
Efficiently Enforcing Path Consistency on Qualitative Constraint Networks
by Use of Abstraction

Michael Sioutis and Jean François Condotta
Université d’Artois, CRIL-CNRS UMR 8188, Lens, France

{sioutis,condotta}@cril.fr

Abstract
Partial closure under weak composition, or par-
tial �-consistency for short, is essential for tackling
fundamental reasoning problems associated with
qualitative constraint networks, such as the satisfi-
ability checking problem, and therefore it is crucial
to be able to enforce it as fast as possible. To this
end, we propose a new algorithm, called PWCα, for
efficiently enforcing partial �-consistency on qual-
itative constraint networks, that exploits the notion
of abstraction for qualitative constraint networks,
utilizes certain properties of partial �-consistency,
and adapts the functionalities of some state-of-the-
art algorithms to its design. It is worth noting that,
as opposed to a related approach in the recent lit-
erature, algorithm PWCα is complete for arbitrary
qualitative constraint networks. The evaluation that
we conducted with qualitative constraint networks
of the Region Connection Calculus against a com-
peting state-of-the-art generic algorithm for enforc-
ing partial �-consistency, demonstrates the useful-
ness and efficiency of algorithm PWCα.

1 Introduction
Qualitative Spatial and Temporal Reasoning (QSTR) is a ma-
jor field of study in Artificial Intelligence, and Knowledge
Representation & Reasoning in particular. This field has re-
ceived a lot of attention over the past decades, as it extends
to a plethora of areas and domains that include ambient intel-
ligence, dynamic GIS, cognitive robotics, and spatiotemporal
design [Bhatt et al., 2011]. QSTR abstracts from numerical
quantities of space and time by using qualitative descriptions
instead (e.g., precedes, contains, is left of), thus providing a
concise framework that allows for rather inexpensive reason-
ing about entities located in space and time.

The problem of representing and reasoning about qualita-
tive information can be modeled as a qualitative constraint
network (QCN), i.e., a network of constraints correspond-
ing to qualitative spatial or temporal relations between spatial
or temporal variables respectively, using a qualitative con-
straint language. A qualitative constraint language involves
constraints defined over a finite set of binary relations, called
base relations (or atoms) [Ligozat and Renz, 2004].

The fundamental reasoning problems associated with a
given QCN N are the problems of satisfiability checking,
minimal labeling (or deductive closure), and redundancy (or
entailment) [Renz and Nebel, 2007]. In particular, the satis-
fiability checking problem is the problem of deciding if there
exists a spatial or temporal valuation of the variables of N
that satisfies its constraints, such a valuation being called a
solution of N , the minimal labeling problem is the problem
of finding the strongest implied constraints of N , and the re-
dundancy problem is the problem of determining if a given
constraint is entailed by N (that constraint being called re-
dundant, as its removal does not change the solution set of the
QCN). In general, for most qualitative constraint languages
the satisfiability checking problem is NP-complete. Further,
the redundancy problem, the minimal labeling problem, and
the satisfiability checking problem are equivalent under poly-
nomial Turing reductions [Golumbic and Shamir, 1993].

The vast amount, if not all, of the published works that
study the aforementioned reasoning problems, use partial
�-consistency as a means to define practical algorithms for
efficiently tackling them [Amaneddine et al., 2013; Sioutis
et al., 2015; 2016b; Li et al., 2015; Renz and Nebel, 2001;
Nebel, 1997]. Given a QCN N and a graph G, partial
�-consistency with respect to G, denoted by �G-consistency,
entails (weak) consistency for all triples of variables in N
that correspond to three-vertex cycles (triangles) in G. We
note that if G is complete, �G-consistency becomes iden-
tical to �-consistency [Renz and Ligozat, 2005]. Hence,
�-consistency is a special case of �G-consistency. In fact, ear-
lier works have relied solely on �-consistency; it was not until
the introduction of chordal (or triangulated) graphs in QSTR,
due to some generalized theoretical results of [Huang, 2012],
that researchers started restricting �-consistency to a triangu-
lation of the constraint graph of an input QCN and benefiting
from better complexity properties.

Currently, and to the best of our knowledge, the fastest
algorithm for enforcing partial �-consistency, which is pre-
sented in [Long et al., 2016], is complete only for certain
subsets of the set of allowed relations that can occur in a
QCN. This fact significantly limits its practicality for arbi-
trary QCNs. Further, since those subsets define subclasses of
relations that are in general smaller than the classes of rela-
tions for which partial �-consistency is able to decide satisfi-
ability, the algorithm of [Long et al., 2016] is able to tackle

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1262

fewer QCNs in comparison with a generic algorithm for en-
forcing partial �-consistency. To ameliorate this issue, we
exploit the notion of abstraction for QCNs, which is an idea
adopted from concepts of abstract interpretation [Cousot and
Cousot, 1992]. In particular, a QCN is typically abstracted
by relaxing some of its constraints in order to satisfy some
property (if possible); in our case, we aim to abstract a given
QCN is such a way that all of its constraints involve relations
for which the algorithm of [Long et al., 2016] is complete.
This should allow us to harvest as much of the performance
gains of that algorithm as possible for an arbitrary QCN N ,
as we can use the algorithm to enforce partial �-consistency
on a proper abstraction of N very fast, and then incremen-
tally apply appropriate constraint propagations on its output
QCN to achieve partial �-consistency pertaining to the orig-
inal QCN N . Specifically, we make the following contri-
butions: (i) we provide an efficient and generic algorithm
for enforcing partial �-consistency that exploits the notion
of abstraction for QCNs and makes full use of the algorithm
of [Long et al., 2016], (ii) we prove the correctness of our ap-
proach by utilizing certain properties of partial �-consistency,
such as idempotence and monotonicity, and (iii) we experi-
mentally validate the usefulness and efficiency of our method
against the state-of-the-art generic algorithm for enforcing
partial �-consistency of [Chmeiss and Condotta, 2011].

2 Preliminaries
A (binary) qualitative spatial or temporal constraint language,
is based on a finite set B of jointly exhaustive and pairwise
disjoint relations defined over an infinite domain D, which is
called the set of base relations [Ligozat and Renz, 2004]. The
base relations of a particular qualitative constraint language
can be used to represent the definite knowledge between any
two of its entities with respect to the level of granularity pro-
vided by the domain D. The set B contains the identity re-
lation Id, and is closed under the converse operation (−1).
Indefinite knowledge can be specified by a union of possible
base relations, and is represented by the set containing them.
Hence, 2B represents the total set of relations. The set 2B is
equipped with the usual set-theoretic operations of union and
intersection, the converse operation, and the weak composi-
tion operation denoted by the symbol � [Ligozat and Renz,
2004]. For all r ∈ 2B, we have that r−1 =

⋃{b−1 | b ∈ r}.
The weak composition (�) of two base relations b, b′ ∈ B is
defined as the smallest (i.e., strongest) relation r ∈ 2B that in-
cludes b ◦ b′, or, formally, b � b′={b′′ ∈ B | b′′∩(b ◦ b′) 6= ∅},
where b ◦ b′={(x, y) ∈ D × D | ∃z ∈ D such that (x, z) ∈
b ∧ (z, y) ∈ b′} is the (true) composition of b and b′. For all
r, r′ ∈ 2B, we have that r � r′ = ⋃{b � b′ | b ∈ r, b′ ∈ r′}.

As an example, the Region Connection Calculus (RCC)
is a first-order theory for representing and reasoning about
mereotopological information [Randell et al., 1992]. The
domain D of RCC comprises all possible non-empty reg-
ular subsets of some topological space. These subsets do
not have to be internally connected and do not have a par-
ticular dimension, but are commonly required to be regular
closed [Renz, 2002]. Simply put, a subset X of a topologi-
cal space is regular closed in that space, if X equals the clo-

y
z

x

x

y

z
{EC}

{EC}

{EC}

Figure 1: A QCN of RCC-8 along with a solution

sure of its interior. The base relations of RCC are the follow-
ing ones: disconnected (DC), externally connected (EC),
equal (EQ), partially overlapping (PO), tangential proper
part (TPP), tangential proper part inverse (TPPi), non-
tangential proper part (NTPP), and non-tangential proper
part inverse (NTPPi). These eight base relations form the
RCC-8 constraint language. Relation EQ is the identity re-
lation Id of RCC-8. Other notable and well known qualita-
tive spatial and temporal constraint languages include Point
Algebra [Vilain and Kautz, 1986], Cardinal Direction Cal-
culus [Ligozat, 1998; Frank, 1991], Interval Algebra [Allen,
1983], and Block Algebra [Balbiani et al., 2002].

The weak composition operation �, the converse opera-
tion −1, the union operation ∪, the complement operation {,
and the total set of relations 2B along with the identity rela-
tion Id of a qualitative constraint language, form an algebraic
structure (2B, Id, �,−1 ,{ ,∪) that can correspond to a relation
algebra in the sense of Tarski [Tarski, 1941].

Proposition 1 ([Dylla et al., 2013]). The languages of
Point Algebra, Cardinal Direction Calculus, Interval Alge-
bra, Block Algebra, and RCC-8 are each a relation algebra
with the algebraic structure (2B, Id, �, −1, {, ∪).

In what follows, for a qualitative constraint language that
is a relation algebra with the algebraic structure (2B, Id, �,
−1, {, ∪), we will simply use the term relation algebra, as
the algebraic structure will always be of the same format.

The problem of representing and reasoning about qualita-
tive information can be modeled as a qualitative constraint
network (QCN), defined in the following manner:

Definition 1. A qualitative constraint network (QCN) is a tu-
ple (V,C) where: V = {v1, . . . , vn} is a non-empty finite set
of variables, each representing an entity; and C is a mapping
C : V × V → 2B such that C(v, v) = {Id} for all v ∈ V and
C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V .

An example of a QCN of RCC-8 is shown in Figure 1. In
particular, the QCN comprises the set of variables {x, y, z}
and the constraints C(x, y) = C(y, z) = C(z, x) = {EC};
for simplicity, converse relations as well as Id loops are not
mentioned or shown in the figure.

Definition 2. Let N = (V,C) be a QCN, then: a solution
of N is a mapping σ : V → D such that ∀(u, v) ∈ V × V ,
∃b ∈ C(u, v) such that (σ(u), σ(v)) ∈ b; N is satisfiable iff
it admits a solution; a QCN is equivalent to N iff it admits
the same set of solutions asN ; a sub-QCNN ′ ofN , denoted
by N ′ ⊆ N , is a QCN (V,C ′) such that C ′(u, v) ⊆ C(u, v)
∀u, v ∈ V ; the constraint graph of N is the graph (V,E)
where {u, v} ∈ E iff C(u, v) 6= B and u 6= v; and N is
trivially inconsistent iff ∃u, v ∈ V such that C(u, v) = ∅.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1263

x

y

z
{DC}

{PO,NTPP}

{EC, TPP}

x

y

z
{DC}

{PO,TPP, NTPP}

{EC,PO, TPP}

Figure 2: A QCN of RCC-8 along with an abstraction

We recall the following definition of �G-consistency, which,
as noted in the introduction, is the basic local consistency
used in the literature for solving fundamental reasoning prob-
lems of QCNs, such as the satisfiability checking problem.
Definition 3. Given a QCN N = (V,C) and a graph G =
(V,E), N is �G-consistent iff ∀{vi, vj}, {vi, vk}, {vk, vj} ∈
E we have that C(vi, vj) ⊆ C(vi, vk) � C(vk, vj).

It is routine to formally prove the following properties of
�
G-consistency, which we will use in the sequel, as they natu-
rally derive from respective properties of �-consistency:
Property 1. Let N = (V,C) be a QCN and G = (V,E) a
graph. Then, the following properties hold:
• �G(N) ⊆ N (viz., the �G-closure of N) is the largest

(w.r.t. ⊆) �G-consistent sub-QCN of N (Dominance);
• �G(N) is equivalent to N (Equivalence);
• �G(�G(N)) = �G(N) (Idempotence);
• if N ′ ⊆ N then �G(N ′) ⊆ �G(N) (Monotonicity).
We note again that if G is complete, �G-consistency be-

comes identical to �-consistency [Renz and Ligozat, 2005],
and, hence, �-consistency is a special case of �G-consistency.

Definition 4. A subclass of relations is a subset A ⊆ 2B

that contains the singleton relations of 2B and is closed under
converse, intersection, and weak composition.

Given a relation r of 2B and a subclass A ⊆ 2B containing
B, A(r) denotes the smallest relation of A that includes r.
Definition 5. Given a QCN N = (V,C), a graph G =
(V,E), and a subclass A ⊆ 2B containing B, the abstrac-
tion of N w.r.t. to A and G, denoted by AG(N), is the QCN
(V,C ′) where C ′(v, v′) = A(C(v, v′)) ∀{v, v′} ∈ E.

As an example, Figure 2 illustrates the abstraction of a
QCN of RCC-8 w.r.t. to the subclass that results from the clo-
sure of the base relations of RCC-8 under converse, intersec-
tion, and weak composition (which, in addition, contains B)
and the complete graph on its set of variables.

Given three relations r, r′, r′′ ∈ 2B, we say that weak com-
position distributes over intersection if we have that r � (r′ ∩
r′′) = (r � r′)∩ (r � r′′) and (r′∩ r′′)� r = (r′ � r)∩ (r′′ � r).
Definition 6. A subclass A is distributive iff weak composi-
tion distributes over non-empty intersection ∀r, r′, r′′ ∈ A.

Distributive subclasses of relations containing the univer-
sal relation B are defined for all of the qualitative constraint
languages mentioned in Proposition 1 [Long and Li, 2015].

3 �
G-Consistency by Use of Abstraction

The main idea behind our approach, is to benefit as much
as possible from the performance characteristics of the al-
gorithm for enforcing partial �-consistency of [Long et al.,

Algorithm 1: PWCα(N , G, α,A)
in : A QCN N = (V,C), a graph G = (V,E), a

bijection α : V → {0, 1, . . . , |V | − 1}, and a
subclass A of 2B.

out : True or False, and a sub-QCN of N .
1 begin
2 N ′ = (V,C ′)← AG(N);
3 (decision,N ′)← DPWC+(N ′, G, α);
4 if decision = False then
5 return (False,N);
6 e← ∅;
7 foreach {v, v′} ∈ E do
8 r ← C ′(v, v′) ∩ C(v, v′);
9 if r = ∅ then return (False,N);

10 if r ⊂ C ′(v, v′) then
11 e← e ∪ {{v, v′}};
12 C ′(v, v′)← r;
13 C ′(v′, v)← r−1;

14 return PWC(N ′, G, e);

2016], when given an arbitrary QCN N . As noted in the in-
troduction, that algorithm is complete only for certain subsets
of 2B. Those subsets essentially define subclasses of relations
that are distributive (see Definition 6). Hence, to be able to
make full use of the algorithm of [Long et al., 2016], we uti-
lize an abstraction ofN with respect to some distributive sub-
class of relations, feed that abstraction to the algorithm, com-
pare its output QCNN ′ with our initial QCNN and properly
updateN ′, and finally employ a generic algorithm for enforc-
ing partial �-consistency to incrementally apply appropriate
constraint propagations on the updated QCN N ′ and achieve
partial �-consistency pertaining to the original QCN N .

An algorithm that follows the aforementioned steps is pre-
sented in Algorithm 1, called PWCα (which stands for partial
closure under weak composition by use of abstraction), where
subroutine DPWC+ in line 3 (which stands for directional
partial closure under weak composition plus) corresponds to
a generalized version of the algorithm of [Long et al., 2016]
and subroutine PWC in line 14 (which stands for partial clo-
sure under weak composition) is the state-of-the-art generic
algorithm for enforcing partial �-consistency of [Chmeiss
and Condotta, 2011]. As opposed to the original algorithm
of [Long et al., 2016], its generalized version, viz., algo-
rithm DPWC+, restricts consistency checks to constraints
corresponding to edges of a given input graph G. Algorithm
DPWC+, as well as its subroutine, algorithm DPWC, are pre-
sented in Algorithms 2 and 3 respectively. For completeness,
algorithm PWC is presented in Algorithm 4. With respect to
algorithm DPWC+, we can prove the following result:

Proposition 2 (cf. [Long et al., 2016]). Given a not trivially
inconsistent QCN N = (V,C) defined over a distributive
subclass of relations of a relation algebra, a chordal graph
G = (V,E), and a bijection α : V → {0, 1, . . . , |V | − 1}
such that (α−1(|V |−1),α−1(|V |−2),. . .,α−1(0)) is a perfect
elimination ordering ofG, algorithm DPWC+ returns (True,
�
G(N)) if �G(N) is not trivially inconsistent, and (False, N ′)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1264

Algorithm 2: DPWC+(N , G, α)
in : A QCN N = (V,C), a graph G = (V,E), and a

bijection α : V → {0, 1, . . . , |V | − 1}.
out : True or False, and a sub-QCN of N .

1 begin
2 (decision,N)← DPWC(N , G, α);
3 if decision = False then
4 return (False,N);
5 for x from 1 to |V | − 1 do
6 v← α−1(x);
7 foreach v′ ∈ V | {v′, v} ∈ E ∧ α(v′) < α(v) do
8 adj← {v′′ ∈ V | {v′′, v}, {v′, v′′} ∈ E ∧
9 α(v′′) < α(v)};

10 C(v, v′)← ⋂
v′′∈adj C(v, v′′) � C(v′′, v′);

11 C(v′, v)← (C(v, v′))−1;

12 return (True,N);

Algorithm 3: DPWC(N , G, α)
in : A QCN N = (V,C), a graph G = (V,E), and a

bijection α : V → {0, 1, . . . , |V | − 1}.
out : True or False, and a sub-QCN of N .

1 begin
2 for x from |V | − 1 to 1 do
3 v← α−1(x);
4 adj← {v′ ∈ V | {v′, v} ∈ E ∧ α(v′) < α(v)};
5 foreach v′, v′′ ∈ adj | {v′, v′′} ∈ E ∧
6 α(v′) < α(v′′) do
7 r← C(v′, v′′) ∩ (C(v′, v) � C(v, v′′));
8 if r = ∅ then return (False,N);
9 if r ⊂ C(v′, v′′) then

10 C(v′, v′′)← r;
11 C(v′′, v′)← r−1;

12 return (True,N);

with N ′ ⊆ N otherwise.
As shown in [Long et al., 2016], algorithm DPWC+ (at

least in its original and more particular version as it appears
in that work) exhibits outstanding performance in compari-
son with algorithm PWC for enforcing partial �-consistency
on QCNs defined over a distributive subclass of relations.
Due to space constraints, it is not possible to detail the func-
tionality of that algorithm; however, it should suffice to say
that it utilizes partial ←−� -consistency as its core local con-
sistency [Sioutis et al., 2016a], which is enforced by algo-
rithm DPWC, and exploits unique properties of distributive
subclasses of relations to achieve partial �-consistency in a
given QCN defined over such a subclass. In summary, partial←−� -consistency is partial �-consistency restricted (direction-
ally) to a variable ordering α of the considered QCN. On
the other hand, algorithm PWC is both efficient and complete
for enforcing partial �-consistency on arbitrary QCNs. With
respect to algorithm PWC, we recall the following result:
Proposition 3 ([Chmeiss and Condotta, 2011]). Given a not
trivially inconsistent QCN N = (V,C) of a relation alge-

Algorithm 4: PWC(N , G, e← ∅)
in : A QCN N = (V,C), a graph G = (V,E), and

optionally a set e such that e ⊆ E.
out : True or False, and a sub-QCN of N .

1 begin
2 Q← (e if e 6= ∅ else E);
3 while Q 6= ∅ do
4 {v, v′} ← Q.pop();
5 foreach v′′ ∈ V | {v, v′′}, {v′, v′′} ∈ E do
6 r← C(v, v′′) ∩ (C(v, v′) � C(v′, v′′));
7 if r = ∅ then return (False,N);
8 if r ⊂ C(v, v′′) then
9 C(v, v′′)← r;

10 C(v′′, v)← r−1;
11 Q← Q ∪ {{v, v′′}};
12 r← C(v′′, v′) ∩ (C(v′′, v) � C(v, v′));
13 if r = ∅ then return (False,N);
14 if r ⊂ C(v′′, v′) then
15 C(v′′, v′)← r;
16 C(v′, v′′)← r−1;
17 Q← Q ∪ {{v′′, v′}};

18 return (True,N);

bra, and a graph G = (V,E), algorithm PWC returns (True,
�
G(N)) if �G(N) is not trivially inconsistent, and (False, N ′)
with N ′ ⊆ N otherwise.

Having presented the structure and the core components of
algorithm PWCα, we obtain the following lemma to be used
for establishing the correctness of our algorithm in the sequel:

Lemma 1. Let N ′ = (V,C ′) and N = (V,C) be two QCNs
such thatN ⊆N ′. Then, we have that �G(N) ⊆ �G(N ′) ∩ N .

Proof. As N ⊆ N ′, by monotonicity of �G-consistency we
have that �G(N) ⊆ �G(N ′). Moreover, since it also holds that
�
G(N) ⊆ N , it follows that �G(N) ⊆ �G(N ′) ∩ N .

The following result states that algorithm PWCα is com-
plete for enforcing partial �-consistency on arbitrary QCNs:

Theorem 1. Given a not trivially inconsistent QCN N =
(V,C) of a relation algebra, a distributive subclass of re-
lations A of that relation algebra, a chordal graph G =
(V,E), and a bijection α : V → {0, 1, . . . , |V | − 1} such
that (α−1(|V | − 1),α−1(|V | − 2),. . .,α−1(0)) is a perfect
elimination ordering of G, algorithm PWCα returns (True,
�
G(N)) if �G(N) is not trivially inconsistent, and (False, N ′)
with N ′ ⊆ N otherwise.

Proof. Let N ′ = AG(N). Clearly, N ⊆ N ′. As N ′ is
defined over a distributed subclass of relations, by Propo-
sition 2 we have that, in line 3 of algorithm PWCα, algo-
rithm DPWC+ returns (False, N ′′) with N ′′ ⊆ N ′ if �G(N ′)
is trivially inconsistent, and (True, �G(N ′)) otherwise. By
monotonicity of �G-consistency we have that �G(N) ⊆ �G(N ′).
Thus, algorithm PWCα in line 5 returns (False, N) only if
�
G(N) is trivially inconsistent. Assuming that �G(N ′) is not

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1265

trivially inconsistent and the algorithm continues its execu-
tion, the operation �G(N ′) ∩ N is performed in lines 7–13
of algorithm PWCα. By Lemma 1 we have that �G(N) ⊆
�
G(N ′) ∩ N . Hence, if �G(N ′) ∩ N defines a trivially in-
consistent QCN, then �G(N) is trivially inconsistent. There-
fore, algorithm PWCα in line 9 returns (False, N) only if
�
G(N) is trivially inconsistent. Let M = �

G(N ′) ∩ N , and
further assume that M is not trivially inconsistent and the
algorithm continues its execution. M is a not trivially incon-
sistent QCN that results by tightening some of the constraints
of �G(N ′). Note also thatM⊆N ; hence, by monotonicity of
�
G-consistency we have that �G(M) ⊆ �G(N). In addition, as
we have already established that �G(N) ⊆M, by monotonic-
ity of �G-consistency we have that �G(�G(N)) ⊆ �G(M), and by
idempotence of �G-consistency it follows that �G(N)⊆ �G(M).
Consequently, we have that �G(N) = �G(M). Now, by utiliz-
ing the incremental functionality of algorithm PWC, we need
only feed the algorithm with the QCNM, the graph G, and
the set of edges that correspond to the tightened constraints
of �G(N ′) in order to obtain �G(M) (see [Gerevini, 2005, Sec-
tion 3]). Thus, by Proposition 3 we have that, in line 14 of
algorithm PWCα, algorithm PWC returns (True, �G(M)) if
�
G(M) is not trivially inconsistent, and (False,M′) withM′
⊆ M otherwise. Since �G(N) = �

G(M), we deduce that al-
gorithm PWCα returns (True, �G(N)) if �G(N) is not trivially
inconsistent, and (False, N ′′) with N ′′ ⊆ N otherwise.

Regarding time complexity, given a QCN N = (V,C) and
a graph G = (V,E) with a maximum vertex degree ∆, al-
gorithm PWCα runs in O(max{∆2|V |,∆|E||B|}) time, as
the run-times of DPWC+ and PWC are O(∆2|V |) [Long et
al., 2016] and O(∆|E||B|) [Chmeiss and Condotta, 2011]
respectively. In terms of the number of triangles t in G, and
assuming that |V | + |E| ∈ O(t), algorithm PWCα runs in
O(t|B|) time. However, depending on the percentage of dis-
tributive relations that are in the given QCNN and the quality
of the abstraction that is obtained with respect to a given dis-
tributive subclass of relations, algorithm DPWC+ (employed
in line 3 of algorithm PWCα) may diminish that run-time in
practice, as it runs in O(t) time [Long et al., 2016], which
is independent of the size of the set of base relations B. We
will explore the aforementioned implication by means of a
thorough experimental evaluation in the following section.

4 Experimental Evaluation
We evaluated the performance of an implementation of al-
gorithm PWCα, against an implementation of the state-of-
the-art generic algorithm for enforcing partial �-consistency
PWC, with a varied dataset of arbitrary QCNs of RCC-8.

Technical Specifications. The evaluation was carried out
on a computer with an Intel Core i7-2820QM processor
(which has a frequency of 2.30 GHz per CPU core), 8 GB
of RAM, and the Trusty Tahr x86 64 OS (Ubuntu Linux). All
algorithms were coded in Python and run using the standard
CPython 2.7 interpreter. Only one CPU core was used.

Datasets and Measures. We considered random scale-free
RCC-8 networks generated by the BA(n,m) model [Barabasi
and Albert, 1999], the use of which in qualitative constraint-
based reasoning is well motivated in [Sioutis et al., 2016b],

and random (unstructured) RCC-8 networks generated by the
A(n, d, l) model [Renz and Nebel, 2001], which has been
traditionally employed over the past decades in the litera-
ture. Each of the aforementioned models was enriched with
a parameter rd that allowed us to specify the percentage of
distributive relations we would like to have in our RCC-8
networks. In particular, we used the enriched BA(n,m, rd)
model to create random scale-free RCC-8 constraints graphs
of order n, with a preferential attachment value m, and with
rd% of distributive relations, and the enriched A(n, d, l, rd)
model to create random RCC-8 constraint graphs of order
n, with an average vertex degree d, with an average size of
relation per constraint l (which defaults to |B|/2 for model
BA(n,m, rd)), and with rd% of distributive relations. We
generated a total of 400 RCC-8 networks; more specifically,
we considered 10 satisfiable and 10 unsatisfiable RCC-8 net-
works for each of the models BA(n = 10 000,m = 2, rd) and
A(n = 1 000, d = 10.0, l = 4.0, rd), and for all values of rd
ranging from 0% to 90% with a step of 10%. Regarding dis-
tributive relations in particular, we considered the distributive
subclass D64

8 of RCC-8 [Li et al., 2015] as our selection pool
and as an input to algorithm PWCα. Satisfiability or other-
wise of our networks was guaranteed by the generic quali-
tative constraint-based reasoner GQR [Gantner et al., 2008;
Westphal et al., 2009]. Finally, the maximum cardinality
search algorithm [Tarjan and Yannakakis, 1984] was used to
obtain a variable elimination ordering α of a given QCN N
for PWCα, and a triangulation G of the constraint graph of
N based on α for both PWCα and PWC. We note that, with
respect to our evaluation, any perfect elimination orderings
and, hence, any respective chordal graphs would have been
adequate, as they would have affected all involved algorithms
proportionally and would not have qualitatively distorted the
obtained results. An overview of the use of chordal graphs in
the QSTR literature is presented in [Sioutis et al., 2016c].

Our evaluation involved two measures, which we describe
as follows. The first measure considers the number of con-
straint checks performed by an algorithm for enforcing par-
tial �-consistency. Given a QCN N = (V,C) and three vari-
ables vi, vk, vj ∈ V , a constraint check occurs when we com-
pute the relation r = C(vi, vj) ∩ (C(vi, vk) � C(vk, vj)) and
check if r ⊂ C(vi, vj), so that we can propagate its con-
strainedness if that condition is satisfied. The second mea-
sure concerns the CPU time and is strongly correlated with
the first one, as the run-time of any proper implementation of
an algorithm for enforcing partial �-consistency should rely
mainly on the number of constraint checks performed.

Results. The experimental results for random RCC-8 net-
works of models BA(n,m, rd) and A(n, d, l, rd) are presented
in Tables 1a and 1b respectively, where a fraction x

y denotes
that an approach required x seconds of CPU time and per-
formed y constraint checks on average per dataset of net-
works during its operation. Regarding satisfiable networks,
despite a rather sluggish performance of PWCα when 0%
of distributive relations were considered, in terms of being
around 20% slower on average than PWC, it caught up fast,
at around 20% of distributive relations, and constantly outper-
formed PWC from that point on, being nearly 80% faster on
average than PWC when 90% of distributive relations were

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1266

Table 1: Evaluation of the performance of algorithms PWC and PWCα

(a) Evaluation with random scale-free RCC-8 networks of model BA(n = 10 000,m = 2, rd)

min average µ max standard deviation σ

SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT

rd PWC PWCα PWC PWCα PWC PWCα PWC PWCα PWC PWCα PWC PWCα PWC PWCα PWC PWCα

0% 9.6s
15k

12.0s
33k

0.4s
996

2.7s
19k

12.0s
22k

14.5s
41k

1.0s
6k

3.6s
24k

16.4s
42k

18.2s
61k

2.6s
13k

5.8s
32k

1.8s
7k

1.8s
7k

0.7s
4k

0.9s
4k

10% 10.7s
17k

12.4s
34k

0.3s
27

0.7s
164

13.8s
26k

15.5s
43k

1.1s
5k

3.0s
21k

16.6s
35k

18.3s
50k

5.0s
22k

7.2s
38k

2.0s
5k

2.0s
5k

1.4s
7k

1.6s
9k

20% 13.4s
28k

13.4s
42k

0.3s
26

0.0s
229

16.2s
48k

16.2s
59k

2.1s
10k

3.7s
23k

19.1s
85k

18.8s
92k

9.8s
37k

14.5s
55k

1.6s
17k

1.7s
16k

2.8s
11k

3.7s
13k

30% 17.6s
38k

15.7s
48k

0.3s
145

0.1s
404

22.6s
66k

20.3s
70k

1.2s
9k

2.6s
20k

34.6s
145k

31.4s
136k

6.4s
35k

7.5s
47k

4.7s
30k

4.2s
24k

1.8s
13k

2.1s
14k

40% 18.4s
52k

15.0s
55k

0.3s
56

0.0s
323

22.7s
76k

18.5s
73k

2.1s
12k

2.1s
12k

30.0s
129k

24.9s
121k

15.1s
61k

12.4s
55k

4.1s
25k

3.6s
21k

4.4s
17k

3.6s
18k

50% 15.9s
54k

12.3s
53k

0.3s
333

0.0s
114

21.1s
87k

15.7s
77k

0.7s
7k

1.4s
13k

27.9s
171k

20.5s
136k

1.4s
15k

3.4s
36k

3.7s
39k

2.7s
28k

0.3s
4k

1.4s
15k

60% 22.4s
70k

14.4s
61k

0.3s
569

0.0s
242

27.5s
141k

18.5s
109k

1.6s
15k

1.1s
11k

40.2s
372k

29.3s
274k

4.6s
39k

3.0s
37k

5.1s
81k

4.2s
58k

1.5s
12k

1.2s
16k

70% 25.6s
85k

13.6s
64k

0.4s
2

0.0s
22

35.1s
171k

17.9s
103k

0.7s
7k

0.9s
9k

55.4s
309k

30.6s
173k

1.3s
17k

3.3s
42k

8.7s
74k

4.8s
34k

0.3s
5k

1.0s
15k

80% 26.5s
109k

10.6s
67k

0.3s
54

0.0s
69

32.7s
161k

13.1s
87k

0.5s
5k

0.2s
1k

36.7s
221k

15.2s
128k

1.3s
25k

0.5s
2k

3.0s
28k

1.5s
16k

0.3s
7k

0.2s
694

90% 21.1s
93k

5.9s
49k

0.3s
131

0.0s
221

35.2s
227k

8.9s
85k

0.5s
3k

0.2s
1k

42.1s
293k

12.9s
117k

0.7s
10k

0.4s
2k

5.7s
60k

2.0s
20k

0.1s
3k

0.2s
700

(b) Evaluation with random (unstructured) RCC-8 networks of model A(n = 1000, d = 10.0, l = 4.0, rd)

min average µ max standard deviation σ

SAT UNSAT SAT UNSAT SAT UNSAT SAT UNSAT

rd PWC PWCα PWC PWCα PWC PWCα PWC PWCα PWC PWCα PWC PWCα PWC PWCα PWC PWCα

0% 3.2s
11k

4.0s
15k

0.1s
373

0.8s
5k

3.4s
12k

4.2s
16k

0.6s
4k

1.3s
8k

3.7s
13k

4.5s
17k

1.3s
8k

2.1s
12k

0.1s
554

0.1s
546

0.4s
3k

0.5s
3k

10% 3.8s
15k

4.0s
18k

0.1s
301

0.0s
115

3.9s
16k

4.2s
20k

0.5s
4k

0.9s
6k

4.2s
19k

4.4s
22k

1.3s
9k

2.0s
13k

0.1s
1k

0.1s
1k

0.4s
3k

0.6s
4k

20% 3.9s
18k

4.1s
20k

0.1s
715

0.0s
52

4.3s
22k

4.4s
23k

0.6s
5k

0.9s
7k

4.6s
25k

4.5s
26k

1.4s
11k

2.1s
16k

0.2s
2k

0.1s
2k

0.4s
3k

0.6s
4k

30% 4.7s
24k

4.3s
23k

0.1s
529

0.0s
107

5.0s
29k

4.7s
27k

0.4s
3k

0.5s
5k

5.4s
34k

4.9s
31k

0.6s
6k

1.7s
16k

0.2s
3k

0.2s
2k

0.2s
2k

0.5s
5k

40% 4.9s
30k

4.2s
26k

0.2s
898

0.0s
89

5.6s
37k

4.6s
32k

0.7s
6k

0.4s
6k

6.1s
47k

5.0s
38k

1.6s
17k

0.9s
11k

0.3s
5k

0.3s
3k

0.4s
5k

0.4s
5k

50% 5.9s
41k

4.3s
32k

0.1s
338

0.0s
46

6.5s
51k

4.7s
39k

0.5s
6k

0.4s
6k

7.4s
67k

5.6s
51k

1.2s
18k

1.0s
14k

0.5s
9k

0.3s
6k

0.4s
6k

0.5s
6k

60% 6.7s
54k

4.2s
37k

0.2s
2k

0.0s
110

7.3s
63k

4.5s
42k

0.4s
4k

0.3s
4k

7.9s
75k

5.3s
51k

0.7s
10k

1.1s
18k

0.4s
7k

0.3s
4k

0.2s
3k

0.4s
6k

70% 7.6s
66k

3.8s
39k

0.1s
331

0.0s
16

8.8s
94k

4.5s
54k

0.4s
5k

0.2s
5k

10.5s
143k

5.4s
81k

1.5s
22k

1.2s
22k

1.0s
26k

0.6s
15k

0.4s
6k

0.4s
8k

80% 8.0s
78k

3.4s
42k

0.1s
289

0.0s
496

10.7s
128k

4.2s
63k

0.3s
3k

0.0s
2k

12.2s
162k

5.2s
80k

1.1s
15k

0.1s
4k

1.2s
24k

0.5s
11k

0.3s
4k

0.0s
1k

90% 8.3s
79k

2.3s
37k

0.1s
178

0.0s
141

11.0s
144k

3.0s
58k

0.4s
6k

0.0s
1k

14.8s
250k

5.0s
110k

0.9s
14k

0.1s
2k

1.9s
55k

0.7s
20k

0.3s
5k

0.0s
711

considered. The same trend held true, more or less, for un-
satisfiable networks, with the addition that the minimum time
for refuting unsatisfiable networks for PWCα was often sig-
nificantly less than that of PWC, which is explained by the
fact that PWCα may generally detect certain inconsistencies
at an earlier stage (see lines 5 and 9 in Algorithm 1).

5 Conclusion and Future Work
Partial �-consistency is an essential local consistency for
tackling fundamental reasoning problems associated with
qualitative constraint networks (QCNs), such as the problems
of satisfiability checking, minimal labeling, and redundancy.

We proposed a new algorithm for efficiently applying par-
tial �-consistency on arbitrary QCNs, that exploits the no-
tion of abstraction for QCNs, utilizes certain properties of
partial �-consistency, and adapts the functionalities of some
state-of-the-art algorithms to its design. The evaluation that
we conducted with QCNs of the Region Connection Calcu-
lus showed the usefulness and efficiency of our method. For
future work, we would like to obtain a variation of our algo-
rithm for efficiently enforcing singleton partial �-consistency
(i.e., partial ◆-consistency [Amaneddine et al., 2013]) on ar-
bitrary QCNs, which is an important local consistency for
solving the minimal labeling problem, in particular, of QCNs.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1267

References
[Allen, 1983] James F. Allen. Maintaining Knowledge about

Temporal Intervals. Commun. ACM, 26:832–843, 1983.
[Amaneddine et al., 2013] Nouhad Amaneddine, Jean-

François Condotta, and Michael Sioutis. Efficient
Approach to Solve the Minimal Labeling Problem of
Temporal and Spatial Qualitative Constraints. In IJCAI,
2013.

[Balbiani et al., 2002] Philippe Balbiani, Jean-François
Condotta, and Luis Fariñas del Cerro. Tractability Results
in the Block Algebra. J. Log. Comput., 12:885–909, 2002.

[Barabasi and Albert, 1999] A.-L. Barabasi and R. Albert.
Emergence of scaling in random networks. Science,
286:509–512, 1999.

[Bhatt et al., 2011] Mehul Bhatt, Hans W. Guesgen, Stefan
Wölfl, and Shyamanta Moni Hazarika. Qualitative Spatial
and Temporal Reasoning: Emerging Applications, Trends,
and Directions. Spatial Cognition & Computation, 11:1–
14, 2011.

[Chmeiss and Condotta, 2011] Assef Chmeiss and Jean-
Francois Condotta. Consistency of Triangulated Temporal
Qualitative Constraint Networks. In ICTAI, 2011.

[Cousot and Cousot, 1992] Patrick Cousot and Radhia
Cousot. Abstract Interpretation Frameworks. J. Log.
Comput., 2:511–547, 1992.

[Dylla et al., 2013] Frank Dylla, Till Mossakowski, Thomas
Schneider, and Diedrich Wolter. Algebraic Properties of
Qualitative Spatio-Temporal Calculi. In COSIT, 2013.

[Frank, 1991] Andrew U. Frank. Qualitative Spatial Reason-
ing with Cardinal Directions. In ÖGAI, 1991.

[Gantner et al., 2008] Zeno Gantner, Matthias Westphal, and
Stefan Wölfl. GQR-A Fast Reasoner for Binary Qualita-
tive Constraint Calculi. In AAAI Workshop on Spatial and
Temporal Reasoning, 2008.

[Gerevini, 2005] Alfonso Gerevini. Incremental qualitative
temporal reasoning: Algorithms for the point algebra and
the ord-horn class. Artif. Intell., 166(1-2):37–80, 2005.

[Golumbic and Shamir, 1993] Martin Charles Golumbic and
Ron Shamir. Complexity and Algorithms for Reason-
ing about Time: A Graph-Theoretic Approach. J. ACM,
40:1108–1133, 1993.

[Huang, 2012] Jinbo Huang. Compactness and its implica-
tions for qualitative spatial and temporal reasoning. In KR,
2012.

[Li et al., 2015] Sanjiang Li, Zhiguo Long, Weiming Liu,
Matt Duckham, and Alan Both. On redundant topologi-
cal constraints. Artif. Intell., 225:51–76, 2015.

[Ligozat and Renz, 2004] Gérard Ligozat and Jochen Renz.
What Is a Qualitative Calculus? A General Framework. In
PRICAI, 2004.

[Ligozat, 1998] Gerard Ligozat. Reasoning about cardinal
directions. J. Vis. Lang. Comput., 9:23–44, 1998.

[Long and Li, 2015] Zhiguo Long and Sanjiang Li. On Dis-
tributive Subalgebras of Qualitative Spatial and Temporal
Calculi. In COSIT, 2015.

[Long et al., 2016] Zhiguo Long, Michael Sioutis, and San-
jiang Li. Efficient Path Consistency Algorithm for Large
Qualitative Constraint Networks. In IJCAI, 2016.

[Nebel, 1997] Bernhard Nebel. Solving Hard Qualitative
Temporal Reasoning Problems: Evaluating the Efficiency
of Using the ORD-Horn Class. Constraints, 1:175–190,
1997.

[Randell et al., 1992] David A. Randell, Zhan Cui, and An-
thony Cohn. A Spatial Logic Based on Regions & Con-
nection. In KR, 1992.

[Renz and Ligozat, 2005] Jochen Renz and Gérard Ligozat.
Weak Composition for Qualitative Spatial and Temporal
Reasoning. In CP, 2005.

[Renz and Nebel, 2001] Jochen Renz and Bernhard Nebel.
Efficient Methods for Qualitative Spatial Reasoning. J.
Artif. Intell. Res., 15:289–318, 2001.

[Renz and Nebel, 2007] Jochen Renz and Bernhard Nebel.
Qualitative Spatial Reasoning Using Constraint Calculi. In
Handbook of Spatial Logics, pages 161–215. 2007.

[Renz, 2002] Jochen Renz. A Canonical Model of the Re-
gion Connection Calculus. J. Appl. Non-Classical Logics,
12:469–494, 2002.

[Sioutis et al., 2015] Michael Sioutis, Sanjiang Li, and Jean-
François Condotta. Efficiently Characterizing Non-
Redundant Constraints in Large Real World Qualitative
Spatial Networks. In IJCAI, 2015.

[Sioutis et al., 2016a] M. Sioutis, Z. Long, and S. Li. Ef-
ficiently Reasoning about Qualitative Constraints through
Variable Elimination. In SETN, 2016.

[Sioutis et al., 2016b] Michael Sioutis, Jean-François Con-
dotta, and Manolis Koubarakis. An Efficient Approach for
Tackling Large Real World Qualitative Spatial Networks.
Int. J. Artif. Intell. Tools, 25:1–33, 2016.

[Sioutis et al., 2016c] Michael Sioutis, Yakoub Salhi, and
Jean-François Condotta. Studying the use and effect of
graph decomposition in qualitative spatial and temporal
reasoning. Knowl. Eng. Rev., 32:e4, 2016.

[Tarjan and Yannakakis, 1984] R. E. Tarjan and M. Yan-
nakakis. Simple Linear-Time Algorithms to Test Chordal-
ity of Graphs, Test Acyclicity of Hypergraphs, and Selec-
tively Reduce Acyclic Hypergraphs. SIAM J. Comput.,
13:566–579, 1984.

[Tarski, 1941] Alfred Tarski. On the calculus of relations. J.
Symb. Log., 6:73–89, 1941.

[Vilain and Kautz, 1986] Marc B. Vilain and Henry A.
Kautz. Constraint Propagation Algorithms for Temporal
Reasoning. In AAAI, 1986.

[Westphal et al., 2009] Matthias Westphal, Stefan Wölfl, and
Zeno Gantner. GQR: A Fast Solver for Binary Qualita-
tive Constraint Networks. In AAAI Spring Symposium on
Benchmarking of QSTR Systems, 2009.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1268

