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Abstract
Power companies such as Southern California Edi-
son (SCE) uses Demand Response (DR) contracts
to incentivize consumers to reduce their power con-
sumption during periods when demand forecast ex-
ceeds supply. Current mechanisms in use offer con-
tracts to consumers independent of one another, do
not take into consideration consumers’ heterogene-
ity in consumption profile or reliability, and fail to
achieve high participation.
We introduce DR-VCG, a new DR mechanism that
offers a flexible set of contracts (which may in-
clude the standard SCE contracts) and uses VCG
pricing. We prove that DR-VCG elicits truth-
ful bids, incentivizes honest preparation efforts,
and enables efficient computation of allocation and
prices. With simple fixed-penalty contracts, the op-
timization goal of the mechanism is an upper bound
on probability that the reduction target is missed.
Extensive simulations show that compared to the
current mechanism deployed by SCE, the DR-VCG
mechanism achieves higher participation, increased
reliability, and significantly reduced total expenses.

1 Introduction
Power system operation involves many challenges, driven by
the requirement that supply equals demand at all times. Too
much supply may lead to overload on the grid, whereas ex-
cessive demand may lead to shortages and blackouts. The
problem is aggravated by the fact that consumption tends to
vary sharply due to certain events (for example, surges in con-
sumption during heatwaves), whereas increasing the supply is
typically slow and costly. Even if the power company wants
to shift some of the demand to a different time, it cannot co-
erce the consumers to do so, and may only affect their be-
havior by using monetary incentives, such as increasing elec-
tricity price during peak-demand times. As in other markets,
consumers may respond to incentives in different ways based
on their own preferences. Unlike some other markets, the se-
rious consequences of failure to meet demand, and the large
uncertainty about how consumers may react to incentives, re-
quires the power company to guarantee there is enough slack
on the supply side.

The DR-SCE mechanism Demand Response (DR) pro-
grams are used by power companies to handle surges in de-
mand by reducing consumption rather than increasing pro-
duction. Typically, when a surge is predicted one day ahead
of time, the company lets consumers bid on how much con-
sumption they can reduce. Each consumer is being paid $0.5
per kWh, but only if the reduced consumption is between
50% and 150% of her bid. We call this system the DR-SCE
mechanism, as it is used by Southern California Edison and
PG&E [Patterson et al., 2014; Hansen et al., 2014].

DR-SCE has several shortcomings: incentives for partici-
pation are often insufficient (only 12% of registered partici-
pants in 2012-2013 submitted any bid), the system does not
capture the very different consumption profiles of consumers,
and does not filter out unreliable bidders. Yet, being a widely
deployed DR system, we treat DR-SCE both as a starting
point and as a benchmark for new mechanisms.

Contribution We propose a novel DR-VCG mechanism
for selecting and incentivizing a subset of consumers to re-
duce consumption. The grid offers a set of contracts defined
by some desired reduction target and a penalty scheme, and
agents may bid how much they want to get paid on for ac-
cepting each contract. The mechanism then selects a subset
of contracts that minimizes the sum of bids, and applies VCG
prices to pay the agents. As a result, it is a dominant strategy
for all agents to bid their true costs.

We show that for natural penalty schemes, the sum of bids
is a good proxy for the reliability of the joint contract, as high
bids are indicative of low individual reliability. We show
that the current contracts used by SCE and PG&E can still
be offered under DR-VCG (to allow for easy transition and
backward-compatibility). We demonstrate via examples and
simulations that even when restricted to offering SCE-like
contracts, DR-VCG dominates DR-SCE in terms of reliabil-
ity and grid expense. All omitted proofs are available in the
full version of this paper [Meir et al., 2017].

Related Work A number of recent works have discussed
how groups of agents can be coordinated and incentivized to
shift power demand [Haring et al., 2016; Zhang et al., 2015;
Su et al., 2014]. Considering strategic agents, [Rose et al.,
2012] and [Akasiadis and Chalkiadakis, 2013] propose the
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use of scoring rules to incentivize truthful reports about ex-
pected future generation or consumption. However, scoring
rule approaches are not concerned with selection of agents
to satisfy a system-wide reliability constraint. [Li et al.,
2015] consider agents bidding using supply curves, and study
the market equilibria for this setting. They do not, how-
ever take a mechanism design perspective or try to guaran-
tee truthfulness. Mechanism design approaches for aggregat-
ing load apply either variations of VCG [Samadi et al., 2012;
Chapman and Verbic, 2017], offline optimization of dynamic
pricing [Höning and La Poutré, 2013], or a new “staggered
clock-proxy” auction [Nekouei et al., 2015]. Neither work
considers the crucial issue of reliability, i.e. in practice not
all agents who intend to respond will do so. A different vari-
ation of VCG pricing was used by [Porter et al., 2008] to
align the incentives of agents in face of possible failures in
general mechanisms. However their version requires full rev-
elation (which is problematic in practical DR programs), and
is aimed at maximizing social welfare rather than reliability.

The work closest to ours is [Ma et al., 2016], who propose
a mechanism that allows agents to bid on the maximal penalty
for failing the DR contract, while [Ma et al., 2017] extend this
work to include uncertainty about costs. Our work takes a dif-
ferent approach, which generalizes currently used contracts
and, in our view, is more geared to practical applications.

2 Model
We consider a single power utility or system operator (hence-
forth, the grid), and a setN of consumers (or agents) who are
registered to a demand response program.

The most important task of the grid is to cut down con-
sumption by at least M energy units (say, kWh) during the
DR event. Given that this target is met, the grid would like
to minimize payments to the agents. The baseline consump-
tion profile of each agent is assumed known from past con-
sumption data, so the grid can measure how much each agent
reduced in practice.

2.1 Contracts
A contract in our model is defined by a pair (`, F ), where `
is a commitment goal in energy units and F : N → R+ is
a penalty function, mapping the realized energy reduction X
to a monetary penalty F (X). A-priori, F is unconstrained,
and ` is merely a non-binding declaration of the agent’s in-
tentions. It makes sense to consider more specific classes of
penalties that attach the penalty to the commitment goal.
Fixed contracts A Fixed penalty contract is defined by a

pair (`, f`), and the penalty is set to F (X) = f` if X <
` and 0 otherwise. In other words, the agent commits to
reduce `, or otherwise pay a penalty of f`. See Fig. 1(a).

Cliff contracts A Cliff penalty contract is defined by a tuple
(`, f`, α, β) where α < 1, β > 0, f` ≥ `(1 − α)β. It has
the following form:

F (X) =

{
f`, X < α · `
(`−X)β, α · ` ≤ X < `
0, ` ≤ X

We can think of a Cliff penalty function as a plateau where
the penalty is 0 whenever the commitment ` is met. Failure

0 `

−f`

0

(a)

0 α` `

−f`

0

(b)

0 `

0

(c)

Figure 1: The penalty −F as a function of the realized reduction X
under a Fixed contract (a), a Cliff contract (b) and a general contract
(c).

to meet the goal results in a linear penalty, where beyond a
certain point the penalty becomes a constant, and the utility
drops sharply (hence a “cliff”). See Fig. 1(b).

Clearly any Fixed contract is a Cliff contract. As we will
later see, the SCE payment scheme can be implemented as a
particular Cliff penalty scheme, so even restricting our mech-
anism to using Cliff contracts is sufficient to generalize the
SCE system.

Optimal contract sets For what follows, we assume no
structural restriction on contracts or penalty schemes. We
simply assume that a set of k contracts J are offered, and
F (j,X) is the penalty for an agent who signs up for con-
tract j ∈ J and reduces consumption by X . Since the value
of a contract to an agent is always non-positive, denote by
Bij ≥ 0 the bid of agent i on contract j.1 Then for a sub-
set of contracts S ⊆ N × J , we denote the sum of bids by
SB(S) =

∑
(i,j)∈S Bij .

In addition, the grid may pose a restriction on which sets of
contracts are valid: we denote by S all valid sets of contracts.
In this work, we use this constraint to impose a lower bound
on (declared) reduction in consumption, thus

S(M) = {S :
∑

(i,j)∈S

`j ≥M and ∀i|{(i, j) ∈ S}| ≤ 1}.

In other words, S(M) includes all sets of contracts that claim
to reduce at least M units of consumption, and each agent
has at most one contract. For an agent i ∈ N , we denote
SB−i(S) =

∑
(i′,j)∈S:i′ 6=iBi′j , that is, the sum of bids over

all agents in S except i. We sometimes denote i ∈ S as a
selected agent (meaning there is some j s.t. (i, j) ∈ S).

An optimal contract set is a set of individual contracts that
minimizes the sum of bids, i.e. argminS∈S SB(S).

2.2 The DR-VCG Mechanism
We define the DR-VCG mechanism, for assigning demand re-
sponse contracts using Vickrey-Clarke-Groves (VCG) pay-
ments. The grid publishes a finite set of contracts J .Each
agent i submits a single bid Bij on each contract j. For now,
we can think ofBij as some proxy of the cost required from i
when taking on contract j. The mechanism finds the optimal
valid set of contracts by solving minS∈S SB(S).

1The bid is supposed to reflect the various costs involved in tak-
ing the contract: preparation cost, online adjustment costs, the ex-
pected penalty and so on. We elaborate on this in the next section.
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For a set of agents N , a set of contracts J , and a reduction
goal M , we can plug in our more specific optimization goal
and constraints. We get the optimal subset of contracts as

S∗(N, J,M) = argminS∈S(M){
∑

(i,j)∈S

Bij}.

We denote SB∗(N, J,M) = SB(S∗(N, J,M)), and omit
some of the parameters when they are clear from the con-
text. Then, for each selected agent i ∈ S∗, the individual
rewards are computed as the VCG payments with the Clarke
pivot rule [Clarke, 1971]. Informally, the sum of bids is ana-
log of the social cost, and the VCG payment is the positive
externality the agent’s presence has on the rest of the agents.
Formally, for each i ∈ N ,

ri = SB∗(N−i, J)− SB∗−i(N, J).
The reward is paid to the agent up front, regardless of how
much reduction it eventually achieves in practice.

Finally, for each (i, j) ∈ S∗(N, J), the selected agent i
pays F (j,Xi) to the grid, where each Xi is the realized re-
duction of agent i. The utility of agent i depends on the re-
ward, the penalty, and the investment costs required to meet
the contract. We analyze agents’ incentives and utilities in the
next section.
Example 1 (Running example). Suppose we apply the DR-
VCG mechanism with a single fixed contract (` = 100, f` =
50). There are three agents that submit bids of B1 = 0, B2 =
5, B3 = 15, and the goal for the grid is set to M = 200.

The optimal set of contracts that meets M = 200 is S∗ =
{1, 2} with SB∗ = 5. The rewards are: r1 = SB∗({2, 3}) −
SB∗−1({1, 2})=20− 5=15; r2=15− 0=15, so in total the
grid pays 30 (some of which it might get back as penalties).

3 Analysis
Complexity In order to run the DR-VCG mechanism, we
should be able to efficiently compute the optimal contract set
and prices. Suppose that energy units (including the reduction
goal M ) are integers.
Theorem 1. For any sets of agents N and Cliff contracts J ,
both of S∗(N, J) and SB∗(N, J) (and thus also VCG prices)
can be computed in time polynomial in n, k,M .

In the general case, finding an optimal set of contracts is
NP-hard even for fixed contracts, by a reduction from the
Knapsack problem [Karp, 1972] (details omitted).

However, the knapsack problem is solvable by dynamic
programming when the units are bounded integers, and a
similar algorithm can be applied to our problem (intuitively,
compute dynamically the optimal contract sets for agents
{1, . . . , i} for i = 1, 2, . . . , n). Hence we get Theorem 1.

3.1 Incentives
To make things concrete we will describe a particular prob-
abilistic model from which we can derive agents’ costs, and
will show how under this model the incentives of the agents
align nicely with those of the grid. However the claim the
agents’ dominant strategy is to reveal their true costs does not
depend on this interpretation, and holds whenever agents can
attribute a well-defined cost to each contract.

Effort and types In general, agents do not know with cer-
tainty the amount of energy they will be able to reduce, as
this depends on some unknown factors such as urgent service
orders, last minute clients and so on. Moreover, preparation
may have some cost (e.g. due to changing the work schedule,
or turning down orders). By investing a higher effort/cost, an
agent might be able to commit to saving more energy.

The type of each agent i is given by a distribution pi.
In detail, pi(c,X) is the probability that by investing c,
agent i will reduce exactly X units of consumption (thus∑
X≥0 pi(c,X) = 1 for all c).2 We assume agents are al-

ways trying to maximize their utility.
A straightforward approach would be to ask agents to re-

port their types (and then apply some version of VCG). How-
ever, a language to report an arbitrary distribution may be
very complicated. Further, unsophisticated agents like small
households may not know their own distribution (or even
what is a distribution). Fortunately, our DR-VCG does not
require the agents to report any such distribution.

Fix an agent i who accepted a contract j (with penalty
scheme F ) and gets paid reward ri. If she decides to in-
vest c, she will pay an expected penalty of EFi(j, c) =
EX∼pi(c)[F (j,X)], and her expected utility would be:

ui(j, c) = ri− c−EFi(j, ci) = ri− c−EX∼pi(c)[F (j,X)].

Therefore, the optimal investment an utility maximizing agent
should make for contract j should be

c∗i (j) = argmaxui(j, c) = argminc≥0(c+ EFi(j, c)).

In words, when agent i is signed up for contract j, invest-
ing c∗i (j) will minimize her total cost (investment + penalty).
We denote this cost by C∗i (j) = c∗i (j) + EFi(j, c

∗
i (j)) =

minc≥0(c+EFi(j, c)). We refer to C∗i : J → R+ as the cost
type of agent i, which is derived from her type pi and F .

The total expense (TE) of the mechanism can be computed
as the sum of rewards paid to the agents minus expected
penalties: TE(S) =

∑
(i,j)∈S(ri − EFi(j, c

∗
i (j)) (assum-

ing agents invest optimally).
A mechanism is truthful if it is a dominant strategy for any

agent i to report her true cost C∗i (j) on any contract j.
A mechanism is individually rational (IR) if for every pair

(i, j) selected by the mechanism, ui(j, c∗i (j)) ≥ 0 (that is, by
participating each agent does not lose in expectation).

Theorem 2. Consider DR-VCG with arbitrary N, J,M .

1. For every contract j ∈ J , it is a dominant strategy for
agent i to bid Bij = C∗i (j);

2. If contract (i, j) is selected, it is a dominant strategy for
i to invest c∗i (j);

3. The mechanism is IR.

Proof sketch. Intuitively, we show that VCG payments are
market clearing (following similar proofs in other domains,
see [Nisan, 2007]), i.e. that no agent prefers a different con-
tract (or no contract) under the given prices . Since the prices
that agent i faces are independent of her bids, it is a dominant

2Investment c may include preparation costs, on-line actions re-
quired to produce the energy cut X , opportunity cost, and so on.
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strategy to report truthfully. Once contract (i, j) is selected,
then ui(j, c) = ri− c−EFi(j, c). By definition, this is max-
imized by investing c∗i (j).

Example 2. Consider three agents, where each one can re-
duce consumption by 100 kWh without effort. However,
agents have different reliability and only manage to hold their
commitment with a probability pi of 1, 0.9, and 0.7, respec-
tively (and otherwise reduce 0). Suppose that the goal of the
grid is M = 200 kWh.

Consider the DR-VCG mechanism with a single fixed con-
tract (` = 100, f` = 50). Since agent 1 always meets her
commitment, C∗1 = 0. For the others, C∗2 = 0.1 · 50 = 5 (as
agent 2 fails w.p. 0.1), and C∗3 = 0.3 · 50 = 15, i.e. Bi = C∗i
are exactly the bids in Ex. 1. The selected set is S∗ = {1, 2}
(the DR-VCG mechanism filters out the least reliable agent).
The total expense of the grid is TEV CG = 30 − 5 = 25
(expected penalty of 5 from agent 2).

3.2 Fallback Options and Reserve Costs
In general, the grid may not find enough agents to meet the re-
duction goal M , and may thus need to use some fallback op-
tion like a standby generator or emergency blackouts. For ev-
ery amount m we denote by Rm the cost for the grid of using
its fallback option to reduce consumption/increase production
bym units. E.g. if the total cost of demand response contracts
exceedsRM , then the power company is better off without as-
signing any contracts, or the fallback options can be used to
fill up some gap between

∑
(i,j)∈S∗ `j andM . A fallback op-

tion can be simply added to the mechanism as a ‘virtual agent’
that bidsRm on the fixed contract (` = m,F ≡ Rm). This is
similar to the role of reserve prices in auctions. The reserve
costs guarantee that: (I) The grid finds a cheap set of solu-
tions, whether these solutions are contracts with agents or ex-
ternal options; and (II) For any (i, j), the reward is bounded:
ri ≤ RM−L −RM−(L+`j) where L =

∑
j′∈S∗\{j} `j′ .

4 Reliability and Expenses
The incentive analysis we presented goes through for any set
of contracts. Yet, the goal of the grid is to match demand
and supply, preferably at low total expenses, which is a-priori
not the same as minimizing the sum of bids. By restricting
DR-VCG to use structured constructs we can relate this goal.

We next analyze how the sum of bids relates to reliability,
i.e. the probability that the reduction target is met.

4.1 Fixed Penalty Contracts
Denote by P (S,m) the probability that a quantity of at least
m is reduced under contracts S. Then P ∗(N, J,M) =
P (S∗(N, J,M),M) is the reliability of the DR-VCG mech-
anism. We would like to measure or bound P

∗
(N, J,M) =

1 − P ∗(N, J,M), which is the probability that the mecha-
nism fails to meet the lower bound reduction M (we may
omit some of the parameters).

Proposition 3. Let J = {(`j , f)}j=1,2,... for some fixed f ,
then P

∗
(M) ≤ 1

f SB
∗(M). This bound is tight.

Proof. For any agent i that is assigned a contract j: The op-
timal investment is c∗i (j). The expected penalty is

EFi(j, c
∗
i (j)) = PrX∼pi(c∗i (j))[X < `j ] · f,

i.e., proportional to the probability it will undershoot the com-
mitment `j . The DR-VCG mechanism minimizes

SB(S) =
∑

(i,j)∈S

C∗i (j) =
∑

(i,j)∈S

c∗i (j) + f ·
∑

(i,j)∈S

Pr[Xi < `j ],

that is, a combination of the total investment and the sum of
individual failure probabilities. Note that∑

(i,j)∈S

Pr[Xi < `j ]
(a)

≥ Pr[∃(i, j) ∈ S s.t. Xi < `j ]

(b)

≥Pr[
∑

(i,j)∈S

Xi <
∑

(i,j)∈S

`j ]
(c)

≥ Pr[
∑

(i,j)∈S

Xi < M ].

Thus,

SB∗(M) ≥ f · Pr[
∑

(i,j)∈S∗(M)

Xi < M ] +
∑

(i,j)∈S∗(M)

c∗i (j)

= f · P ∗(M) +
∑

(i,j)∈S

c∗i (j)
(d)

≥ f · P ∗(M).

To see why the bound is tight, observe that the inequali-
ties in the proof are tight if (respectively): (a) failure events
are disjoint (i.e. maximally negatively correlated);(b) agents
never reduce more than `j ; (c) the reduction goal is met ex-
actly (

∑
`j =M ); and (d) investments are 0.

Thus a fixed penalty lets us bound the probability that the
grid fails (reduction goal is not met). As we increase f , the
(bound on) failure probability becomes smaller, at higher ex-
pense (due to higher bids). Of course, this is a worst-case
bound. If, for example, some agents exceed their commit-
ment then this would compensate for failures of others, and
will increase the probability that the reduction goalM is met.

In general the grid may set a higher goal M ′ = γM than
the expected surge M as a safety margin. Another result ties
this safety margin with the sum of bids.
Proposition 4. Suppose that there is a single Fixed contract
(1, f). Then M ′ − E[

∑
i∈S∗(M ′)Xi] ≤ 1

f SB
∗(M ′).

Thus if the grid sets M ′ s.t. M ′ − 1
f SB

∗(M ′) ≥ M , then
actual reduction is at least M in expectation.

4.2 Cliff Penalty Contracts
We saw that having a constant penalty for a violation allows
us to bound the failure probability. A Cliff penalty is more
“forgiving,” yet it provides similar guarantees.
Proposition 5. Suppose that the set of possible contracts J is
composed of Cliff penalty contracts of the form (`j , f, α, βj)

for some fixed f and α (same for all contracts), then P (S, α ·
M) ≤ 1

f SB(S). This bound is tight.

That is, we get a guarantee on the probability that we miss
the reduction goal by a factor of α (tightness is achieved if
either α = 1 or βj = 0 for all j). Note that this does not
require any assumption on the types of the agents. The grid
can then sign contracts that sum up to M ′ = M

α so as to
bound the probability of missing its actual goal M .
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5 DR-SCE vs. DR-VCG
We argue that the DR-SCE mechanism can be simulated ex-
actly using a Cliff payment contract. Formally, in DR-SCE
and each agent submits a bid bi, and the grid selects agents at
random until

∑
bi ≥ M . After the reduction Xi is realized,

each selected agent gets a reward of ri = 0 if Xi < bi/2,
ri =

Xi

2 if Xi ∈ [bi/2, 3bi/2], and ri = 3bi/2 otherwise.
We argue that same SCE contracts used today can be of-

fered via the DR-VCG mechanism. For any ` > 0, we define
a Cliff contract j` = (`, f` =

`
2 , α = 1

3 , β = 1
2 ).

Proposition 6. For any agent i of type pi, submitting op-
timal bid bi to the DR-SCE mechanism is ex-post equiva-
lent to being the only bidder in DR-VCG with M ≥ bi,
JSCE= {j`}`≥0, and reserve prices Rm = m/2 for all m.

Proof sketch. We show that contract bi in DR-SCE is com-
pletely equivalent to contract j` where ` = 3bi/2 (i.e. same
behavior and same ex-post utility). This is by writing the
penalty function F (j`, X), and considering the realization of
Xi when: Xi < bi/2, Xi ∈ [bi/2, 3bi/2], and Xi > 3bi/2.
Then bidding bi is optimal in DR-SCE if and only if DR-VCG
assigns j` to i.

Proposition 6 has two important implications. First, tran-
sition from the currently used DR-SCE mechanism to DR-
VCG can be gradual and backward-compatible: we can still
allow bids on quantity (bi) and internally convert them to the
appropriate Cliff contract j` with reserve price 0.5`. Sec-
ond, it becomes obvious that DR-SCE is just a very restricted
version of the more general DR-VCG, where parameter val-
ues are arbitrary and most likely suboptimal. By setting the
proper reduction target and reserve prices, we expect DR-
VCG to outperform DR-SCE. In particular:

1. DR-SCE makes no informed selection. With an explicit
reduction goal M (based on the actual surge prediction),
DR-VCG selects agents who are more reliable. Thus
we expect that PV CG > PSCE in most cases.

2. DR-VCG pays rewards based on competition. In fact,
for JSCE and any M and S, TEV CG ≤ TESCE .

3. DR-VCG allows agents to bid on multiple contracts, so
they can reveal more information on their type.

4. DR-SCE uses arbitrary price of 0.5m for contracts of
size m, whereas DR-VCG is flexible. In particular we
may use the actual costs of generating m kWh, which
are highly non-linear due to the cost of adding another
generator.

Example 3. Consider the same 3 agents from Example 2.
In the DR-SCE mechanism, all agents will submit a bid of
bi = 100, and the grid cannot distinguish between them. If it
selects two of them at random, it pays TESCE = (50+45+
35) · 23 = 83.33—much more than TEV CG = 25.

If we compare failure probabilities, then P
SCE

= 1
30.1 +

1
30.3+

1
3 (1−0.9·0.7) = 0.224, whereas P

V CG
= 0.1, which

is again an improvement over SCE.

On the other hand, if agents have to invest high costs c∗i then
they might not participate in DR-SCE at all, as their reward
is bounded by $0.5. Thus DR-SCE pays too much to agents
with low c∗i , and too little to agents with high c∗i .

The parameters of the Cliff contract j` are also arbitrary
(e.g. why α = 1

3?), however there is no obvious way to set
them a-priori (see Discussion).

5.1 Simulations
Settings Each agent i has T “effort levels,” where each
level is a triple (cit, qit, pi), meaning that with investment
cit agent i can reduce qit kWh. The reduction succeeds
w.p. pi, and w.p. 1 − pi reduction is 0 due to an unex-
pected event. The expected demand surge is M , and the grid
uses a safety margin γ ≥ 1. For each mechanism we de-
note by TE = TE(S∗(N, J, γM)) the total expense, and by
P = P (S∗(N, J, γM),M) the reliability, i.e., the probabil-
ity that

∑
Xi > M when the mechanism collects contracts

for γM . We run both DR-SCE and DR-VCG mechanisms,
and measure TESCE , TEV CG, PSCE , and PV CG.

To set up a realistic scenario of a typical demand response
event, we used [Patterson et al., 2014] that summarize pre-
vious DR programs. We fix the expected demand surge
to M = 10MWh. In each economy we sample n agents
i.i.d., where each agent has T ∈ {1, 3, 5} effort levels. For
each agent i ∈ N and effort level t ≤ T : the capacity
(in kWh) is qit ∼ Zipf(1, 500) · 10; individual reliability
is pi ∼ U [0.7, 1]; and agents’ investment costs (in $) are
cit ∼ U [0.2, 1], multiplied by qi.3 Note that only agents with
maxt

cit
qit
≤ 0.5 will submit bids in DR-SCE. We generated

populations of 3 sizes: n = 100 (small), n = 200 (medium)
and n = 400 (large), and for each population varied the safety
margin between γ ∈ [1, 2].

We run simulations that demonstrate the four advantages of
the DR-VCG mechanism mentioned above. Every datapoint
in our simulations is an average over 100 instances.

Selection and Competition In our first simulation, agents
each have a single effort level (T = 1). We use the set of
“SCE-like” contracts JSCE = {j`}`=10,20,..., and set linear
reserve prices Rm = 0.5m for all m ≥ 0. Thus for a single
bidder, DR-SCE and DR-VCG are equivalent by Prop. 6.

Fig. 2 shows the expense-vs.-reliability frontier under both
mechanisms. Larger safety margin γ results in more recruited
agents and higher reliability, but also higher costs. We can
see that in both populations DR-VCG dominates DR-SCE by
guaranteeing any reliability level at a much lower cost. We
found that even if we pay the reserve prices to all selected
agents, DR-VCG does somewhat better than DR-SCE, mean-
ing that it does indeed select better agents.

Fig. 2 also shows that the advantage of DR-VCG becomes
larger in large populations (or when the expected surge is
small), as competition drives prices down. In contrast, in

3This roughly mimics the aggregate statistics in the data, where
agents’ bids are highly skewed, with a minimum of 10 kWh up to
several MWh, overall reliability is ∼ 0.85, and participation is low
(about 100 bidders out of 1000 registered users). We also tried dif-
ferent distributions and got similar results.
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Figure 4: Outcomes under SCE and VCG mechanism for small pop-
ulation (n = 100) and flexible reserve prices.
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Figure 2: Reliability vs. expense for large and medium populations
and single effort level.
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Figure 3: Reliability vs. expense with for medium population n =
200, with multiple effort levels.

small populations DR-VCG and DR-SCE are the same, as
both exhaust all agents with low investment costs. Our next
simulations show how the other two advantages of DR-VCG
overcome this problem.

Multiple levels Fig. 3 shows the reliability frontier for a
medium population (n = 200) of agents with multiple ef-
fort levels. We can see from Figs. 2 and 3 that DR-VCG
performance becomes better as population gets larger and/or
agents’ types are more complex, wheres the performance of
DR-SCE remains almost the same. Intuitively, selecting from
n agents each submitting T independent bids is similar to se-
lecting from Tn agents, i.e. there is more competition.

Flexible reserve prices The SCE contracts with their linear
reserve price do not reflect correctly the outside options avail-
able to the grid. In reality, the grid cannot generate additional
power at small quantities to fill the gaps between agents’ bids
and the reduction goal. Failure to reach the reduction goal
γM means that the grid cannot rely on the current DR con-
tracts, and must increase supply by operating another gen-
erator at a large cost. The operating cost with modern gas
turbines is $0.04 − 0.1 per kWh, but each turbine gener-
ates at least 100 MWh. We thus set the reserve prices to
Rm = 4000 + 0.1m, which creates a dichotomy between
“success” (where the DR mechanism collected enough con-
tracts to forgo the additional turbine) and “failure.” Increasing
the reserve prices also requires higher penalties. Otherwise
agents may bid for contracts they do not plan to keep, with
reward higher than the maximal penalty. We did not optimize
the contract (see Discussion) and instead just set the penalties
to f` = ` (double from j`).

Fig. 4 shows how flexible prices benefit DR-VCG in small
populations. As the target capacity γM increases, this re-
quires high reliability using a small population, which DR-
SCE very often fails to achieve. This is because it may not
find enough reliable agents willing to bid for a payment of
$0.5, and it must use the extra turbine for a high cost. In
contrast, DR-VCG can increase the reward to agents, thereby
attracting also bidders with investment costs higher than $0.5.

6 Discussion
We suggested in this paper the DR-VCG mechanism for
demand-response contracts that is based on individual “soft”
commitments and flexible penalty schemes. While the details
of the contracts and the analysis were specific to demand re-
sponse programs, the general idea of offering flexible penalty
contracts to multiple agents may be useful in other domains
that require joint effort under uncertainty [Porter et al., 2008].

We considered three natural parametric classes of penal-
ties that allow for efficient computation of VCG prices, and
showed how they generalize the currently deployed SCE con-
tract. Power companies can adopt the new DR-VCG mech-
anism with the SCE contracts for painless migration at first.
Then, they can gradually add more contracts and optimize
their parameters based on distributional assumptions, data on
consumption profiles, trial-and-error, and so on. Another ben-
efit of DR-VCG is that the grid can focus on optimizing the
set of contracts without worrying about agents’ strategic be-
havior, whereas agents can focus on accurately estimating
their costs for each contract. Based on initial simulations, it
seems that penalties should be higher than $0.5 per kWh, and
perhaps superlinear in the size of the contract (as reliability
of large consumers is more important). Finding optimal pa-
rameters under various assumptions is a major topic for future
research.

Other future directions include extending the mechanism to
consider temporal shifts of consumption (as in [Höning and
La Poutré, 2013]), and obtaining a better understanding of the
connections between reliability, penalties, and expenses.
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