
Ontology-Mediated Querying with the Description Logic EL:
Trichotomy and Linear Datalog Rewritability

Carsten Lutz and Leif Sabellek
University of Bremen, Germany

{clu,sabellek}@informatik.uni-bremen.de

Abstract
We consider ontology-mediated queries (OMQs)
based on an EL ontology and an atomic query (AQ),
provide an ultimately fine-grained analysis of
data complexity and study rewritability into linear
Datalog– aiming to capture linear recursion in SQL.
Our main results are that every such OMQ is in
AC0, NL-complete or PTIME-complete, and that
containment in NL coincides with rewritability into
linear Datalog (whereas containment in AC0 coin-
cides with rewritability into first-order logic). We
establish natural characterizations of the three cases,
show that deciding linear Datalog rewritability (as
well as the mentioned complexities) is EXPTIME-
complete, give a way to construct linear Datalog
rewritings when they exist, and prove that there is
no constant bound on the arity of IDB relations in
linear Datalog rewritings.

1 Introduction
An important application of ontologies is to enrich data with
a semantics and with domain knowledge while also provid-
ing additional vocabulary for query formulation [Calvanese
et al., 2009; Kontchakov et al., 2013; Bienvenu et al., 2014;
Bienvenu and Ortiz, 2015]. The combination of a traditional
database query and an ontology can be viewed as a com-
pound query, commonly referred to as an ontology-mediated
query (OMQ). Substantial research efforts have been invested
into studying OMQs based on description logic (DL) ontolo-
gies, with two dominating topics being the data complexity
of OMQs [Hustadt et al., 2005; Krisnadhi and Lutz, 2007;
Rosati, 2007; Calvanese et al., 2013] and their rewritability
into more standard database query languages such as SQL
(which in this context is often equated with first-order logic)
and into Datalog [Pérez-Urbina et al., 2010; Eiter et al., 2012;
Bienvenu et al., 2013; 2014; Kaminski et al., 2014; Trivela et
al., 2015; Feier et al., 2017]. While the former topic aims to
understand the feasibility of OMQs from a theoretical angle,
the latter is inspired by rather practical concerns: since most
database systems are unaware of ontologies, rewriting OMQs
into standard query languages provides an important avenue
for implementing OMQ execution in practical applications;
however, a major challenge emerges from the fact that the

desired rewritings are typically not guaranteed to always exist,
though they often do exist in practically relevant cases. Both
topics are thoroughly intertwined since rewritability into first-
order logic (FO) is closely related to AC0 data complexity
while rewritability into Datalog is closely related to PTIME
data complexity.

Modern DLs can roughly be divided into two families:
‘expressive DLs’ such as ALC and SHIQ which typically
have CONP data complexity and where rewritability is guaran-
teed neither into FO nor into Datalog [Bienvenu et al., 2014;
Trivela et al., 2015; Feier et al., 2017], and ‘Horn DLs’
such as EL and Horn-SHIQ which typically have PTIME
data complexity and where rewritability into Datalog is guar-
anteed, but FO-rewritability is not [Bienvenu et al., 2013;
Hansen et al., 2015; Bienvenu et al., 2016] (with the notable
exception of DL-Lite [Calvanese et al., 2009]). In this paper,
we consider the OMQ language (EL,AQ) where the ontology
is formulated in the Horn description logic EL and where
the actual queries are atomic queries (AQs) of the form A(x),
studying data complexity, rewritability, and their relations.
Our actual contribution is two-fold.

First, we carry out an ultimately fine-grained analysis of
data complexity. In fact, we establish a trichotomy, showing
that every OMQ from (EL,AQ) is in AC0, NL-complete, or
PTIME-complete, a remarkable sparseness of complexities.
We also establish elegant characterizations that separate the
three classes of OMQs. In particular, we show that an OMQ
Q is in NL if there is a bound k such that any minimal tree-
shaped ABox A whose root is an answer to the OMQ Q does
not contain a full binary tree of depth k as a minor, and PTIME-
hard otherwise. We additionally use a second, more opera-
tional characterization to determine the precise complexity of
deciding whether a given OMQ is in AC0, NL-complete, or
PTIME-complete, which turns out to be EXPTIME-complete.

And second, we put rewritability into linear Datalog onto
the agenda of OMQ research. In fact, the equation “SQL = FO”
often adopted in this area ignores the fact that SQL contains
linear recursion from its version 3 published in 1999 on, which
exceeds the expressive power of FO. We believe that, in the
context of OMQs, linear Datalog is a natural abstraction of
SQL that includes linear recursion, despite the fact that it does
not contain full FO. Indeed, all OMQs from (EL,AQ) that are
FO-rewritable are also rewritable into a union of conjunctive
queries (UCQ) and thus into linear Datalog (and the same is

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1181

true for much more expressive OMQ languages) [Bienvenu
et al., 2014]. This shows that the expressive power of FO
that lies outside of linear Datalog is not useful when using
SQL as a target language for OMQ rewriting. We prove that
rewritability into linear Datalog coincides with containment
in NL. By what was said above, it is thus EXPTIME-complete
to decide whether a given OMQ is rewritable. Moreover, we
show how to construct linear Datalog rewritings when they
exist and prove that there is no constant bound on the arity of
IDB relations in linear Datalog rewritings.

Proof details are in the appendix, which is provided at
http://www.cs.uni-bremen.de/tdki/research/papers.html.

2 Preliminaries
Let NC, NR, and NI be countably infinite sets of concept names,
role names, and individual names. An EL-concept is built
according to the syntax rule C,D ::= > | A | C uD | ∃r.C
where A ranges over concept names and r over role names.
An EL-TBox is a finite set of concept inclusions (CIs) of the
form C v D, C and D EL-concepts. The size of T , denoted
|T |, is the number of symbols needed to write all CIs of T ,
with each concept and role name counting as one symbol.

An ABox is a finite set of concept assertions A(a) and role
assertions r(a, b) where A is a concept name, r a role name,
and a, b individual names. We use Ind(A) to denote the set of
individuals of the ABoxA. A signature is a set of concept and
role names. We often assume that the ABox is formulated in a
prescribed signature, which we call the ABox signature. An
ABox that only uses concept and role names from a signature
Σ is called a Σ-ABox.

The semantics of DLs is given in terms of an interpretation
I = (∆I , ·I), where ∆I is a non-empty set (the domain) and
·I is the interpretation function, assigning to each A ∈ NC a
set AI ⊆ ∆I and to each r ∈ NR a relation rI ⊆ ∆I ×∆I .
The interpretation function is extended to compound concepts
by setting >I = ∆I , (C uD)I = CI ∩DI , and (∃r.C)I =
{d ∈ ∆ | ∃e ∈ ∆ : (d, e) ∈ rI}. An interpretation I satisfies
a CI C v D if CI ⊆ DI , a concept assertion A(a) if a ∈ AI ,
and a role assertion r(a, b) if (a, b) ∈ rI . We say that I is a
model of a TBox or an ABox if it satisfies all inclusions or
assertions in it.

An atomic query (AQ) takes the form A(x), A a concept
name. We write A, T |= A(a) if a ∈ Ind(A) and in every
model I ofA and T , we have a ∈ AI . An ontology-mediated
query (OMQ) is a triple Q = (T ,Σ, A(x)) with T a TBox,
Σ an ABox signature, and A(x) an AQ. We assume w.l.o.g.
that A occurs in T . Let A be a Σ-ABox. We write A |= Q(a)
and say that a is an answer to Q on A if A, T |= A(a). The
evaluation problem for Q is to decide, given a Σ-ABox A and
an a ∈ A, whether A |= Q(a). When we speak about the
complexity of an OMQ Q, we generally mean its evaluation
problem. It is thus understood what we mean when saying
that Q is in PTIME or NL-hard. We use (EL,AQ) to denote
set of all OMQs (T ,Σ, A(x)) where T is an EL-TBox. It is
known that all OMQs in (EL,AQ) are in PTIME [Rosati, 2007;
Krisnadhi and Lutz, 2007].

A Datalog rule ρ has the form S(x) ← R1(y1) ∧ · · · ∧
Rn(yn) where n > 0 and S,R1, . . . , Rn are relations of any

arity and x,yi denote tuples of variables. We refer to S(x)
as the head of ρ, and to R1(y1) ∧ · · · ∧ Rn(yn) as the body.
Every variable that occurs in the head of a rule is required to
also occur in its body. A Datalog program Π is a finite set of
Datalog rules with a selected unary goal relation goal that does
not occur in rule bodies. Relation symbols that occur in the
head of at least one rule of Π are intensional (IDB) relations,
and all remaining relation symbols in Π are extensional (EDB)
relations. In our context, EDB relations must be unary or
binary and are identified with concept names and role names.
Note that, by definition, goal is an IDB relation. A Datalog
program is linear if each rule body contains at most one IDB
relation. The width of a Datalog program is the maximum
arity of non-goal IDB relations used in it and its diameter
is the maximum number of variables that occur in a rule in
Π. For an ABox A that uses only EDB relations from Π and
a ∈ Ind(A), we write A |= Π(a) if a is an answer to Π on A,
defined in the usual way [Abiteboul et al., 1995].

A Datalog program Π over EDB signature Σ is a rewriting
of an OMQ Q = (T ,Σ, A(x)) if for all Σ-ABoxes A and
all a ∈ Ind(A), we have A |= Q(a) iff A |= Π(a). We
say that Q is (linear) Datalog-rewritable if there is a (linear)
Datalog program that is a rewriting of Q. It is well-known
that, in EL, all OMQs are Datalog-rewritable. It follows from
the results in this paper that there are simple OMQs Q =
(T ,Σ, A(x)) that are not linear Datalog-rewritable, choose
e.g. T = {∃r.A u ∃s.A v A} and Σ = {r, s, A}.

Throughout the paper, we generally and without further
notice assume TBoxes to be in normal form, that is, to contain
only concept inclusions of the form ∃r.A1 v A2, > v A1,
A1 u A2 v A3, A1 v ∃r.A2 where all Ai are concept
names. Every TBox T can be converted into a TBox T ′ in
normal form in linear time [Baader et al., 2005], introducing
fresh concept names; the resulting TBox T ′ is a conserva-
tive extension of T , that is, every model of T ′ is a model of
T and, conversely, every model of T can be extended to a
model of T ′. Consequently, when T is replaced in an OMQ
Q = (T ,Σ, A0(x)) with T ′ resulting in an OMQ Q′, then
Q and Q′ are equivalent in the sense that they give the same
answers on all Σ-ABoxes. Thus, conversion of the TBox in an
OMQ into normal form does not impact evaluation complexity
nor rewritability into linear Datalog (or any other language).

We shall often deal with ABoxes that are tree-shaped.
By a tree, we generally mean a directed (unlabelled) tree
T = (V,E), defined in the usual way. Every ABox gives
rise to a directed graph GA = (Ind(A), {(a, b) | r(a, b) ∈
A for some r}). We say that A is tree-shaped if GA is a
tree and r(a, b), s(a, b) ∈ A implies r = s. The importance
of tree-shaped ABoxes is due to the fact that OMQs from
(EL,AQ) cannot distinguish between a Σ-ABox and its unrav-
eling into a tree, see [Lutz and Wolter, 2012] or the appendix
of this paper.

We introduce some further standard graph theoretic notions
for ABoxes. A homomorphism from an ABox A1 to an ABox
A2 is a total function h : Ind(A1) → Ind(A2) such that
A(a) ∈ A1 implies A(h(a)) ∈ A2 and r(a, b) ∈ A1 implies
r(h(a), h(b)) ∈ A2. We write A1 → A2 if there is a ho-
momorphism from A1 to A2. A directed graph G = (V,E)
is a minor of an ABox A if G is a minor of GA, that is, if

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1182

G can be obtained from GA by deleting edges and vertices
and by contracting edges. A path decomposition of a directed
graph (V,E) is a sequence S1, . . . , Sn of subsets of V such
that for every (a, b) ∈ E there is a set Si with a, b ∈ Si

and Si ∩ Sk ⊆ Sj , for all i ≤ j ≤ k. A path decomposi-
tion is an (`, k)-path decomposition if k = maxn

i=1 |Si| and
` = maxn−1

i=1 |Si ∩ Si+1|. The pathwidth of a directed graph
(V,E) is the smallest k such that (V,E) has an (`, k+ 1)-path
decomposition for some ` ≥ 0. We identify the pathwidth of
an ABox A with the pathwidth of GA.

3 NL, PTime, Linear Datalog Rewritability
We establish a dichotomy between PTIME and NL for evalu-
ating queries from (EL,AQ), also showing that containment
in NL coincides with rewritability into linear Datalog (unless
NL = PTIME). The dichotomy is based on a characterization
of containment in NL via a ‘bounded amount of branching’
in ABoxes whose root is an answer to the query. The linear
Datalog programs constructed in the proofs are of unbounded
width. We establish a hierarchy theorem which shows that this
is unavoidable.

Let Q = (T ,Σ, A0(x)) be an OMQ. We say that Q is
unboundedly branching if for every k ≥ 0, there is a tree-
shaped Σ-ABox A such that

1. A, T |= A0(a), a the root of A, and A is minimal with
this property (w.r.t. set inclusion)

2. A has the full binary tree of depth k as a minor.

Otherwise, Q is boundedly branching. In the latter case, the
branching limit of Q is the maximum integer k such that there
is a tree-shaped Σ-ABox A that satisfies Conditions 1 and 2
above. The branching limit is 0 if there is no tree-shaped
Σ-ABox A that satisfies Condition 1.

Example 1. (1) The OMQ Q1 = (T1, {A, r, s}, A(x)) with
T1 = {∃r.A v B1, ∃s.A v B2, B1 u B2 v A} is unbound-
edly branching as witnessed by the ABoxesA1,A2, . . . where
Ai is a full binary tree of depth i, each left successor connected
via the role name r, each right successor via the role name s,
and with the concept name A asserted for each leaf.
(2) The OMQ Q2 = (T2, {A, r, s}, B12(x)) with T2 =
{∃r.A v B1, ∃s.A v B2, ∃s.B2 v B2, B1 u B2 v
B12, ∃r.B12 v B1} is boundedly branching with branching
limit one. In fact, every minimal tree-shaped Σ-ABox whose
root is an answer to Q2 consists of a single r-path with an
s-path starting at each non-leaf node and with A asserted for
each leaf. Note that the number of individuals at which a
branching occurs is unbounded in such ABoxes.

The following theorem sums up the results obtained in this
section, except for the width hierarchy (Theorem 15).

Theorem 2. For every OMQ Q ∈ (EL,AQ), one of the fol-
lowing applies:

1. Q is PTIME-hard and not expressible in linear Datalog;

2. Q is rewritable into linear Datalog and thus in NL.

Bounded branching of Q implies linear Datalog rewritability
and delineates the two cases.

Note that Theorem 2 implies that any OMQ from (EL,AQ)
is linear Datalog rewritable if and only if it is in NL (un-
less NL = PTIME). It is interesting to compare Theorem 2
with the result by [Afrati and Cosmadakis, 1989] that there
are Datalog-queries that are not expressible as a linear Data-
log program, but belong to NC2 and are thus unlikely to be
PTIME-hard.

3.1 Characterizations and PTime-Hardness
Theorem 2 provides a characterization of PTIME-hardness in
terms of unbounded branching that is elegant, but does not
lend itself to hardness proofs very well. For this reason, we
establish a second characterization designed to enable a re-
duction from the PTIME-complete path systems accessibility
(PSA) problem and show that both characterizations are equiv-
alent. The new characterization will also be handy later on to
decide the rewritability of OMQs into linear Datalog.

An instance of PSA takes the form G = (V,E, S, t) where
V is a finite set of nodes, E is a ternary relation on V , S ⊆ V
is a set of source nodes, and t ∈ V is a target node. G is a yes
instance if t is accessible, where a node v ∈ V is accessible if
v ∈ S or there are accessible nodes u,w with (u,w, v) ∈ E.

Before we can state the new characterization, we need some
preliminaries. Let T be a TBox. A T -type is a set t of concept
names from T that is closed under T -consequence, that is, if
T |=u t v A, then A ∈ t. For any ABox A and a ∈ Ind(A),
we use tpA,T (a) to denote the set of concept names A from
T such that A, T |= A(a), which is a T -type. If M is a
set of concept names, then by M(a) we denote the ABox
{A(a) | A ∈ M}. We also write A, T |= M(a), meaning
that A, T |= A(a) for all A ∈ M . For every tree-shaped
ABox A and a ∈ Ind(A), we use Aa to denote the sub-tree
ABox of A that has a as the root. Moreover, we use Aa to
denoteA\Aa, that is, the ABox obtained fromA by removing
all assertions that involve descendants of a (making a a leaf)
and all assertions of the form A(a). We also combine these
notations, writing for example Aa

bc for ((Aa)b)c.

Definition 3. An OMQ (T ,Σ, A0(x)) ∈ (EL,AQ) has the
ability to simulate PSA if there are T -types t0, t1 and a tree-
shaped Σ-ABox A with root a and distinguished non-root
individuals b, c, d where c and d are distinct incomparable
descendants of b such that

1. A, T |= A0(a);

2. t1 = tpA,T (b) = tpA,T (c) = tpA,T (d);

3. Ab ∪ t0(b), T 6|= A0(a);

4. tpAc∪t0(c),T (b) = tpAd∪t0(d),T (b) = t0.

We define Afinish := Ab, A∧ := Ab
cd and Astart := Ab.

Example 4. The OMQ Q1 from Example 1 has the ability to
simulate PSA. Figure 1 shows a witnessing ABoxA according
to Definition 3 where t1 = {A,B1, B2} and t0 = {B2}.
PSA is PTIME-hard under FO-reductions [Immerman,

1999]. Using a reduction from this probem, we show that
having the ability to simulate PSA is sufficient for PTIME-
hardness under FO-reductions. In particular, we use the ABox
A∧ from Definition 3 to implement an “and” gate where t0

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1183

a

b

c

A

r

A

s

r
d

A

r

A

s

s

r

A

s

r

A

s

Figure 1: Witness ABox for Example 4

and t1 represent the truth values zero and one to capture the
behaviour of the ternary relation E in PSA.
Lemma 5. If Q ∈ (EL,AQ) has the ability to simulate PSA,
then Q is PTIME-hard under FO-reductions.
To link Lemma 5 to Theorem 2, we next show that the ability
to simulate PSA is equivalent to unbounded branching.
Proposition 6. Let Q ∈ (EL,AQ). Then Q has the ability to
simulate PSA iff Q is unboundedly branching.
The “⇒” direction is proved by taking an ABox A that wit-
nesses the ability to simulate PSA and then glueing together
disjoint copies of A∧ to obtain tree-shaped ABoxes whose
root is an answer to Q, which are minimal with this property,
and that contain deeper and deeper full binary trees as a minor.
The “⇐” direction is based on a combinatorial argument: if we
take a minimal tree-shaped ABox that makesQ true at the root
and contains a deep full binary tree as a minor, then it must
contain an ABox that witnesses the ability to simulate PSA.

3.2 NL and Linear Datalog-Rewritability
We show that bounded branching characterizes containment in
NL as well as linear Datalog rewritability, which therefore co-
incide (unless NL = PTIME). We also give a way to construct
linear Datalog rewritings when they exist.
Proposition 7. Let Q ∈ (EL,AQ). Then Q is boundedly
branching iff Q is rewritable into a linear Datalog program.
Moreover, if the branching limit ofQ is k, then there is a linear
Datalog rewriting of width k + 1.

Direction “⇒”. Let Q = (T ,Σ, A0(x)) be an OMQ from
(EL,AQ). For each k > 0, we construct a linear Datalog
program ΠQ,k that is sound as a rewriting of Q and complete
on ABoxes that do not have the full binary tree of depth k
as a minor. The program ΠQ,k uses IDB relations of the
form Pt1,...,tm where t1, . . . , tm, are T -types; the arity of this
relation is m ≤ k. For any finite set S of concepts, we use
clT (S) to denote the smallest (w.r.t. set inclusion) T -type t
with T |= uS v t. Let N be the set of all concept names
from T . The program ΠQ,k consists of five types of rules:
Start rules: PclT (S)(x) ← S(x) for all S ⊆ N and where
S(x) abbreviates

∧
A∈S A(x);

Extension rules: Pt1,...,tm,clT (S)(x1, . . . , xm, y) ←
Pt1,...,tm(x1, . . . , xm) ∧ S(y) for all S ⊆ N and T -types
t1, . . . , tm;
Step rules: Pt1,...,tm−1,t(x1, . . . , xm−1, y) ←
Pt1,...,tm(x1, . . . , xm) ∧ r(y, xm) ∧ S(y) for all S ⊆ N and
T -types t1, . . . , tm where t = clT (S ∪ {∃r.A | A ∈ tm});

Consolidation rules: Pt1,...,tm−2,t(x1, . . . , xm−1) ←
Pt1,...,tm(x1, . . . , xm−1, xm−1) for all S ⊆ N and T -types
t1, . . . , tm, t where t = clT (tm−1 ∪ tm);
Goal rules: goal(x)← Pt(x) for all T -types t with A0 ∈ t.
Example 8. We give a fragment of the program ΠQ2,2 for the
OMQ Q2 from Example 1 that is equivalent to the full ΠQ2,2

and showcases the purpose of the different rules. For readabil-
ity, we use representative concept names in the subscript of
IDB relations instead of types:

PA(x)← A(x) PB1
(x)← r(x, y) ∧ PA(y)

PB1,A(x, y)← PB1(x) ∧A(y)

PB1,B2
(x, y)← s(y, z) ∧ PB1,A(x, z)

PB1,B2(x, y)← s(y, z) ∧ PB1,B2(x, z)

PB12
(x)← PB1,B2

(x, x)

PB1
(x)← r(x, y) ∧ PB12

(y) goal(x)← PB12
(x)

It can be verified that the program ΠQ,k is sound, that is,
A |= ΠQ,k(a) implies A |= Q(a) for any Σ-ABox A. The
following lemma states a form of completeness.

Lemma 9. If A is a tree-shaped ABox with root a0 that does
not have the full binary tree of depth k as a minor andA, T |=
A0(a0), then A |= ΠQ,k(a0).

Lemma 9 is proved by exhibiting a suitable strategy for ap-
plying the rules in ΠQ,k. Returning to the “⇒” direction of
Proposition 7, we next show the following.

Lemma 10. If k− 1 is the branching limit of Q, then ΠQ,k is
a rewriting of Q.

The programs ΠQ,k allow us to construct a linear Datalog
rewriting of an OMQQ provided that we know an upper bound
on its branching limit. The following lemma establishes such
an upper bound (in case thatQ is rewritable into linear Datalog
at all).

Lemma 11. If Q = (T ,Σ, A0(x)) ∈ (EL,AQ) is boundedly
branching, then its branching limit is at most 24

|T |+1

.

In fact, Lemma 11 is a consequence of the proof of Propo-
sition 6, given in the appendix. Lemma 11 almost yields de-
cidability of linear Datalog rewritability: guess a tree-shaped
Σ-ABox A and verify that it satisfies Conditions 1 and 2
from the definition of k-branching, where k is the bound from
Lemma 11. For this to work, we would additionally have to
bound the depth and degree of the tree-shaped ABoxes to be
guessed. While this is not too difficult, we follow a different
route (in Section 5) to obtain tight complexity bounds.

Direction “⇐”. For d, k, n ≥ 0, let `kd(n) denote the maxi-
mum number of leaves in any tree that has degree d, depth
n, and does not have as a minor the full binary tree of depth
k + 1. The following lemma says that `kd(n) as a function of
n grows like a polynomial of degree k.

Lemma 12. (d−1)k(n−k)k ≤ `kd(n) ≤ (k+ 1)(d−1)knk

for all d, k ≥ 0 and n ≥ 2k.

Let Π be a Datalog program over EDB signature Σ and
IDB signature ΣI , and let A a Σ-ABox. It is standard to
characterize answers to Π in terms of derivations that take

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1184

the form of a labelled tree, see [Abiteboul et al., 1995] or the
appendix. From each derivation D, one can read off an ABox
AD in a standard way such that the properties summarized by
the following lemma are satisfied.
Lemma 13. Let D be a derivation of Π(a) in A, Π of diame-
ter d. Then

1. AD |= Π(a);
2. there is a homomorphism h fromAD toA with h(a) = a;
3. AD has pathwidth at most d.
We are now ready to prove the desired result.

Lemma 14. IfQ ∈ (EL,AQ) is unboundedly branching, then
it is not rewritable into a linear Datalog program.

The proof, inspired by [Afrati and Cosmadakis, 1989], is
by contradiction. Assume that Q ∈ (EL,AQ) is unboundedly
branching, but rewritable into a linear Datalog program Π.
We choose a minimal tree-shaped Σ-ABox A that contains a
full binary tree of very large depth as a minor and such that
A |= Q(a0), a0 the root of A. Consider the derivation D of
Π(a0) in A and the associated ABox AD. By a sequence of
manipulations, we identify a tree-shaped sub-ABox B ⊆ AD

such that B has a very large number of leaves (a consequence
of Point 2 of Lemma 13 and the fact that the homomorphism
must be surjective due to the minimality of A and Point 1 of
that lemma). By Lemma 12, it follows that B must contain a
full binary tree of large depth as a minor and therefore must
have high pathwidth, in contrast to Point 3 of Lemma 13.

3.3 Width Hierarchy
The linear Datalog rewritings constructed in the previous sec-
tion are of unbounded width. We next show that this is unavoid-
able, in contrast to the fact that every OMQ from (EL,AQ)
can be rewritten into a monadic Datalog program [Baader et
al., 2017]. It strengthens a result by [Dalmau and Krokhin,
2008] who establish an analogous statement for constraint
satisfaction problems (CSPs). However, while every OMQ
from (EL,AQ) is equivalent to a CSP (up to complementation
[Bienvenu et al., 2014]), the converse is false and indeed the
CSPs used by Dalmau and Krokhin are not equivalent to an
OMQ from (EL,AQ).
Theorem 15. For every ` > 0, there is an OMQ from
(EL,AQ) that is rewritable into linear Datalog, but not into a
linear Datalog program of width `.

To prove Theorem 15, we use the following queries: for all
k ≥ 1, let Qk = (Tk,Σ, Ak(x)) where Σ = {r, s, t, u} and

Tk = {> v A0}∪
{∃x.Ai v Bx,i | x ∈ {r, s, t, u}, 0 ≤ i ≤ k − 1}∪
{∃x.Bx,i v Bx,i | x ∈ {r, s, t, u}, 0 ≤ i ≤ k − 1}∪
{Br,i uBs,i v Ai+1 | 0 ≤ i ≤ k − 1}∪
{Bt,i uBu,i+1 v Ai+1 | 0 ≤ i ≤ k − 1}.

In the OMQ Qk, each concept name Ai, i ≤ k, represents the
existence of a full binary tree of depth i, that is, ifAi is derived
at the root of a tree-shaped Σ-ABoxA, thenA contains the full
binary tree of depth i as a minor. Thus, deriving Qk at the root
implies that A has the full binary tree of depth k as a minor.

r s

r

r s

s

u

r s

u t

t

u

r s

u t

u t

t

Figure 2: An ABox of depth 4 whose root is an answer to Q2 and
which is minimal with this property. It has 11 leaves, the largest
number of leaves that a binary tree of depth 4 can have, unless it
contains the full binary tree of depth 3 as a minor.

Furthermore, for every n ≥ k there is minimal tree-shaped
Σ-ABox A such that Qk is derived at the root, A is of depth
n, and A has the maximum number of leaves that any tree of
depth n without the full binary tree of depth k + 1 as a minor
can have. For the case k = 2 and n = 4, such an ABox is
shown in Figure 2. The concept inclusions ∃x.Bx,i v Bx,i in
Tk ensure thatQk is closed under subdivisions of ABoxes, that
is, ifA is a Σ-ABox andA′ is obtained fromA by subdividing
an edge into a path (using the same role name as the original
edge), then A |= Qk(a) iff A′ |= Qk(a) for all a ∈ Ind(A).

Lemma 16. Every Qk is rewritable into linear Datalog.

We prove Lemma 16 by showing that each Qk is boundedly
branching with branching limit k and using Proposition 7.

To show that linear Datalog rewritings of the defined family
of OMQs require unbounded width, we first show that they
require unbounded diameter and then proceed by showing that
the width of rewritings cannot be significantly smaller than the
required diameter. To make the latter step work, we actually
show the former on an infinite family of classes of ABoxes of
restricted shape. More precisely, for all i ≥ 0 we consider the
class Ci of all forest-shaped Σ-ABoxes in which the distance
between any two branching individuals exceeds i (where a
forest is a disjoint union of trees and a branching individual
is one that has at least two successors). Since the queries Qk

are closed under the subdivision of ABoxes, each class Ci

contains ABoxes whose root is an answer to the query. The
proof of the following is similar to the proof of Lemma 14.

Lemma 17. For any i ≥ 0, Q2k+3 is not rewritable into a lin-
ear Datalog program of diameter k on the class of ABoxes Ci.

We are now ready to establish the hierarchy.

Proposition 18. Q8`+13 is not rewritable into a linear Data-
log program of width `.

The proof of Proposition 18 is by contradiction. Assume
that Q8`+13 is rewritable into a linear Datalog program Π of
width ` and let k be the diameter of Π. We show that, on the
class of ABoxes Ck, there must then be a linear Datalog rewrit-
ing Π′ of Q8`+13 of diameter 4`+ 5, contradicting Lemma 17.
In fact, Π′ can be obtained from Π by a sequence of manipu-
lations: first rewrite the rules such that the restriction of rule
bodies to EDB relations takes the form of a forest in which
there is at most one branching node in every tree, then further
rewrite to achieve that each such forest contains at most 2`
trees, and finally replace each rule with a set of rules of small
diameter, slightly increasing the width.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1185

4 AC0 vs. NL: Completing the Trichotomy
We say that an OMQ Q = (T ,Σ, A0(x)) has unbounded
depth if for every k ≥ 0, there is a tree-shaped ABox A with
depth at least k and root a such that A, T |= A0(a) and A
is minimal with this property (regarding set inclusion). The
following theorem summarizes the results in this section.
Theorem 19. For every OMQ Q ∈ (EL,AQ), one of the
following applies:

1. Q is FO-rewritable and thus in AC0.
2. Q is not FO-rewritable and NL-hard.

Unbounded depth of Q implies NL-hardness and delineates
the two cases.

The following characterization of FO-rewritability was es-
tablished in [Bienvenu et al., 2013].
Theorem 20. Let Q ∈ (EL,AQ). Q is not FO-rewritable iff
Q has unbounded depth.

To prove Theorem 19, it thus remains to show that un-
bounded depth implies NL-hardness. Similarly to the case of
PTIME-hardness, the elegant condition of unbounded depth
does not directly lend itself to hardness proofs, and we thus es-
tablish a second and equivalent characterization. Here, the sec-
ond characterization is tailored towards NL-hardness proofs
via reduction from reachability in directed graphs (REACH).
Definition 21. An OMQ (T ,Σ, A0(x)) ∈ (EL,AQ) has the
ability to simulate REACH iff there are T -types t0 (t1 and a
tree-shaped ABox A with root a and distinguished non-root
individuals b, c where c is a descendant of b such that

1. A, T |= A0(a),
2. t1 = tpA,T (b) = tpA,T (c),

3. tpAc∪t0(c),T (b) = t0, and

4. Ab ∪ t0(b), T 6|= A0(a).
We define Afinish = Ab, Aedge = Ab

c, and Astart = Ac.
The three defined sub-ABoxes can be used in a reduction

from REACH to Q. We now prove that unbounded depth
implies NL-hardness, proceeding via the ability to simulate
REACH. The following lemma is essentially implicit already
in [Bienvenu et al., 2013].
Lemma 22. Let Q ∈ (EL,AQ). If Q has unbounded depth,
then Q has the ability to simulate REACH.

The next lemma is proved similarly to Lemma 5.
Lemma 23. Let Q ∈ (EL,AQ). If Q has the ability to simu-
late REACH, then Q is NL-hard under FO-reductions.

We have completed the proof of Theorem 19, and thus also
of the trichotomy.

5 Decidability and Complexity
We first show that an existing reduction in [Bienvenu et al.,
2013] yields a variety of relevant hardness results, under vari-
ous complexity-theoretic assumptions.
Theorem 24. The following properties of OMQs from
(EL,AQ) are EXPTIME-hard: linear Datalog rewritability,
containment in NL (unless NL = PTIME), NL-hardness (un-
less L = NL), and PTIME-hardness (unless L = PTIME).

For NL-hardness and PTIME-hardness, the complexity-
theoretic assumptions can be dropped when hardness is de-
fined under FO-reductions, as a consequence of the fact that
Lemma 5 establishes hardness under such reductions.

Regarding upper bounds, we first recall the known re-
sult that it is in EXPTIME to decide whether an OMQ from
(EL,AQ) is FO-rewritable [Bienvenu et al., 2013] and observe
that, by Theorem 19, we also obtain an EXPTIME upper bound
for NL-hardness. For linear Datalog rewritability, containment
in NL, and PTIME-hardness, we use an approach based on
(one-way) alternating parity automata on finite trees (APTAs).
Because of space constraints, we can only give a brief sketch.
By Theorem 2 and Proposition 6, it suffices to decide whether
a given OMQ has the ability to simulate PSA, that is, whether
there are T -types t0, t1 and a tree-shaped Σ-ABox A that
satisfy the conditions from Definition 3. We iterate over all
choices for t0, t1, building for each choice an APTA At0,t1
that accepts precisely the tree-shaped Σ-ABoxes satisfying the
required conditions for the chosen t0, t1.
Theorem 25. It is in EXPTIME to decide whether a given
OMQ from (EL,AQ) is rewritable into linear Datalog.

Interestingly, it is rather unclear how an EXPTIME upper
bound would be established based on the characterization in
terms of bounded branching. The following corollary sums up
the results obtained in this section.
Corollary 26. For OMQs from (EL,AQ), all of the following
problems are EXPTIME-complete (under the same complexity
theoretic assumptions for the lower bounds as in Theorem 24):
linear Datalog rewritability, containment in NL, NL-hardness,
and PTIME-hardness.

Note that Theorem 25 and the results from Section 3.2 give
an algorithm that provides a linear Datalog rewriting of a given
OMQ if it exists and reports failure otherwise.

6 Conclusion
We plan to extend our analysis to (ELI,AQ) where ELI is
the extension of EL with inverse roles. Then the overall pic-
ture changes because there are OMQs from (ELI,AQ) that
express a form of undirected reachability and are L-complete.
This also raises the question whether L-completeness coin-
cides with rewritability into symmetric Datalog [Egri et al.,
2007]. However, even lifting to (ELI,AQ) the results estab-
lished in this paper such as the dichotomy between NL and
PTIME is non-trivial. It would also be interesting to replace
AQs with conjunctive queries. As illustrated by [Bienvenu
et al., 2013] versus [Bienvenu et al., 2016], this makes the
technical development more awkward since it requires to re-
place tree-shaped ABoxes with (somewhat contrived) ABoxes
that are almost a tree. It might be more elegant to directly
move to frontier-one tuple generating dependencies [Baget
et al., 2009]. It would also be interesting to study the size
of linear Datalog rewritings, to find ways to construct such
rewritings that are efficiently executable, and to analyze em-
pirically whether linear recusion is sufficiently well optimized
in SQL database systems to support the rewritten queries.

Acknowledgements
The authors were funded by ERC consolidator grant 647289.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1186

References
[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and

Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[Afrati and Cosmadakis, 1989] Foto N. Afrati and Stavros S.
Cosmadakis. Expressiveness of restricted recursive queries
(extended abstract). In Proc. of STOC, pages 113–126,
1989.

[Baader et al., 2005] Franz Baader, Sebastian Brandt, and
Carsten Lutz. Pushing the EL envelope. In Proc. of IJCAI,
pages 364–369, 2005.

[Baader et al., 2017] Franz Baader, Ian Horrocks, Carsten
Lutz, and Ulrike Sattler. An Introduction to Description
Logics. Cambride University Press, 2017.

[Baget et al., 2009] Jean-François Baget, Michel Leclère,
Marie-Laure Mugnier, and Eric Salvat. Extending decid-
able cases for rules with existential variables. In Proc. of
IJCAI, pages 677–682, 2009.

[Bienvenu and Ortiz, 2015] Meghyn Bienvenu and Mag-
dalena Ortiz. Ontology-mediated query answering with
data-tractable description logics. In Proc. of Reasoning
Web, volume 9203 of LNCS, pages 218–307. Springer,
2015.

[Bienvenu et al., 2013] Meghyn Bienvenu, Carsten Lutz, and
Frank Wolter. First order-rewritability of atomic queries in
horn description logics. In Proc. of IJCAI, 2013.

[Bienvenu et al., 2014] Meghyn Bienvenu, Balder ten Cate,
Carsten Lutz, and Frank Wolter. Ontology-based data ac-
cess: A study through disjunctive datalog, CSP, and MM-
SNP. ACM Trans. Database Syst., 39(4):33:1–33:44, 2014.

[Bienvenu et al., 2016] Meghyn Bienvenu, Peter Hansen,
Carsten Lutz, and Frank Wolter. First order-rewritability
and containment of conjunctive queries in horn description
logics. In Proc. of IJCAI, 2016.

[Calvanese et al., 2009] Diego Calvanese, Giuseppe De Gia-
como, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati. On-
tologies and databases: The DL-Lite approach. In Proc. of
Reasoning Web 2009, pages 255–356, 2009.

[Calvanese et al., 2013] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Data complexity of query answering in de-
scription logics. Artif. Intell., 195:335–360, 2013.

[Dalmau and Krokhin, 2008] Vı́ctor Dalmau and Andrei A.
Krokhin. Majority constraints have bounded pathwidth
duality. Eur. J. Comb., 29(4):821–837, 2008.

[Egri et al., 2007] László Egri, Benoit Larose, and Pascal Tes-
son. Symmetric datalog and constraint satisfaction prob-
lems in LogSpace. Electronic Colloquium on Computa-
tional Complexity (ECCC), 14(024), 2007.

[Eiter et al., 2012] Thomas Eiter, Magdalena Ortiz, Mantas
Simkus, Trung-Kien Tran, and Guohui Xiao. Query rewrit-
ing for Horn-SHIQ plus rules. In Proc. of AAAI. AAAI
Press, 2012.

[Feier et al., 2017] Cristina Feier, Antti Kuusisto, and
Carsten Lutz. Rewritability in monadic disjunctive dat-
alog, MMSNP, and expressive description logics. In Proc.
of ICDT, 2017.

[Hansen et al., 2015] Peter Hansen, Carsten Lutz, İnanç Sey-
lan, and Frank Wolter. Efficient query rewriting in the
description logic EL and beyond. In Proc. of IJCAI, 2015.

[Hustadt et al., 2005] Ullrich Hustadt, Boris Motik, and Ul-
rike Sattler. Data complexity of reasoning in very expres-
sive description logics. In Proc. of IJCAI, pages 466–471.
Professional Book Center, 2005.

[Immerman, 1999] Neil Immerman. Descriptive complexity.
Graduate texts in computer science. Springer, 1999.

[Kaminski et al., 2014] Mark Kaminski, Yavor Nenov, and
Bernardo Cuenca Grau. Datalog rewritability of disjunctive
datalog programs and its applications to ontology reasoning.
In Proc. of AAAI, pages 1077–1083. AAAI Press, 2014.

[Kontchakov et al., 2013] Roman Kontchakov, Mariano
Rodriguez-Muro, and Michael Zakharyaschev. Ontology-
based data access with databases: A short course. In
Reasoning Web, pages 194–229, 2013.

[Krisnadhi and Lutz, 2007] Adila Krisnadhi and Carsten
Lutz. Data complexity in the EL family of description
logics. In Nachum Dershowitz and Andrei Voronkov, edi-
tors, Proc. of LPAR, volume 4790 of LNAI, pages 333–347.
Springer, 2007.

[Lutz and Wolter, 2010] Carsten Lutz and Frank Wolter. De-
ciding inseparability and conservative extensions in the
description logic EL. J. Symb. Comput., 45(2):194–228,
2010.

[Lutz and Wolter, 2012] Carsten Lutz and Frank Wolter. Non-
uniform data complexity of query answering in description
logics. In Proc. of KR, 2012.

[Pérez-Urbina et al., 2010] Héctor Pérez-Urbina, Boris
Motik, and Ian Horrocks. Tractable query answering and
rewriting under description logic constraints. Journal of
Applied Logic, 8(2):186–209, 2010.

[Rosati, 2007] Riccardo Rosati. The limits of querying on-
tologies. In Proc. of ICDT, volume 4353 of LNCS, pages
164–178. Springer, 2007.

[Scheffler, 1989] Petra Scheffler. Die Baumweite von
Graphen als ein Mass für die Kompliziertheit algorithmis-
cher Probleme. Report (Karl-Weierstrass-Institut für Math-
ematik). Akademie der Wissenschaften der DDR, Karl-
Weierstrass-Institut für Mathematik, 1989.

[Trivela et al., 2015] Despoina Trivela, Giorgos Stoilos,
Alexandros Chortaras, and Giorgos B. Stamou. Optimising
resolution-based rewriting algorithms for OWL ontologies.
J. Web Sem., 33:30–49, 2015.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1187

