This follows from the fact that bipartite AFs are odd-
cycle free, hence stable and pref coincide; this also guar-
antees the existence of a stable extension which implies that
stable, semi-stable and stage extensions coincide. Hence, to
prove the intractability results of bipartite AFs in Table 2,
it suffices to consider the stable, stage2 , and comp seman-
tics. To this end, we first recall the following definition. Let
G = (V,E) be a directed graph and K ⊆ V . Then K is
called a kernel of G, if K is an independent dominating set,
i.e. the nodes in K are pairwise non-adjacent and for every
v ∈ V \K there exists a k ∈ K with (k, v) ∈ E. As shown by
Dimopoulos et al. [1997] it is NP-complete to decide whether
a given graph has more than two kernels and that this prob-
lem remains NP-complete even if the graphs are restricted to
bipartite graphs with a single SCC. Building upon this result,
we prove the following intractability results for bipartite AFs.
Theorem 3. Let σ ∈ {stable, comp, stage2}.
Then EnumExt(Cbip, σ) 6∈ OutputP holds unless P = NP.

Proof Sketch. “stable”. Clearly, for an AF F = (A,R),
S ⊆ A is a stable extension iff it is a kernel in the corre-
sponding graph. This means that for the class Cbip of AFs and
stable semantics, the ManySol problem is NP-hard. Hence
EnumExt(Cbip, stable) 6∈ OutputP by Proposition 1.
“stage2 ”. Since stable and stage semantics coincide for bi-
partite AFs, the enumeration of stage extensions shares the
hardness of stable ones. Since the underlying NP-hardness
results for kernels holds even for bipartite graphs with a sin-
gle SCC, we also have EnumExt(C, stage2 ) 6∈ OutputP.
“comp”. We can use the reduction of the NP-hardness proof
in [Dimopoulos et al., 1997] to show that for the class Cbip of
AFs and comp semantics, the ManySol problem is NP-hard.
Instead of kernels, satisfying truth assignments correspond to
non-trivial complete extensions, which are subsets of the non-
trivial kernels of the bipartite graph.

Symmetric AFs. In symmetric AFs, every argument defends
itself against any attacks. Hence, cf and adm semantics coin-
cide and so do naive and pref semantics. The DelayPP mem-
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bership of cf and naive semantics thus carries over to adm
and pref semantics. For cf2 , and resGr , DelayPP member-
ship carries over from the unrestricted case. For the remain-
ing semantics, no collapse with an already shown tractable
case occurs in case of symmetric AFs. Indeed, for the follow-
ing semantics, we can show intractability:

Theorem 4. Let σ ∈ {stable, stage, semi , stage2}.
Then EnumExt(Csym, σ) 6∈ OutputP holds unless P = NP.

Proof Sketch. In [Dvořák, 2012] it was shown that for an ar-
bitrary AF F one can construct in polynomial time a symmet-
ric AF F ′ with self-loops such that stage(F ) = stage(F ′) =
semi(F ′) and stable(F ) = stable(F ′). In other words, the
problem of enumerating the stage extensions of an arbitrary
AF F can be reduced to the problem of enumerating the stage
(resp. semi-stable) extensions of a symmetric AF F ′ ∈ Csym.
Likewise, the problem of enumerating the stable extensions
of an arbitrary AF F can be reduced to the problem of enu-
merating the stable extensions of a symmetric AF F ′ ∈ Csym.
This means that EnumExt(Csym, σ) 6∈ OutputP holds for
σ ∈ {stage, stable, semi} unless P = NP.

For stage2, we observe that the aforementioned reduction
from F to F ′ preserves strong connectivity. Using the AF
F to be constructed in the proof of Theorem 7, we have
that stage(F ) = stage(F ′) = stage2 (F ′), thus proving in-
tractability also for EnumExt(Csym, stage2 ).

It only remains to consider comp semantics. To study this
case, we define the following decision problem:

• ExtSolComplete Given an AF F = (A,R) and sets of
arguments I,O ⊆ A, is there some S ∈ comp(F ) with
I ⊆ S and O ∩ S = ∅?

While this problem is intractable for arbitrary AFs, it can
be shown tractable for comp semantics over symmetric AFs.

Lemma 2. ExtSolComplete is in P for symmetric AFs.

Proof Sketch. Intuitively, I (resp. O) contains the arguments
that we want to be in (resp. out). A polynomial time algorithm
A for solving this decision problem works as follows: On
input F = (A,R) and I,O ⊆ A, we first check whether I ∈
cf (F ). If this is not the case then A ends in a rejecting state;
otherwise, we compute the minimal fixpoint S of FF such
that I ⊆ S holds. Since, for symmetric AFs, conflict-free
sets are admissible, S is the minimal complete set containing
I . So A accepts the input iff S ∩O = ∅.

Similarly to algorithms in [Creignou and Hébrard, 1997]
and [Kröll et al., 2016], we can use algorithm A for ExtSol-
Complete from Lemma 2 to design an efficient enumeration
algorithm for complete extensions on symmetric AFs.

Theorem 5. EnumExt(Csym, comp) ∈ DelayPP holds.

Proof Sketch. Let F = (A,R) with A = {a1, . . . , an}. The
idea of the enumeration algorithm is the following: We ex-
tend single arguments to complete extensions successively,
by repeatedly adding arguments to such partial extensions as
well as fixing a set of arguments that cannot be added to such
partial extensions. Starting with the argument a1, the enumer-
ation algorithm first obtains the answers of algorithmA from

Lemma 2 on input (F, {a1}, {}) and (F, {}, {a1}). For every
input Ω = (F, IΩ, OΩ) accepted by A we add a2 to either IΩ
or OΩ resulting in two new inputs Ω1 = (F, IΩ ∪ {a2}, OΩ)
and Ω1 = (F, IΩ, OΩ ∪ {a2}). Repeating this n times, we
obtain all complete extensions IΩ for inputs Ω of A such that
A accepts and IΩ ∪ OΩ = {a1, . . . , an}. By a depth-first
computation and backtracking, this enumeration can be done
with polynomial delay using polynomial space.

Irreflexive, symmetric AFs. We now consider AFs which
are symmetric and irreflexive. Clearly, all tractability re-
sults carry over from symmetric AFs. It remains to consider
those cases, for which the enumeration problem of symmetric
AFs with self-loops is intractable. The restriction to irreflex-
ive, symmetric AFs implies that stable and preferred seman-
tics coincide [Coste-Marquis et al., 2005]. Hence, DelayPP-
membership of pref semantics carries over to stable , and
consequently to semi and stage semantics (since we are guar-
anteed that a stable extension exists). Finally, stage2 and
stage extensions coincide, since in symmetric AFs different
components are not connected at all. Hence, we also have
DelayPP-membership for stage2 semantics.

No-even AFs. Let F = (A,R) be an AF without even cycles.
As shown in [Dunne and Bench-Capon, 2001], the grounded
extension S ⊆ A is the only complete (and also preferred and
semi-stable) extension and is computable in polynomial time.
Moreover, S is the only candidate for a stable extension and
we can test whether S ∈ stable(F ) efficiently. Hence, for any
of the semantics stable , pref , comp, and semi , the enumera-
tion problem becomes trivial. It remains to consider the adm ,
stage , and stage2 semantics. Below, we show that adm leads
to tractability while the latter two lead to intractability.
Theorem 6. EnumExt(Cnoev, adm) ∈ DelayP holds.

Proof Sketch. For AF F ∈ Cnoev, comp and grd semantics
coincide. Hence, the grounded extension of F (which can be
computed efficiently) is the unique maximal admissible set of
F . In particular, it is conflict-free and contains all admissible
sets of F as subsets. By Lemma 1, we can enumerate all
admissible sets S ⊆M with polynomial delay.

Theorem 7. Let σ ∈ {stage, stage2}.
Then EnumExt(Cnoev, σ) 6∈ OutputP holds unless P = NP.

Proof Sketch. By Proposition 1, it suffices to show that the
ManySol problem of stage and stage2 extensions is NP-
hard on AFs without even cycles. The proof is by reduc-
tion from SAT. For stage semantics, we can take over almost
literally the construction from [Dvořák, 2012, Theorem 30]
(which, in turn, uses ideas similar to [Dvořák et al., 2014,
Proposition 13]). The only modification needed is to delete
an auxiliary argument q from the AF constructed there.

Apart from a self-cycle, the resulting AF is acyclic, i.e.,
every argument builds its own SCC. The main task to prove
NP-hardness also for stage2 semantics is a general one: we
are given an acyclic AF and we have to extend it in such a way
that the resulting AF consists of a single SCC. The challenge
here is that we must not introduce an even cycle.

Our construction proceeds in two steps: first, we assume an
appropriate topological sort of the arguments in the directed
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acyclic graph (ignoring self-cycles) from [Dvořák, 2012,
Theorem 30] and we introduce “backward paths” of length 2
between any two successive vertices. That is, let A be sorted
as A = {a1, . . . , aN}. Then, for every i ∈ {1, . . . , N − 1},
we add vertices ui and arcs (ai+1, ui), (ui, ai), (ui, ui). The
self-cycles prevent the ui’s from being selected in a stage ex-
tension. The idea of these paths of length 2 is that every sim-
ple cycle in the resulting graph consists of a “forward” arc
(i.e., from some ai to some ai+k) and a sequence of k − 1
“backward paths” of length 2. Hence, these cycles have odd
length. Moreover, since a1 can be chosen such that every
other vertex in A is reachable from it, the additional paths of
length 2 thus make sure that the graph has a single SCC.

The second step then adds further auxiliary vertices vi, v′i
together with a cycle of length 3 for every i ∈ {1, . . . , N−1}:
(vi, ui), (ui, v

′
i), (v′i, vi), (v

′
i, v
′
i); the AF thus remains to con-

sist of a single component. Moreover, every stage extension
contains the “auxiliary” vertices vi and, thus, has all vertices
ui in its range. This is needed to guarantee that the maximal-
ity condition of stage extensions only depends on the original
vertices in A and not on the question as to which of the addi-
tional vertices ui are contained in the range.

Analogously to [Dvořák, 2012, Theorem 30], one can show
that the resulting AF is guaranteed to have 2m stage exten-
sions, where m denotes the number of clauses in the instance
ϕ of the SAT problem. Further stage extensions exist if and
only if ϕ is satisfiable. Hence, the ManySol problem is NP-
hard and intractability of EnumExt(Cnoev, σ) for the seman-
tics σ ∈ {stage, stage2} follows from Proposition 1.

5 Conclusion
In this work, we have started a systematic study of the enu-
meration problem in the context of abstract argumentation.
As our main result, we have identified the border between
tractable and intractable enumeration for AFs under 11 of the
most common semantics of AFs. A great variety of settings
has been explored by considering unrestricted AFs as well
as AFs with common structural restrictions (namely, bipartite
graphs, symmetric graphs with or without self-loops, graphs
without even cycles, and implicitly also acyclic graphs).

These tractability and intractability results can now be
used as guidance for developers of argumentation tools which
compute the set of extensions under a given semantics. De-
velopers have to make sure that, in the tractable cases identi-
fied here, the tools indeed work efficiently. In particular, for
reduction-based argumentation tools (working by reduction
to SAT or ASP), it is not guaranteed a priori that favorable
structural properties of an input AF are preserved under the
reduction and exploited by the target solvers.

Note that further structural restrictions of AFs have been
studied in the literature, such as AFs with no odd cycles.
Since they provide a generalization of the class Cbip of AFs
restricted to bipartite graphs, our intractability results for the
semantics pref , stable , comp, semi , stage , and stage2 carry
over to AFs with no odd cycles. Likewise, the DelayPP
membership for the semantics cf , naive , resGr , and cf2
carries over from the unrestricted case C0. In contrast, the
adm semantics remains as an interesting open question. Fur-

ther structural restrictions to be considered can be found
in [Dunne, 2007]. A particularly interesting class is given
by AFs which, when interpreted as undirected graphs, have
bounded treewidth. For this class, MSO encodings as given
in [Dunne, 2007; Dvořák et al., 2012] readily pave the way
for showing tractable enumeration via meta-theorems as pro-
vided in [Flum et al., 2002; Bagan, 2006; Courcelle, 2009].

Our study has revealed that the boundary between easy and
hard cases of enumeration may well differ from related deci-
sion problems. For instance, as recalled in Section 2, both
credulous and skeptical reasoning with cf2 semantics is in-
tractable. Nevertheless, the enumeration of all cf2 extensions
is feasible with polynomial delay. Hence, for future work,
the search for further tractable fragments of computational
problems in the area of argumentation should take the enu-
meration problem as an additional focus into account.
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Stefan Woltran. Parametric properties of ideal semantics.
Artificial Intelligence, 202:1–28, 2013.

[Dunne et al., 2015] Paul E. Dunne, Wolfgang Dvořák,
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