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Abstract
Temporal logics are widely adopted in Artificial In-
telligence (AI) planning for specifying Search Con-
trol Knowledge (SCK). However, traditional tem-
poral logics are limited in expressive power since
they are unable to express spatial constraints which
are as important as temporal ones in many plan-
ning domains. To this end, we propose a two-
dimensional (spatial and temporal) logic name-
ly PPTLSL by temporalising separation logic with
Propositional Projection Temporal Logic (PPTL).
The new logic is well-suited for specifying SCK
containing both spatial and temporal constraints
which are useful in AI planning. We show that
PPTLSL is decidable and present a decision proce-
dure. With this basis, a planner namely S-TSolver
for computing plans based on the spatio-temporal
SCK expressed in PPTLSL formulas is developed.
Evaluation on some selected benchmark domains
shows the effectiveness of S-TSolver.

1 Introduction
Artificial Intelligence (AI) planning [Ghallab et al., 2004] has
been studied for decades and become even more attractive
in recent years. However, existing planners still suffer from
a difficult problem: explosion of the search space. One of
the most powerful approaches to cope with it is to provide
planners with additional Search Control Knowledge (SCK) in
specific domains such that the planner can get rid of irrelevant
parts of the search space. Techniques for applying SCK in
planning have received much attention. It has been proved
that SCK is helpful in improving efficiency of the domain-
independent planners [Huang et al., 1999]. Even with the
basic search strategy, e.g. depth-first search, and proper SCK,
planners are able to achieve surprising effectiveness in a range
of benchmark problems.

Several planners such as TLPlan [Bacchus and Kabanza,
2000], TALplanner [Kvarnström and Magnusson, 2003], and
SHOP2 [Nau et al., 2003], have successfully exploited SCK
∗This research is supported by the NSFC Grant Nos.
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to guide planning. Concretely, the forward-chaining plan-
ner, TLPlan, provides a first-order Linear Temporal Logic
(LTL) with bounded quantification based platform for rea-
soning about SCK. With this approach, we can specify, for
instance, what can or cannot happen at the next time step
by using the “next” operator in LTL. TALplanner, another
forward-chaining planner, supports a unified planning frame-
work where SCK and other information relevant to planning
domain and problem instance are all represented as logic for-
mulas in a member of Temporal Action Logics (TAL) family.
Compared with TLPlan, TALplanner uses the same planning
paradigm, but it is capable of producing parallel plans. In
SHOP2, SCK is expressed with Hierarchical Task Network
(HTN) [Georgievski and Aiello, 2015] to guide the search. A
transition-based SCK inspired by finite state automata is in-
troduced in [Chrpa and Barták, 2016] where knowledge about
dependencies between planning operators is represented with
transitions of an automaton so as to restrict the number of
operator instances during the planning process. Additional-
ly, several research groups investigate advanced mechanisms
on the topic of learning SCK in a given domain [Fern et al.,
2004; Yoon et al., 2008].

SCK based planning approaches are proved to be effec-
tive in practice. Our observation is that despite temporal con-
straints in SCK, consideration of spatial constraints will be
of equal importance. In many circumstances, just temporal
SCK is not enough to guarantee a planner to perform effec-
tively as expected. However, temporal logics employed in
the existing logic-based planning frameworks are unable to
describe spatial structures at each time step. Thus, this paper
is motivated to propose a two-dimensional (spatial and tem-
poral) logic namely PPTLSL for describing spatio-temporal
SCK. To do so, we temporalise separation logic [Reynolds,
2002] with PPTL (Propositional Projection Temporal Logic)
[Duan, 1996] to express both spatial and temporal dimensions
of SCK. PPTL is a powerful linear time based temporal logic
which facilitates to describe full regular language that goes
beyond both LTL and CTL [Tian and Duan, 2008]. Separa-
tion logic is a spatial logic for reasoning about dynamic allo-
cated data structures, e.g. linked lists, trees and DAGs (Di-
rected Acyclic Graph). Within PPTLSL, a decidable fragment
of separation logic is used to describe the spatial structure at
a point of time and temporal operators of PPTL are adopted
to capture the evolution of spatial structures over time.
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The main contributions of this paper are twofold: on one
hand, we propose a two-dimensional logic system for both s-
patial and temporal constraints in planning; on the other hand,
we prove the decidability of the proposed logic and imple-
ment a planner running on benchmarks to demonstrate its ef-
fectiveness. With the best of our knowledge, our work is the
first use of separation logic in planning.

Related work: Spatio-temporal logic MTLA presented in
[Merz et al., 2003] is specialized for mobile systems. It aug-
ments Temporal Logic of Actions with spatial modalities to
express the topology of configurations in tree structures. But
description of other non-tree structures cannot be support-
ed. SpaTel is a spatio-temporal logic [Haghighi et al., 2015]
which can describe a property such as “power consumption
in city A and city B never exceed 150 MW for longer than
20 minutes”. The spatial dimension here is represented by
static individual locations instead of spatial structures. The
approach in [Belouaer and Maris, 2010] defines SMT encod-
ing rules for spatio-temporal planning by allowing synchro-
nization of non-instantaneous actions in space. In this ap-
proach, the temporal and spatial dimensions are independent.
The Spatio-Temporal Planning System (STPS) proposed in
[Boukharrou et al., 2015] provides a formal description of
possible plan actions of an ambient intelligent agent includ-
ing timing constraints, action duration and spatial require-
ments of an agent plan. However, only limited spatial knowl-
edge such as “an agent is at some location” can be described
in STPS. Compared with the existing spatio-temporal logics,
our logic reflects the evolution of a variety of spatial struc-
tures especially spatial non-interference features in AI plan-
ning. For example, the property “two spatial structures (e.g.
linked lists) are always disjoint” can be expressed in PPTLSL,
but cannot be expressed by other relevant logics.

2 A Motivating Example
CityCar domain encoded in PDDL (Planning Domain Defi-
nition Language) standard [Fox and Long, 2003] is a newly
introduced benchmark in International Planning Competition
(IPC) 2014 [Vallati et al., 2015]. It aims to simulate the im-
pact of road building/demolition in traffic networks. A city is
represented as a graph, in which each node is a junction and
edges are roads. Some cars start from different positions (i-
dentified as garages) and have to reach their final destinations
as soon as possible. There are a finite number of one-way
roads available, which can be built for connecting two neigh-
bor junctions and allowing a car to move between them. If
it is necessary, roads can also be removed and placed some-
where else. Each action has a different cost.

Figure 1 shows a problem instance of the CityCar do-
main with 2 garages (g0, g1), 9 junctions (j0, . . . , j8), 5 roads
(r0, . . . , r4) and 2 cars (c0, c1). Car c0 is at garage g0, and
c1 is at g1. The goal junctions of c0 and c1 are j6 and j8,
respectively. At the moment, roads r0 and r3 are used. In
this domain, we can express the SCK “if any road is avail-
able, do not destroy a road which has already been built” in
LTL formula �(∀r : (in place(r)∧∃r1 : ¬in place(r1))→
©in place(r)). Here in place(r) is a predicate which mean-
s road r has been put in place. However, with only temporal

Figure 1: A problem instance of the CityCar domain

specifications, we still cannot find a plan of good quality. Ac-
tually, the network topology can be shaped in a variety of
ways and a road can be built between any two neighbor junc-
tions at each step (120 alternative ways in total in Figure 1).
A mechanism is required to express both spatial and temporal
SCK to guide or control the search. For example, a spatio-
temporal SCK “each newly-built road should be reachable
from some car (§)” will avoid substantial bad road building
plans inappropriate for a car to move as early as possible.
Under this restriction, only 33 road building actions are fea-
sible in Figure 1. As another example, the spatio-temporal
SCK “two disjoint paths (no common locations except the s-
tarting and ending points of the paths) between any two junc-
tions do not exist (‡)” is also useful for the sake of pruning
plans where redundant roads appear. With this SCK, 12 road
building actions can be further reduced. The red dashed-line
arrows indicate the places where a road can be built under the
guidance of (§) and (‡).

3 Preliminary
This section presents a decidable fragment of separation log-
ic. Let Var be a countable set of spatial variables, Π a count-
able set of atomic propositions, Loc a finite set of spatial lo-
cations, Val = Loc ∪ {nil } the set including the unfilled
location nil and locations in Loc, and B the boolean domain
{ true, false }. A term e can be nil, a variable x ∈ Var or
a location l ∈ Loc. A decidable fragment of separation logic
(SL for short) is defined by the following grammar:
φ ::= π|e1 = e2|¬φ|φ1 ∨ φ2|∃x : φ|e0 7→ { e1, . . . , en }|φ1#φ2

where π ∈ Π. SL is a variation of the one presented in
[Brochenin et al., 2012] by extending single field formula
e 7→ { e′ } to multiple fields e0 7→ { e1, . . . , en } such that
a variety of spatial structures can be described other than
singly-linked lists.

A state is a triple (Iπ, Iv, Is), where Iπ : Π ⇀ B, Iv :

Var ⇀ Val and Is : Loc ⇀
⋃n
i=1 Val

i . Here, ⇀ is the nota-
tion for partial mapping. Iπ, Iv and Is serve as the evaluations
of propositions, spatial variables and spatial cells, respective-
ly. We call Is the spatial container and use dom(f) to denote
the domain of mapping f . Given two mappings f1 and f2,
f1 ⊥ f2 means that f1 and f2 have disjoint domains, and
f1 • f2 denotes the union of f1 and f2 with disjoint domains.
The evaluation of a term e relative to a state s = (Iπ, Iv, Is)
is written as s[e] ∈ Val: s[nil] = nil, s[l] = l, s[x] = Iv(x).
The semantics of SL formulas is defined as follows:
s |=SL π iff s(π) = true. s |=SL e1 = e2 iff s[e1] = s[e2].

s |=SL e0 7→ { e1, . . . , en } iff dom(Is) = { s[e0] } and
Is(s[e0]) = (s[e1], . . . , s[en]). s |=SL ¬φ iff s 6|=SL φ.

s |=SL φ1 ∨ φ2 iff s |=SL φ1 or s |=SL φ2.
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s |=SL φ1#φ2 iff ∃Is1 , Is2 : Is1 ⊥ Is2 ,

Is = Is1 • Is2 , Iπ, Iv, Is1 |=SL φ1, and Iπ, Iv, Is2 |=SL φ2.

s |=SL ∃x : φ iff ∃l ∈ Val : Iπ, Iv[x⇐ l], Is |=SL φ.

Intuitively, e0 7→ { e1, . . . , en } means there are links be-
tween e0 and every ei (1 ≤ i ≤ n). Formula φ#φ′ describes
a space which can be separated into two disjoint parts, one
makes φ true and the other makes φ′ true. The following
shows some useful derived formulas:
e 7→ ei

def
= e 7→ { e1, . . . , ei, . . . , en }

ls1(e1, e2)
def
= e1 7→e2 lsn+1(e1, e2)

def
= ∃x : e1 7→x#lsn(x, e2)

e1→+ e2
def
=

n∨
i=1

lsi(e1, e2)#true e1→∗ e2
def
= e1=e2∨e1→+ e2

Formula e 7→ ei denotes there is a link between e and ei.
lsn(e1, e2) precisely describes a path from e1 to e2 of length
nwithout any other locations (e2 is also excluded). e1 →+ e2
and e1 →∗ e2 indicate that e2 is reachable from e1.

4 Spatio-Temporal Logic PPTLSL

This section presents the spatio-temporal logic PPTLSL and
shows how spatio-temporal SCK can be expressed with
PPTLSL formulas.

4.1 Temporalising SL with PPTL
Formulas P of PPTLSL is defined by the following grammar,

P ::= φ | ¬P | P1 ∨ P2 | ©P | (P1, . . . , Pm) prj P | P ∗

where φ denotes an SL formula. © (next), prj (projection)
and ∗ (star) are basic temporal operators in PPTL [Duan,
1996; Duan et al., 2008]. A formula is called a state formula
if it does not contain any temporal operators, otherwise it is a
temporal formula.

An interval σ = 〈s0, s1, . . .〉 is a non-empty sequence of
states, possibly finite or infinite. The length of σ, denoted by
|σ|, is ω if σ is infinite, otherwise it is the number of states
minus one. We consider the set N0 of non-negative integers,
define Nω = N0 ∪ {ω }, and extend the comparison oper-
ators, =, <, ≤, to Nω by considering ω = ω, and for all
i ∈ N0, i < ω. Moreover, we define � as ≤ \{ (ω, ω) }.
With such a notation, σ(i...j)(0 ≤ i � j ≤ |σ|) denotes the
sub-interval 〈si, . . . , sj〉. The concatenation of σ with anoth-
er interval σ′ is denoted by σ · σ′. Let σ = 〈sk, . . . , s|σ|〉
be an interval and r1, . . . , rn be integers (n ≥ 1) such that
0 ≤ r1 ≤ r2 ≤ · · · ≤ rn � |σ|. The projection of σ onto
r1, . . . , rn is the interval, σ ↓ (r1, . . . , rn) = 〈st1 , . . . , stm〉,
where t1, . . . , tm are obtained from r1, . . . , rn by deleting all
duplicates.

An interpretation of a PPTLSL formula is a triple I =
(σ, k, j) where σ = 〈s0, s1, . . .〉 is an interval, k a non-
negative integer and j an integer or ω such that 0 ≤ k �
j ≤ |σ|. We write (σ, k, j) |= P to mean that a formula P
is interpreted over a sub-interval σ(k...j) of σ with the current
state being sk. The notation sk = (Ikπ , I

k
v , I

k
s ) indexed by

k represents the k-th state of an interval σ. The satisfaction
relation |= for PPTLSL formulas is defined by:
I |= φ iff sk |=SL φ. I |= P1 ∨ P2 iff I |= P1 or I |= P2.

I |= ¬P iff I 6|= P. I |=©P iff k < j and (σ, k + 1, j) |= P.

I |= (P1, . . . , Pm)prj P iff there exist integers r0, . . . , rm,

Table 1: Predicates for the CityCar Domain
Predicate Description
arrived(c, j) Car c arrives at junction j.
at car jun(c, j) Car c is at junction j.
at car road(c, r) Car c is at road r.
road connect(r, j1, j2) Road r connects junctions j1 and j2.

and k = r0 ≤ r1 ≤ · · · ≤ rm � j such that (σ, ri−1, ri) |= Pi for

all 1 ≤ i ≤ m and (σ′, 0, |σ′|) |= P for one of the following σ′ :

(a) rm < j and σ′ = σ ↓ (r0, . . . , rm) · σ(rm+1...j)

(b) rm = j and σ′ = σ ↓ (r0, . . . , ri′) for some 0 ≤ i′ ≤ m.
I |= P ∗ iff there are finitely many integers r0, . . . , rn and
k = r0 ≤ r1 ≤ · · · ≤ rn−1 � rn = j(n ≥ 0) such that
(σ, ri−1, ri) |= P for all 1 ≤ i ≤ n; or there are infinitely many
integers r0, . . . , and k = r0 ≤ r1 ≤ r2 ≤ · · · such that
lim
i→∞

ri = ω and (σ, ri−1, ri) |= P for all i ≥ 1.

A formula P is satisfied over an interval σ, written as
σ |= P , if (σ, 0, |σ|) |= P holds. We also have some de-
rived formulas:

ε
def
= ¬© true P1;P2

def
= (P1, P2) prj ε

♦P
def
= true;P �P

def
= ¬♦¬P

Here, ε denotes an interval with zero length, � and ♦ have
the standard meanings as in LTL. Formula P1;P2 requires
that P1 holds from now on until some point in the future, and
from that point on, P2 holds. Additionally, we borrow the
GOAL modality from TLPlan, and only allow it to apply to
state formulas. For example, suppose arrived(c0, j6) is true
in the goal state, then the formula GOAL(arrived(c0, j6))
will be evaluated to true, otherwise to false.

4.2 Specifying Spatio-Temporal SCK with PPTLSL

For the CityCar domain, the predicates involved are listed in
Table 1. Despite the common temporal SCK, we can describe
several interesting and practical spatio-temporal SCK by
PPTLSL. First we define a predicate at car jun road(c, j)
indicating that car c is either at junction j or a road with the
ending junction being j.

at car jun road(c, j)
def
= at car jun(c, j)∨

(∃j′, r : at car road(c, r) ∧ road connect(r, j′, j))

• The spatio-temporal SCK (§) mentioned in the motivat-
ing example can be expressed by:

�(∀r, j1, j2 : ¬road connect(r, j1, j2)→©(road connect(r,

j1, j2)→ ∃j3, c : (at car jun road(c, j3) ∧ j3 →∗ j1)))

• The spatio-temporal SCK (‡) can be described by:

�(∀j1, j2, j3, j4 : (∃r1, r2 : road connect(r1, j1, j3)∧
road connect(r2, j1, j4))→ ¬(j3 →∗ j2#j4 →∗ j2))

If there are two connections from j1 to j3 and j4
(road connect(r1, j1, j3) ∧ road connect(r2, j1, j4)), we
must ensure shared locations from j3 to j2 and j4 to j2 are
nonexistent (¬(j3 →∗ j2#j4 →∗ j2)).
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• There is another important spatio-temporal SCK:

�(∀c, j1, j2 : GOAL(arrived(c, j2)) ∧ at car jun(c, j1)∧
j1 →+ j2 → ∃r, j3 : road connect(r, j1, j3) ∧ j3 →∗ j2∧
© (�at car jun(c, j1); at car road(c, r)))

which can be read as “if a car can reach its goal junction via a
path, then the car must move through the path”. In this SCK,
j1 is the junction where car c at. Suppose there is a path from
j1 to the car’s goal j2 (j1 →+ j2) and j3 is the next junction
of j1 in the path (road connect(r, j1, j3) ∧ j3 →∗ j2). The
car cannot go anywhere but move on the road from j1 to j3.

5 From PPTLSL to PPTL
In this section, an equisatisfiable translation from PPTLSL to
its restricted form called RPPTLSL is presented. Then, based
on it, a decision procedure of PPTLSL is obtained.

5.1 Equisatisfiable Translation
Similar to the method in [Calcagno et al., 2005], we first en-
code SL into a quantifier-free first-order logic.

Definition 1. A bounded variable (proposition) assignment
written as Iv[X](Iπ[Y ]) denotes the set of variable (propo-
sition) assignments such that Iv ∈ Iv[X] iff dom(Iv) = X
(Iπ ∈ Iπ[Y ] iff dom(Iπ) = Y ), where X ⊆ V ar(Y ⊆ Π).
A bounded spatial container written as Is[n] denotes the set
of spatial container such that Is ∈ Is[n] iff |dom(Is)| ≤ n,
where n ∈ N.

Given a spatial container Is ∈ Is[n], we will use a vec-
tor c of n tuples of values, ((c1,1, . . . , c1,m1

), . . . , (cn,1, . . . ,
cn,mn

)), to represent Is. If ci,1 = nil, the i-th tuple does
not represent an active spatial cell. Otherwise if ci,1 = li,
the i-th tuple represents that the location li contains ci,2, . . . ,
and ci,mi

. For instance, Is[2] is a set consisting of spatial
containers with the domain size no more than 2. In addition,
a vector that allows the same location occurring more than
once should be avoided. For example, ((l1, l2), (l1, l2)) or
((l1, l2), (l1, l3)) does not represent a valid spatial container.
The partial function vhn : (

⋃
i∈{m1,...,mn } V al

i)n ⇀ Is[n]

is employed to overcome this problem.

vhn(c) =


Undef if ∃i, j : 1 ≤ i, j ≤ n, i 6= j,

ci,1 = cj,1, ci,1 6= nil and cj,1 6= nil;

{ (ci,1, . . . , ci,mi) | 1 ≤ i ≤ n } otherwise.

Let C denote a vector of n tuples of variables. If a vec-
tor c with the same size is assigned to C, C will also po-
tentially represent a spatial container. Given a vector of
values c = ((c1,1, . . . , c1,m1), . . . , (cn,1, . . . , cn,mn)) and a
vector of variables C = ((C1,1, . . . , C1,m1), . . . , (Cn,1, . . .,
Cn,mn

)), we write [C ⇐ c] to denote the pointwise assign-
ment of c to C which can be considered as a set of tuples
{ (Ci,j , ci,j) | 1 ≤ i ≤ n and 1 ≤ j ≤ |Ci| }. The nota-
tion |C|(|c|) denotes the number of the tuples in C(c), and
|Ci|(|ci|) the number of variables (values) in the i-th tuple.

In the sequel, a set of pairs D = { (x1, y1), (x2, y2), . . . }
with @(x, y), (x, z) ∈ D and y 6= z is implicitly interpreted as
a function. Conversely, a function f can be interpreted as a set
of pairs { (x, f(x)) | x ∈ dom(f) }. The standard notation

∨
x∈{ l1,...,ln } φ is used to represent φ[l1/x] ∨ · · · ∨ φ[ln/x],

which can be lifted to vectors, i.e.,
∨
C∈Valn φ. Similarly,∧

x∈{ l1,...,ln } φ. fv(φ)(fp(φ)) denotes the set of free vari-
ables (propositions) that appear in φ. C = C ′ #©C ′′ defined
below is adopted for capturing the semantics of “#”.

C = C′ #©C′′ def
=

|C|∧
i=1

( (∧ |Ci|
j=1C

′
i,j = Ci,j ∧ C′′i,1 = nil

)
∨
(
C′i,1 = nil ∧

∧ |Ci|
j=1C

′′
i,j = Ci,j

)
)

The function f(φ,C) takes φ and C as two parameters and
produces a non-spatial state formula φs which is defined by:
φs ::= π | e1 = e2 | ¬φs | φs1 ∨ φs2 .

f(e0 7→ { e1, . . . , en }, C)
def
=

|C|∨
i=1Ci,1 6= nil ∧

|C|∧
j=1,i 6=j

Cj,1 = nil ∧
n+1∧
j=1

Ci,j = ej−1 if |Ci| = n+ 1;

false otherwise.

f(π,C)
def
= π f(e1 = e2, C)

def
= e1 = e2

f(¬φ,C)
def
= ¬f(φ,C) f(∃x : φ,C)

def
=
∨
x∈Val

f (φ,C)

f(φ1#φ2, C)
def
=∨

C′,C′′∈ValΣ
n
i=1

|Ci|

(
C = C′ #©C′′ ∧ f(φ1, C

′) ∧ f(φ2, C
′′)
)

where both C ′ and C ′′ are vectors of fresh variables.
Lemma 1. For any state formula φ, variable vector C
and value vector c where |C| = |c| = n, (Iπ, Iv, Is) ∈
(Iπ[fp(φ)], Iv[fv(φ)], Is[n]), vhn(c) = Is and fv(φ) ∩
fv(C) = ∅,
(Iπ, Iv, Is) |=SL φ iff (Iπ, Iv ∪ [C ⇐ c], ∅) |=SL f(φ,C)

Proof sketch. The proof proceeds by induction on φ. The
difficulty lies in the case φ1#φ2. In f(φ1#φ2, C) where
vector C is employed to simulate the spatial container, the
key is to prove C = C ′ #©C ′′ that makes [C ′ ⇐ c′] and
[C ′′ ⇐ c′′] correspond to two separate spatial container-
s whose union equals to the spatial container represented
by [C ⇐ c]. This obeys the semantics of #. Further,
(Iπ, Iv, Is) |=SL

φ1 iff (Iπ, Iv ∪ [C ′ ⇐ c′], ∅) |=
SL

f(φ1, C
′) and (Iπ, Iv, Is) |=SL

φ2 iff (Iπ, Iv ∪ [C ′′ ⇐
c′′], ∅) |=

SL
f(φ2, C

′′) hold by induction hypothesis. This
proof is similar to the one for Theorem 1 in [Calcagno et al.,
2005].

We now translate PPTLSL formulas to its restricted for-
m RPPTLSL whose syntax is given below. Compared with
PPTLSL, atomics of RPPTLSL are in φs instead of φ.
Ps ::= φs | ¬Ps | Ps1 ∨ Ps2 | ©Ps | (Ps1 , . . . , Psm) prj Ps | P ∗s

The translation function F defined below will map a
PPTLSL formula and a variable vector to a RPPTLSL formula.
Also, this function preserves the satisfaction of P .

F (φ,C)
def
= f(φ,C) F (¬P,C)

def
= ¬F (P,C)

F (©P,C)
def
= ©F (P,C) F (P ∗, C)

def
= F (P,C)∗

F (P1 ∨ P2, C)
def
= F (P1, C) ∨ F (P2, C)

F ((P1, ..., Pm) prj P0, C)
def
=

(F (P1, C), ..., F (Pm, C)) prj F (P0, C))
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Theorem 1. For any PPTLSL formula P , interval σ and vec-
tors C, c1, . . ., c|σ| where fv(P ) ∩ fv(C) = ∅, it has

(σ, 0, |σ|) |= P iff (σ′, 0, |σ′|) |= F (P,C)

Here, σ′ = σ[(Iiπ, I
i
v∪[C ⇐ ci], ∅)/(Iiπ, Iiv, Iis)] is an interval

obtained from σ by replacing (Iiπ, I
i
v, I

i
s) with (Iiπ, I

i
v∪ [C ⇐

ci], ∅), (Iiπ, Iiv, Iis) ∈ (Iπ[fp(P )], Iv[fv(P )], Is[n]), |C| =
|ci| = n, and vhn(ci) = Iis(1 ≤ i ≤ |σ|).

Proof sketch. By Lemma 1, the translation f preserves the
satisfiability of state formulas. The rest cases are straightfor-
ward to be proved based on a structural induction on P .

Theorem 1 enables one to only concentrate on RPPTLSL

instead of PPTLSL for easily attaining a decision procedure.

5.2 A Decision Procedure
Since RPPTLSL and PPTL have the same syntax structures
except for atomic formulas, we are inspired to reuse the deci-
sion procedure of PPTL for RPPTLSL.

To do so, similar to PPTL, we define normal form of

RPPTLSL formulas: Ps ≡
n′∨
j=1

(Pej ∧ ε) ∨
n∨
i=1

(Pci ∧ ©P ′i ),

where Pej and Pci are conjunctions of atomic formulas or
their negations, and P ′i is a general RPPTLSL formula. Infor-
mally, the normal form of a formula Ps decomposes itself into
current states (Pej , Pci ) and future formulas (P ′i ) that shows
which parts of Ps are still to be satisfied after reaching the
current states. One can derive that any RPPTLSL formula is
able to be written to its normal form.

Theorem 2. Any RPPTLSL formula Ps can be rewritten into
its normal form.

Proof sketch. The normal form translation of PPTL formulas
is mainly based on logic laws relevant to temporal operators.
Since the only difference between RPPTLSL and PPTL is the
state formulas which are free of temporal operators, RPPTLSL

inherits all the temporal laws in PPTL [Duan, 1996; Duan et
al., 2008]. Hence we can translate Ps to its normal form in the
same way for translating a PPTL formula to normal form.

Consequently, the decision procedure of PPTL which relies
heavily on normal form can be reused for checking the satisfi-
ability of both RPPTLSL and PPTLSL formulas. The progres-
sion algorithm of [Bacchus and Kabanza, 2000] decomposes
an LTL formula into current state formulas and future tempo-
ral formulas. The idea of normal form of RPPTLSL is some-
what similar. This allows to directly use an incremental way
to check SCK as the progression algorithm in [Bacchus and
Kabanza, 2000] by evaluating state formulas attained during
normal form translation at each time stamp.

6 Implementation and Experiments
We have implemented a planner S-TSolver which handles
SCK in collaborating with the classical forward chaining al-
gorithm and SMT solver Z3 [De Moura and Bjørner, 2008].
To plan with S-TSolver, a domain, an instance and SCK ex-
pressed in PPTLSL formulas are taken as input. At each step,
the forward chaining algorithm responds for exploring the

current world of the instance by executing an action, while
the equisatisfiable translation (Theorem 1) and the progres-
sion technique (Theorem 2) are employed to transform each
SCK into its normal form. The current world of the instance
and the current state formulas of SCK which are both with-
in the scope of SMT [Barrett et al., 2009] are encoded into
SMT-LIB format [Barrett et al., 2010] and fed to Z3 for sat-
isfiability checking. If Z3 returns “sat”, the action is added
to the plan sequence which is empty initially; otherwise the
forward chaining algorithm randomly chooses another action
which can be executed to repeat the above process until the
goal is achieved or all the worlds are explored.

We evaluate the performance of S-TSolver in planning on
two domains: CityCar and Transport. We choose these two
domains because they are typical domains with both spatial
and temporal constraints such that spatio-temporal SCK can
be used for planning. Moreover, the two domains are rep-
resentative: the spatial structure changes over time for the
CityCar domain and is fixed for the Transport domain. We
compare the results of S-TSolver with the top three planners
[Vallati et al., 2014] in IPC2014 on the two domains, respec-
tively. All the experiments are conducted on a PC running
Ubuntu 16.04 on an Intelr CoreTM i3-550 CPU 3.20GHz and
8Gb of RAM.

Original from IPC2008, the Transport domain is a variant
of the well-known domain logistics. The task of this domain
is to transport several packages from the initial locations to
the desired destinations. A package is transported from one
location to another one by loading it into a truck, driving the
truck to the destination, and unloading the truck. Analogous
to the CityCar domain, there is a network for trucks to move.
Therefore, we can specify some spatio-temporal SCK for this
domain, e.g. “each truck must move to the nearest location
which is the goal of some package loaded by the truck or
where some package is required to be transported”. Note that
“nearest” means the minimum steps for a truck to move. We
select some instances from this domain.

The experiment results are demonstrated in Table 2. The
first column shows the problem instances. The column “cost”
presents the lowest plan cost among the plans found by a
planner. The column “time” is the search time and the column
“len” is the length of the plan. Usually the higher the cost, the
longer the length. “S-TSolver(T)” is the result of S-TSolver
with only temporal SCK, and “S-TSolver(S-T)” is the result
with both temporal and spatio-temporal SCK. “time-out” in-
dicates a planner cannot provide a plan within 10 minutes.
Every lowest cost and best time are highlighted in bold.

For the CityCar domain, the top three tools performed well
in IPC2014 are arvandherd, jasper and uniform. From Ta-
ble 2, it is observed that both S-TSover(T) and S-TSover(S-T)
are capable of solving all the problem instances, but arvand-
herd, jasper and uniform can only solve part of them. With
regard to search time, the time spent by S-TSolver(T) is less
than S-TSolver(S-T) since extra time is consumed to deal with
spatio-temporal SCK. The time spent by uniform is less than
30s for the solved instances as a preset time limitation (≈30s)
is given in this tool for each search iteration. If no plans are
found within the limitation, another search will be started.
arvandherd and jasper give no solutions to some difficult in-
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Table 2: Experiment results: CityCar Domain and Transport Domain
CityCar S-TSolver(T) S-TSolver(S-T) arvandherd jasper uniform
instances cost time(s) len cost time(s) len cost time(s) len cost time(s) len cost time(s) len

p01 102 0.04 30 70 0.68 17 70 2.07 17 70 2.03 17 70 0.18 17
p02 152 0.17 35 128 4.6 29 136 12.89 28 549 2.55 55 118 0.74 29
p03 106 0.34 27 116 2 28 116 16.2 28 100 13.84 32 100 1.26 32
p04 264 0.31 67 136 8.48 41 202 11.19 39 298 8.89 51 142 20.12 37
p05 86 0.05 39 126 5.22 41 100 9.31 33 492 4.21 67 86 2.02 39
p06 594 1.08 92 138 8.11 28 184 18.78 26 287 48.92 34 176 26.22 26
p07 542 0.87 62 158 7.86 28 174 29.39 25 214 31.36 27 — time-out —
p08 294 0.37 30 114 4.79 22 124 27.6 22 194 20.18 26 — time-out —
p09 322 0.57 46 128 5.71 28 158 57.74 29 342 175.12 44 — time-out —
p10 206 0.51 42 188 16.04 30 182 30.91 35 — time-out — — time-out —
p11 438 0.75 64 192 11.8 36 292 59.97 40 211 84.43 35 — time-out —
p12 348 0.66 48 146 19.5 38 344 14.53 47 320 19.24 41 146 27.68 38
p13 754 1.89 138 232 19.88 60 432 152.5 62 467 323 57 — time-out —
p14 250 0.3 48 164 16.82 48 — time-out — — time-out — — time-out —
p15 1226 2.16 150 264 28.23 54 355 34.9 50 453 275.84 63 — time-out —
p16 524 0.82 110 150 10.07 44 209 83.7 45 — time-out — — time-out —
p17 2784 5.62 412 204 57.48 50 444 174.97 66 — time-out — — time-out —
p18 334 0.49 90 170 43.05 56 — time-out — — time-out — — time-out —
p19 1530 3.48 242 304 35.43 76 503 250.35 67 — time-out — — time-out —
p20 610 1.15 100 230 33.08 48 — time-out — — time-out — — time-out —

Transport S-TSolver(T) S-TSolver(S-T) yahsp3 mercury dae yahsp
instances cost time(s) len cost time(s) len cost time(s) len cost time(s) len cost time(s) len

p01 1841 1.86 121 680 6.35 55 1696 0.13 114 617 66.16 55 954 157.54 69
p02 1524 1.35 98 633 8.28 54 1163 572.6 85 639 52.36 56 892 35.55 71
p03 4198 7.13 248 1084 24.16 78 2018 0.67 150 848 170.9 69 1422 179.84 102
p04 5819 31.17 368 890 21.59 76 2308 0.51 200 800 148.34 71 1774 90.15 127
p05 3952 10.18 291 837 41.77 79 2443 551.42 233 907 147.26 92 1877 109.74 156
p06 11569 34.04 802 1088 70.84 107 2569 265.45 240 1040 102.04 104 2452 204.5 206
p07 3961 26.75 316 1131 145.36 118 3031 1.36 298 1220 107.86 124 2895 69.41 236
p08 1975 0.42 64 990 13.07 34 1684 75.96 52 1003 80.18 34 1141 109.11 40
p09 6141 2.49 227 691 8.38 55 2032 524.17 73 1211 31.5 47 1833 123.34 62
p10 21113 24.29 845 1817 83.82 70 3550 108.58 131 1836 98.42 69 2512 132.92 91
p11 31871 20.48 1317 1869 111.29 69 4997 0.24 198 2001 87.12 76 4693 85.09 174
p12 61059 73.51 2481 2296 133.66 82 6034 0.39 222 3393 56.58 108 4470 162.98 157
p13 1429 0.39 52 1054 1.86 35 2723 0.07 69 1031 70.48 39 1632 14.26 54
p14 4098 2.01 56 1287 5.57 44 3551 19.66 101 1073 117.8 40 2277 34.43 64
p15 6316 6.61 165 2201 17.66 60 3904 542.81 97 1899 67.74 60 2549 19.86 82
p16 4937 1.38 121 1286 7.87 49 3026 412.28 92 1173 64.8 48 2155 61.27 67
p17 4962 25.88 156 1532 21.01 54 2429 0.7 97 1591 102.12 58 2130 264.08 83
p18 2644 11.81 75 930 11.14 33 1349 235.7 49 868 11.78 33 1093 213.57 38
p19 11657 29.78 370 3131 62.02 94 6479 0.57 227 2540 104.78 91 5268 252.02 146
p20 20682 30.14 797 2211 143.39 90 5982 0.83 190 3073 96.64 112 5369 283.23 166

stances. They spend even hundreds of seconds to search for a
plan. For the plan cost, the plans generated by S-TSolver(S-T)
have better quality than other tools. This is because the strate-
gies expressed by spatio-temporal SCK can easily guide a car
to its goal without doing many useless actions.

For the Transport domain, yahsp3, mercury and dae yahsp
are the best three tools in IPC2014. When running yahsp3,
it is able to give a quick plan in a short time. However, it
will further take a long time to improve the plan. Sometimes
S-TSolver(S-T) takes more time than mercury because of the
overhead in analyzing the spatio-temporal SCK. Consider the
plan cost, S-TSolver(T) produces plans with poor quality s-
ince a truck does not know where to go and just attempts to
move randomly. The plan costs of S-TSolver(S-T) are much
better than those of yahsp3 and dae yahsp, but in the same
level with mercury. This is because the spatio-temporal SCK
we use is a little coarse. As mentioned earlier, “nearest” path
means the minimum steps from one location to another, not
the length of roads in the path. For example, lsn−1(e1, e2)
is “nearer” than lsn(e1, e2). Although this is true in most
situations, special cases may still occur that makes a “near-
er” path has longer length. A potential way to solve it is
to add data field in the model of our logic. As an example,
l0 7→ { (d1, l1), (d2, l2) } not only denotes the link between

l0 and l1 (l0 and l2), but also the data property d1 (d2), e.g.
length, of the link.

As a summary, our approach is helpful in finding plans of
good quality and speeding up planning for the domains with
both temporal and spatial constraints.

7 Conclusion
In this paper, an expressive two-dimensional logic PPTLSL

is formalized for specifying both spatial and temporal di-
mensions of SCK. Satisfiability of PPTLSL is proved decid-
able based on an equisitisfiable translation from PPTLSL to
RPPTLSL. Based on it, a planner is implemented and eval-
uated on two benchmark domains. Experiments demonstrate
that our method prunes substantial irrelevant search space and
finds plans of good quality.

In the future, we plan to do more experiments on the plan-
ning domains (e.g. Tidybot-IPC2011, TPP-IPC2006, and
DriverLog-IPC2002 etc.) that are suitable for spatio-temporal
SCK. Also, we would like to adopt the advanced heuristic al-
gorithms in order to further improve efficiency of the tool.
Another research direction is to relate our work to other s-
tudy that has a richer notion of space, e.g. first-order theories
of spatio-temporal change such as [Hazarika, 2005].
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