
Efficient Inference and Computation of Optimal Alternatives for Preference
Languages Based On Lexicographic Models

Nic Wilson, Anne-Marie George
Insight Centre for Data Analytics, School of Computer Science and IT

University College Cork, Ireland
{nic.wilson, annemarie.george}@insight-centre.org

Abstract
We analyse preference inference, through consis-
tency, for general preference languages based on
lexicographic models. We identify a property,
which we call strong compositionality, that applies
for many natural kinds of preference statement, and
that allows a greedy algorithm for determining con-
sistency of a set of preference statements. We also
consider different natural definitions of optimality,
and their relations to each other, for general pref-
erence languages based on lexicographic models.
Based on our framework, we show that testing con-
sistency, and thus inference, is polynomial for a
specific preference language L′pqT , which allows
strict and non-strict statements, comparisons be-
tween outcomes and between partial tuples, both
ceteris paribus and strong statements, and their
combination. Computing different kinds of optimal
sets is also shown to be polynomial; this is backed
up by our experimental results.

1 Introduction
Preferences are considered in many different fields such
as recommender systems and human-computer interac-
tion [Chen and Pu, 2007; Trabelsi et al., 2013],
databases [Agrawal and Wimmers, 2000; Kießling, 2002] and
multi-objective decision making and social choice [Arrow
and Raynaud, 1986; Lang, 2002; Sandholm and Boutilier,
2006]. They are used to, e.g., find optimal decisions, solu-
tions or items that satisfy the wishes or needs of a user or
a group. In order to reason with preferences, typically as-
sumptions are made on the form of the relation used to model
the user preferences. In this paper we restrict our consider-
ations to lexicographic models, and we consider preference
inference, which involves reasoning about the the whole set
of preference models that are consistent with the input prefer-
ences, as in [Kohli and Jedidi, 2007; Wilson, 2014]; this con-
trasts with work that focuses on learning one lexicographic
model that fits best with the given preferences [Booth et al.,
2010; Bräuning and Hüllermeier, 2012; Dombi et al., 2007;
Yaman et al., 2010].

Preference inference aims to overcome gaps of knowledge
in the user preferences by analysing the given preferences

and deciding whether another preference statement can be de-
duced. Since in this paper we allow negations of statements,
preference inference can be reduced to testing consistency of
a set of preference statements. We define a property, strong
compositionality, that is satisfied by many natural types of
preference statements and enables a simple greedy algorithm
for testing consistency.

Fast computation is essential in many applications; we give
a concrete instance L′pqT of a preference language that allows
polynomial computation. This can represent a relatively ex-
pressive form of preference input. It can express preferences
between a pair of complete assignments to a set of variables,
and, more generally, between partial assignments to just a
subset of the variables, allowing ceteris paribus assumptions
or stronger implications on the values of other variables. We
also allow non-strict statements, two forms of strict prefer-
ence statements and can represent certain negated statements.

Previous work on preference inference based on standard
lexicographic models have considered more restricted prefer-
ence languages. Wilson [2014] considered only non-negated
non-strict statements, which can only express that one assign-
ment is at least as good as another (or equivalent). Kohli
and Jedidi [2007] considers only non-negated strict state-
ments, which can only express that one complete assignment
is strictly better than another. In [Wilson et al., 2015a], pref-
erence statements are comparisons of complete assignments,
and fixed value orders for the variables are given.

Other work on preference inference includes that based on
weighted sum models [Wilson et al., 2015b; Montazery and
Wilson, 2016], on hierarchical models [Wilson et al., 2015a],
conditional lexicographic models [Wilson, 2009]; Pareto or-
ders [George and Wilson, 2016], and on general strict total
orders, as in e.g., work on conditional preference structures
such as [Boutilier et al., 2004]. While lexicographic models
prevent tradeoffs between variables, they usually allow better
complexity results for general preference languages.

Given a set of preference inputs and a set of alternatives,
there are several natural notions of optimal set; for instance
being undominated with respect to the induced preference re-
lation; or being possibly optimal, i.e., optimal in at least one
model. We establish relationships between the different no-
tions of optimality. For preference language L′pqT , we anal-
yse the running times and set relations theoretically and ex-
perimentally, illustrating the efficiency of the algorithms.
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The paper is organised as follows: Section 2 gives ba-
sic definitions. The concepts of inference, consistency and
strongly compositional statements are investigated in Sec-
tion 3. Section 4 introduces languages LpqT and L′pqT and
an algorithm to decide consistency in this context. In Sec-
tion 5, different notions of optimality are compared for gen-
eral preference languages together with a discussion of com-
putational methods and complexity results for L′pqT . The last
section concludes. A longer version of this paper including
proofs and additional comments can be found under [Wilson
and George, 2017].

2 Lex Models, Composition and Extension
In this section, we give some basic definitions; in particular,
we define lexicographic models, along with a natural compo-
sition operation and extension relation, that are important in
our approach. A lexicographic model has an associated or-
dering of (some of the) variables, along with value orderings
for each such variable. This generates a (lexicographic) or-
dering relation, by first comparing outcomes α and β on the
first (i.e., most important) variable Y ; only if α(Y ) = β(Y )
is the next most important variable considered.

Throughout the paper we consider a fixed set V of n vari-
ables, where for each X ∈ V , D(X) is the set of pos-
sible values of X . For subset of variables A ⊆ V let
A =

∏
X∈AD(X) be the set of possible assignments to A.

For X ∈ V , we abbreviate {X} to X (which is essentially
D(X)). An outcome is an element of V , i.e., an assign-
ment to all the variables. For outcome α and subset U of
V , we define α(U) to be the tuple in U generated by pro-
jecting (i.e., restricting) α to U . These definitions describe
a decision scenario over a set of alternatives given by dif-
ferent features. Consider for example the choice between
different flight connections. A set of variables to describe
the flight connections could be V = {airline, time, class}.
The variable domains are then given by D(airline) =
airline = {KLM ,LAN }, D(time) = {day ,night} and
D(class) = {economy , business}. Then projection of the
outcome α = (KLM , day , economy) to the variables U =
{airline, class} is given by α(U) = (KLM , economy).

Define G to be the set of lexicographic models (over the
set of variables V ); a lexicographic model or lex model, π
(over V ), is defined to be a (possibly empty) sequence of the
form (Y1,≥Y1

), . . . , (Yk,≥Yk
), where Yi (i = 1, . . . , k) are

different variables in V , and each ≥Yi is a total order on Yi.
The associated relation <π ⊆ V ×V is defined as follows: for
outcomes α and β, α <π β if and only if either (i) for all i =
1, . . . , k, α(Yi) = β(Yi); or (ii) there exists i ∈ {1, . . . , k}
such that for all j < i, α(Yj) = β(Yj) and α(Yi) >Yi β(Yi)
(i.e., α(Yi) ≥Yi β(Yi) and α(Yi) 6= β(Yi)). Thus <π is a
total pre-order on V , which is a total order if k = n = |V |.

The corresponding strict relation �π is given by α �π β
if and only if there exists i ∈ {1, . . . , k} such that α(Yi) >Yi

β(Yi) and for all j < i, α(Yj) = β(Yj). The corresponding
equivalence relation ≡π is given by α ≡π β if and only if for
all i = 1, . . . , k, α(Yi) = β(Yi). Thus, α ≡π β if and only
if α(Vπ) = β(Vπ), where Vπ = {Y1, . . . , Yk} is set of the
variables involved in π. Consider lexicographic models π =

(airline,KLM > LAN ), (time, day > night) and π′ =
(class , economy > business), (time,night > day) for the
previous example of flight connections. In π the choice of air-
line decides which connection is preferred; only if these are
the same, is the flight time considered. π′ first compares the
classes; only if these are the same, are the flight times con-
sidered. For outcomes α = (KLM , day , economy), β =
(KLM ,night , business) and γ = (LAN , day , economy)
we have α �π β �π γ and α ≡π′ γ �π′ β.
Composition of lexicographic models: We define an im-
portant composition operation on lex models, which can be
shown to be associative. Let π = (Y1,≥Y1

), . . . , (Yk,≥Yk
),

and π′ = (Z1,≥Z1), . . . , (Zl,≥Zl
) be two lexicographic

models. Let π′′ be the sequence π′ but where pairs (Zi,≥Zi)
are omitted if Zi ∈ Vπ . Define lex model π ◦ π′ to be π
followed by π′′. Note that Vπ◦π′ = Vπ ∪ Vπ′ .
Definition 1 For lex models π and π′ in G we say that π′
extends π if π′ 6= π and the sequence π′ begins with π. We
then write π′ A π, and write π′ w π to mean that π′ extends
or equals π. This holds if and only if there exists a lex model
π′′ such that π′ = π ◦ π′′.

The composition of the two previously defined lex mod-
els is π ◦ π′ = (airline,KLM > LAN ), (time, day >
night), (class , economy > business) and π ◦ π′ w π.

3 Lexicographic Inference and Strongly
Compositional Preference Statements

In this section we define lexicographic inference, which can
also be expressed in terms of (lexicographic) consistency. We
define a notion of strong compositionality, and show that this
property enables a greedy algorithm for checking consistency,
and hence for preference inference. More specifically, a pref-
erence statement ϕ is strongly compositional if the composi-
tion of two lex models satisfies ϕ whenever the second and
some extension of the first satisfy ϕ.

Throughout this section, we assume some language L, and
satisfaction relation |=⊆ G×L. Here, the language L is a set
of preference statements and the relation |= describes when
a lex model satisfies a statement. For example, we can con-
sider the simple language LO = {α ≥ β | α, β ∈ V } with
the satisfaction relation π |= α ≥ β ⇔ α <π β as described
in the previous section. We extend the satisfaction relation to
subsets Γ of L in the usual way: for Γ ⊆ L, define π |= Γ
⇐⇒ π |= ϕ for each ϕ ∈ Γ. If π |= Γ then we say that
π satisfies Γ, or π is a [lexicographic] model of Γ (and sim-
ilarly, for a single preference statement ϕ). We say that Γ is
consistent, if there exists some π ∈ G satisfying Γ; otherwise,
Γ is inconsistent. We will sometimes use negations of pref-
erence statements: when necessary we can always extend the
language L and the relation |=, by defining π |= ¬ϕ ⇐⇒
π 6|= ϕ, when ϕ ∈ L.

A key problem is to determine if a set Γ ⊆ L of preference
statements is consistent. We will derive methods for deter-
mining this in Section 3.3.

Some Basic Preference Statements
For outcomes α, β ∈ V , we can define preference statements
α ≥ β and α > β, where we define π |= α ≥ β ⇐⇒
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α <π β, and π |= α > β ⇐⇒ α �π β. We also define
preference statement α ≡ β, with π |= α ≡ β ⇐⇒ α ≡π β,
which is if and only if π |= α ≥ β and π |= β ≥ α.

We have that π |= α ≥ β ⇐⇒ π 6|= β > α, i.e.,
π |= ¬(β > α). So α ≥ β and ¬(β > α) are equivalent
preference statements, in that they are satisfied by exactly the
same set of lex models. Similarly, α > β and ¬(β ≥ α) are
equivalent preference statements.

Consider the example of lex models π, π′ and outcomes
α, β, γ as before. Then π |= α ≥ β and thus π 6|= β > α.
Also, π′ |= α ≡ γ, i.e., π′ |= α ≥ γ and π′ |= γ ≥ α.

3.1 Lexicographic Inference
We define the lexicographic inference relation Γ |= ϕ ⇐⇒
π |= ϕ for all π ∈ G such that π |= Γ. For instance, we have,
for Γ ⊆ L and α, β ∈ V , Γ |= α ≥ β ⇐⇒ α <π β holds
for all π ∈ G such that π |= Γ. Similarly, Γ |= α > β ⇐⇒
α �π β holds for all π ∈ G such that π |= Γ.

Lexicographic inference can be reduced to checking con-
sistency, since we have Γ |= ϕ ⇐⇒ Γ ∪ {¬ϕ} is in-
consistent; and Γ |= ¬ϕ ⇐⇒ Γ ∪ {ϕ} is inconsistent.
Thus, Γ |= α ≥ β ⇐⇒ Γ ∪ {β > α} is inconsistent; and
Γ |= α > β ⇐⇒ Γ ∪ {β ≥ α} is inconsistent.

Consider flight connections as before. Let Γ be the set of
statements {α > β, β ≥ γ}with α, β, γ defined as in the pre-
vious section. Then the lex model π satisfies Γ, π |= Γ, and
thus Γ is consistent. In fact, the only preference models that
satisfy Γ are: π = (airline,KLM > LAN ), (time, day >
night), π′′ = (airline,KLM > LAN ), (class , economy >
business), and any extension of either of these two models.
Thus for δ = (LAN ,night , business), Γ |= γ > δ.

The Induced Relation |=∗ and Maximal Models
From the relation |= we also define the derived relation |=∗
as follows, where π ∈ G and ϕ ∈ L: π |=∗ ϕ if and only if
there exists π′ ∈ G either extending or equalling π such that
π′ |= ϕ. Thus, π |=∗ ϕ holds either if π satisfies ϕ or some
extension of π satisfies ϕ. We extend the relation to sets of
statements in the usual way: for Γ ⊆ L, define π |=∗ Γ if and
only if π |=∗ ϕ holds for every ϕ ∈ Γ. The following lemma
follows easily from the definitions.
Lemma 1 Let π, π′ ∈ G and Γ ⊆ L.

(i) π |= Γ⇒ π |=∗ Γ.
(ii) Suppose that π′ extends π. Then π′ |=∗ Γ⇒ π |=∗ Γ.

Definition 2 We say that π ∈ G is a maximal model of Γ if
π |= Γ and for all lex models π′ extending π we have π′ 6|= Γ.

Clearly, for π ∈ G such that π |= Γ, either π is a maximal
model of Γ or there exists a maximal model of Γ that extends
π. Thus, if Γ is consistent there exists a maximal model of Γ.
Analogously, we define a maximal |=∗-model of Γ to be an
element π ∈ G such that (i) π |=∗ Γ and (ii) there does not
exist π′ extending π with π′ |=∗ Γ.

Consider preference statements Γ relating to flight connec-
tions α, β, γ as before. The lex model (airline,KLM >
LAN ) satisfies (airline,KLM > LAN ) |=∗ Γ.
The model (airline,KLM > LAN ), (time, day >
night), (class , business > economy) is a maximal model
of Γ (and a maximal |=∗-model of Γ).

3.2 Compositional and Strongly Compositional
Preference Statements

We formulate a pair of properties of preference statements
that have strong implications regarding lexicographic infer-
ence and optimality.

Definition 3 ((Strongly) Compositional) Let ϕ ∈ L. We
say that ϕ is compositional if for all π, π′ ∈ G,
π |= ϕ and π′ |= ϕ implies π ◦ π′ |= ϕ.

We say that ϕ is strongly compositional if for all π, π′ ∈ G,
π |=∗ ϕ and π′ |= ϕ implies π ◦ π′ |= ϕ.

For Γ ⊆ L, we define Γ to be compositional if every element
of Γ is compositional. Similarly, we say that Γ is strongly
compositional if every element of Γ is strongly compositional.

Instances of Strongly Compositional Statements
Although being strongly compositional might appear to be
quite a restrictive assumption, it turns out that it is satisfied by
many natural preference statements, as illustrated by the next
proposition. First, we give a lemma which, roughly speaking,
states that the property of being [strongly] compositional is
closed under conjunction.

Lemma 2 Let Γ ⊆ L and let ψ ∈ L. Suppose that ψ is such
that for all π ∈ G, π |= ψ ⇐⇒ π |= Γ. If Γ is compositional
then ψ is compositional. If Γ is strongly compositional then ψ
is strongly compositional and, for all π ∈ G, [π |=∗ ψ ⇐⇒
π |=∗ Γ and Γ is consistent].

Proposition 1 For any outcomes, α, β ∈ V , statements α ≥
β and α > β are strongly compositional, and, for π ∈ G,
π |=∗ α ≥ β ⇐⇒ π |= α ≥ β. Also, if α 6= β, π |=∗ α > β
⇐⇒ π |= α ≥ β.

In addition, given R ⊆ V × V , let ϕR be some statement
satisfying: π |= ϕR if and only if <π⊇ R. Then ϕR is
strongly compositional, and, for any π ∈ G, we have π |=∗
ϕR ⇐⇒ π |= ϕR

Here, the second half of Proposition 1 follows from the first
using Lemma 2. Further important examples of strongly com-
positional statements will be discussed in Section 4.

A Characterisation of Consistency for Strongly
Compositional Γ

The definitions immediately imply the following.

Lemma 3 Let Γ ⊆ L, and let π, π′ ∈ G.

• If Γ is strongly compositional then it is compositional.

• If Γ is compositional then π |= Γ and π′ |= Γ imply
π ◦ π′ |= Γ.

• If Γ is strongly compositional then π |=∗ Γ and π′ |= Γ
imply π ◦ π′ |= Γ.

The last point implies that, for strongly compositional and
consistent Γ, if π |=∗ Γ then there exists a model of Γ either
equalling or extending π. In fact we have:

Lemma 4 Suppose that Γ is strongly compositional, and let
π be an element of G. Then [there exists π′ ∈ G with π′ w π
and π′ |= Γ] if and only if [Γ is consistent and π |=∗ Γ].
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Suppose that π′ satisfies strongly compositional Γ and that π
is a maximal |=∗-model of Γ. Since we have π ◦ π′ |=∗ Γ
(because we have π ◦ π′ |= Γ) and π ◦ π′ w π, then the
maximality of π implies that π = π◦π′, and thus, π |= Γ. We
also have that Vπ ⊇ Vπ′ . This implies the following theorem
and corollary:

Theorem 1 If Γ is consistent and strongly compositional
then every maximal |=∗-model of Γ satisfies Γ. Also, if π
and π′ are two maximal |=∗-models of Γ then Vπ = Vπ′ .

Corollary 1 Let π be any maximal |=∗-model of strongly
compositional Γ. Then Γ is consistent if and only if π |= Γ.

3.3 Checking Consistency of a Set of Strongly
Compositional Preferences

Corollary 1 shows that we can test consistency of strongly
compositional Γ, by finding any maximal |=∗-model π of it,
and checking if π satisfies Γ. In this section we show how a
maximal |=∗-model of Γ can be constructed iteratively, start-
ing from the empty model {}. We first check if {} |=∗ Γ. The
following lemma shows that this is equivalent to Γ being |=∗-
consistent, which is a very weak property, i.e., it just requires
that each element of Γ is (individually) consistent.

Lemma 5 Let Γ ⊆ L. Γ is |=∗-consistent (i.e., there exists
some π ∈ G with π |=∗ Γ) if and only if, for each ϕ ∈ Γ, ϕ is
consistent. This also holds if and only if {} |=∗ Γ.

We say that π′ minimally extends π if π′ extends π and
|Vπ′ | = |Vπ| + 1, i.e., π′ involves one more variable than
π. The next lemma implies that in building a maximal |=∗-
model, we only need consider adding one variable at a time.

Lemma 6 π is a maximal |=∗-model of Γ if and only if
π |=∗ Γ and there exists no π′ minimally extending π such
that π′ |=∗ Γ.

Starting with the empty model we grow a maximal |=∗-
model of Γ, by (iteratively) replacing the model with one min-
imally extending it and still |=∗-satisfying Γ, if such a model
exists. Otherwise, we have a maximal |=∗-model π of Γ. By
Corollary 1, we can test if Γ is consistent by checking π |= Γ.

For bounded domain size, testing consistency of strongly
compositional Γ can be performed with polynomial number
of tests of the form π |= ϕ or π |=∗ ϕ. For this algorithm
to be efficient we need that each preference statement allows
efficient tests of π |= ϕ and π |=∗ ϕ. In Section 4 we define
languages that satisfy these properties.

4 Preference Languages LpqT and L′
pqT

Here we show that certain relatively expressive compact pref-
erence languages are strongly compositional. This includes
forms of the statements ϕR from Proposition 1, where R is a
set of pairs of outcomes. In many natural situations, R can be
exponentially large; in the languages discussed here, we are
able to express certain exponentially large sets R compactly.

4.1 The Language LpqT
We will consider preference statements of the form p�q ‖ T ,
where � is either ≥, or� or >, and P , Q and T are subsets

of V , with (P ∪ Q) ∩ T = ∅, and p ∈ P is an assignment
to P , and q ∈ Q is an assignment to Q. The statement p � q
‖ T represents that p is preferred to q if T is held constant,
i.e., any outcome α extending p is preferred to any outcome
β that extends q and agrees with α on variables T . Formally,
the semantics of this statement relates to the set ϕ∗ which is
defined to be the set of pairs (α, β) of outcomes such that
α extends p, and β extends q, and α and β agree on T , i.e.,
α(T ) = β(T ).

Statements of the form p ≥ q ‖ T are called non-strict;
statements of the form p � q ‖ T , are called fully strict, and
statements of the form p > q ‖ T are called weakly strict.

Let LpqT be the set of all preference statements ϕ of the
form p�q ‖ T , as defined above. For any statement ϕ ∈ LpqT
equalling p� q ‖ T , we define ϕ(≥) to be p ≥ q ‖ T , the non-
strict version of ϕ. For lex model π, we define:

• π satisfies ϕ(≥) if α <π β for all (α, β) ∈ ϕ∗.
• π satisfies fully strict ϕ if α �π β for all (α, β) ∈ ϕ∗.

• π satisfies weakly strict ϕ if π satisfies ϕ(≥) and if α �π
β for some (α, β) ∈ ϕ∗.

For outcomes α and β, a non-strict preference of α over β
can be represented as α ≥ β ‖ ∅, which is equivalent to the
preference statement α ≥ β introduced in Section 3, so we
abbreviate it to that. Similarly, we abbreviate α > β ‖ ∅ to
α > β (which is also equivalent to α� β ‖ ∅).

We can write a statement ϕ ∈ LpqT as ur� us ‖ T , where
u ∈ U , r ∈ R, s ∈ S, and U , T and R ∪ S are (possibly
empty) mutually disjoint subsets of V , and for allX ∈ R∩S,
r(X) 6= s(X). For such a representation, we write uϕ = u,
rϕ = r, sϕ = s, Uϕ = U , Rϕ = R, Sϕ = S and Tϕ = T .
We assume, without loss of generality, that if |X| = 1 then
X ∈ Tϕ. This ensures that such a representation is unique.
We also define Wϕ = V − (Rϕ ∪ Sϕ ∪ Tϕ ∪ Uϕ).

As discussed in [Wilson, 2009] (which, however, just con-
siders non-strict statements), this is a relatively expressive
preference language. As well as preferences between out-
comes, preferences between partial tuples can be expressed.
Ceteris paribus statements can be expressed by using ϕ with
Wϕ = ∅. More generally, any variables in Wϕ are forced to
be less important than variables in Rϕ and Sϕ.

The following result characterises when a lex model satis-
fies a non-strict preference statement in LpqT .

Proposition 2 Let ϕ be a non-strict element of LpqT (so that
ϕ = ϕ(≥)), which we write as uϕrϕ ≥ uϕsϕ ‖ Tϕ. Let
π ∈ G be the model (Y1,≥1), . . . , (Yk,≥k). Let i be the
smallest index such that Yi ∈ Rϕ ∩ Sϕ, or let i = k + 1 if
Rϕ ∩ Sϕ ∩ Vπ = ∅. Then, π |= ϕ if and only if (i) rϕ(Yi) >i
sϕ(Yi) if Rϕ ∩ Sϕ ∩ Vπ 6= ∅, and (ii) for all j < i,

(a) Yj /∈Wϕ;

(b) if Yj ∈ Rϕ \ Sϕ then for all y ∈ Yj , rϕ(Yj) ≥j y, i.e.,
rϕ(Yj) is the best value of Yj; and

(c) if Yj ∈ Sϕ \ Rϕ then for all y ∈ Yj , y ≥j sϕ(Yj), i.e.,
sϕ(Yj) is the worst value of Yj .

In particular, if Vπ ⊆ Tϕ ∪ Uϕ then π |= ϕ.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1314



The next result gives the extra conditions required for satisfy-
ing strict statements.

Proposition 3 Let ϕ ∈ LpqT and π ∈ G. Then:

• if ϕ is a fully strict statement then π |= ϕ if and only if
π |= ϕ(≥) and Rϕ ∩ Sϕ ∩ Vπ 6= ∅;
• if ϕ is a weakly strict statement then π |= ϕ if and only

if π |= ϕ(≥) and (Rϕ ∪ Sϕ) ∩ Vπ 6= ∅.
Proposition 1 can be seen to imply that the non-strict ele-

ments of the language LpqT are strongly compositional. In
fact this also holds for both kinds of strict statements and cer-
tain negations.

Theorem 2 Consider any ϕ ∈ LpqT . Then ϕ is strongly
compositional and π |=∗ ϕ if and only if π |= ϕ(≥). If ϕ
is non-strict then ¬ϕ is compositional; if also, Rϕ = Sϕ then
¬ϕ is strongly compositional, and π |=∗ ¬ϕ if and only if
either π |= ¬ϕ or Vπ ∩ Sϕ = ∅.

4.2 Checking Consistency for Subsets of L′pqT
Theorem 2 suggests the feasibility of checking consis-
tency of subsets of the language L′pqT , which is LpqT
with certain negated statements also included. For-
mally, define L′pqT to be the union of LpqT with
{¬ϕ : ϕ ∈ LpqT , ϕ non-strict, and Rϕ = Sϕ}.

We use the method of Section 3.3 to determine the con-
sistency of a set of preference statements Γ ⊆ L′pqT , by in-
crementally extending a maximal |=∗-model π of Γ, and then
checking whether or not π |= Γ holds; this makes use of
Propositions 2 and 3.

Let Γ ⊆ L′pqT , let X ∈ V and let π ∈ G. We make the
following definitions, where Γ is the set of all ϕ ∈ Γ ∩ LpqT
such that Rϕ ∩ Sϕ ∩ Vπ = ∅.

• BestπΓ(X) = {rϕ(X) : ϕ ∈ Γ & X ∈ Rϕ \ Sϕ}.

• WorstπΓ(X) = {sϕ(X) : ϕ ∈ Γ & X ∈ Sϕ \Rϕ}.
• PairsπΓ(X) = PosπΓ(X) ∪ NegπΓ(X), where

PosπΓ(X) = {(rϕ(X), sϕ(X)) : ϕ ∈ Γ & X ∈ Rϕ ∩ Sϕ};
and NegπΓ(X) is the set of all pairs (sϕ(X), rϕ(X)) such that
¬ϕ ∈ Γ and Tϕ ∪ Uϕ ⊇ Vπ , and X ∈ Rϕ(= Sϕ).

Given Γ and π ∈ G with π |=∗ Γ, we say that X can be
chosen next if: X ∈ V − Vπ and

• if ϕ ∈ Γ ∩ LpqT and Rϕ ∩ Sϕ ∩ Vπ = ∅ then X /∈Wϕ;

• PairsπΓ(X) is acyclic;

• |BestπΓ(X)| ≤ 1 and |WorstπΓ(X)| ≤ 1;

• if x ∈ BestπΓ(X) then x is undominated in PairsπΓ(X),
i.e., there exists no element of the form (x′, x) in
PairsπΓ(X);

• if x ∈ WorstπΓ(X) then x is not dominating in
PairsπΓ(X), i.e., there exists no element of the form
(x, x′) in PairsπΓ(X).

We also say that (X,≥X) is a valid extension of π if (i) X
can be chosen next; and (ii) ≥X ⊇ PairsπΓ(X); (iii) if x ∈
BestπΓ(X) then x is the best element in X with respect to ≥X

(so that x ≥ y for all y ∈ X); and (iv) if x′ ∈ WorstπΓ(X)
then x′ is the worst element in X with respect to ≥X .

The following result states the conditions needed for mini-
mally extending π to maintain the |=∗-satisfaction of Γ.

Proposition 4 Suppose that Γ ⊆ L′pqT , and that π |=∗ Γ.
Let X be a variable in V − Vπ and let π′ = π ◦ (X,≥X),
where ≥X is a total ordering on X . Then π′ |=∗ Γ if and
only if (X,≥X) is a valid extension of π.

In summary, at each stage of the incremental algorithm we
see if there is a variable X that can be chosen next, and if
so, generate a valid extension; if not, we then have generated
a maximal |=∗-model π of Γ. We check consistency of Γ by
determining if π satisfies Γ. Using the fact that |PairsπΓ(X)| ≤
|Γ|, it can be shown that the overall complexity of checking
that Γ (⊆ L′pqT ) is consistent is O(|V |2|Γ|).

5 Optimality with Respect to Sets of
Compositional Preference Statements

We consider a finite set of alternatives A ⊆ V , and we as-
sume that we have elicited a set Γ of preference statements;
we would like to find the optimal alternatives among A. As
we will see, there are several natural definitions of optimal
[Gelain et al., 2010; Wilson and O’Mahony, 2011]. We com-
pare some of these and analyse their computational cost in the
context of lex models and compositional statements.

We define pre-order relation <Γ on outcomes by α <Γ

β ⇐⇒ Γ |= α ≥ β, and we define equivalence relation
≡Γ by α ≡Γ β ⇐⇒ Γ |= α ≡ β, i.e., if α and β are
equivalent in all models of Γ. Using a similar argument to
that for Theorem 1, it can be shown that, for compositional
Γ, we have Γ |= α ≡ β holds if and only if α ≡π β, where
π is an arbitrary maximal model of Γ. We also define �Γ to
be the strict part of <Γ, so that α �Γ β if and only if α <Γ β
and α 6≡Γ β. We then say that α strictly dominates β.

We define CSDΓ(A) (‘Can Strictly Dominate’) to be the
set of maximal, i.e., undominated, elements of A w.r.t. �Γ.
α ∈ CSDΓ(A) if and only if for all β ∈ A which are not
≡Γ-equivalent to α there exists some π |= Γ with α �π β.

We define Oπ(A) to be the subset of the alternatives that
are optimal in model π, i.e., {α ∈ A : ∀β ∈ A, α <π β}.
We say that α ∈ A is necessarily optimal in A, written
α ∈ NOΓ(A), if α is optimal in every model, i.e., if for all
π ∈ G with π |= Γ we have α ∈ Oπ(A).

We say that α is possibly optimal, written α ∈ POΓ(A),
if α is optimal in some model of Γ, so that POΓ(A) =⋃
π|=Γ Oπ(A). Similarly, we say that α ∈ POMΓ(A) if α

is optimal in some maximal model of Γ. α is possibly strictly
optimal in A, written α ∈ PSOΓ(A), if there exists some
π |= Γ with Oπ(A) 3 α and Γ |= α ≡ β for all β ∈ Oπ(A).
Thus α is in PSOΓ(A) if there is a model of Γ in which α is
optimal, and all other optimal elements are equivalent to α.

Let OptAΓ (α) be the set of models π of Γ that make α
optimal in A, i.e., {π |= Γ : Oπ(A) 3 α}. We define α ∈
MPOΓ(A) if OptAΓ (α) is maximal, in the sense that there ex-
ists no β ∈ A with OptAΓ (β) a strict superset of OptAΓ (α). We
say that α is maximally possibly optimal in A given Γ; this
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holds if and only if there is no alternative that is optimal in
the same set of lex models and more.

Let π1, . . . , πk be a finite sequence of models. Define
Aπ1 to be Oπ1(A). For i = 1, . . . , k we iteratively define
Aπ1,...,πi to be Oπi(Aπ1,...,πi−1). We define the extreme el-
ements EXTΓ(A) as follows. α ∈ EXTΓ(A) if and only if
there exists a sequence π1, . . . , πk of models of Γ such that
Aπ1,...,πk

3 α and for all β ∈ Aπ1,...,πk
, Γ |= α ≡ β. There-

fore, α ∈ EXTΓ(A) if there is a sequence of lex models such
that iteratively maximising with respect to each lex model in
turn leads to a set containing α and only other alternatives
that are equivalent to α.

Proposition 5 For any A ⊆ V and Γ ⊆ L we have
PSOΓ(A) ⊆ POMΓ(A) ∩ MPOΓ(A) ∩ EXTΓ(A). If
Γ is compositional then PSOΓ(A) = POMΓ(A) =
MPOΓ(A) = EXTΓ(A).

Without making assumptions about Γ we have the following
properties, which follow from basic arguments, that apply in
a very general context [Wilson and O’Mahony, 2011].

Proposition 6 Consider any A ⊆ V and Γ ⊆ L. Then, the
following all hold. (i) NOΓ(A) ∪PSOΓ(A) ⊆ MPOΓ(A) ∩
EXTΓ(A); (ii) EXTΓ(A) ⊆ CSDΓ(A) ∩ POΓ(A); (iii)
MPOΓ(A) ⊆ POΓ(A); (iv) MPOΓ(A) ∩ EXTΓ(A)
is always non-empty. (v) If NOΓ(A) is non-empty then
NOΓ(A) = MPOΓ(A) = EXTΓ(A) = CSDΓ(A).

Propositions 5 and 6 imply the following result, showing that
there are substantial simplifications of the optimality classes
when Γ is compositional.

Theorem 3 Consider anyA ⊆ V and compositional Γ ⊆ L.
Then NOΓ(A) ⊆ PSOΓ(A) = EXTΓ(A) = MPOΓ(A) =
POMΓ(A) ⊆ CSDΓ(A) ∩ POΓ(A).

Computational Results: One approach to compute Ω(A)
for Ω ∈ {POΓ,PSOΓ,CSDΓ,NOΓ} is to test member-
ship for every alternative. By the results in Section 4.2, we
can decide consistency for g statements in L′pqT and n vari-
ables in O(n2g). To test if α ∈ POΓ(A), we test whether
Γ ∪ {α ≥ β | β ∈ A− {α}} is consistent in O(n2(g +m)),
where |A| = m. Similarly, we test if α ∈ PSOΓ(A) in
O(n2(g+m)), by checking if Γ∪{α > β | β ∈ A, β 6≡Γ α}
is consistent. To test if α ∈ CSDΓ(A), we check for all β ∈
A with β 6≡Γ α if Γ ∪ {α > β} is consistent in O(mn2g)).
To test if α ∈ NOΓ(A), we test for all β ∈ A − {α} if
Γ∪ {α < β} is consistent in O(mn2g)). Optimality sets can
also be computed incrementally [Wilson et al., 2015b].

We implemented these methods for computing
POΓ,PSOΓ,CSDΓ and NOΓ and randomly gener-
ated 10 consistent instances for each configuration of
g ∈ {100, . . . , 1000} (equally divided into fully strict,
weakly strict, non-strict and negated non-strict) and
n ∈ {100, . . . , 1000} variables with random domain sizes
2 or 3. We tested the methods on every instance for
m = 100, . . . , 500 alternatives. All experiments result in
NOΓ(A) ⊆ POΓ(A) = PSOΓ(A) ⊆ CSDΓ(A) which
extends the relations from Theorem 3. In our experiments,
CSD is computed much slower than PO, PSO and NO.
Also, often PO is computed faster than NO. In practice, it

is often desired to compute relatively small sets of optimal
solutions, e.g., not to overwhelm a user with too many
choices. Since NOΓ is usually empty in our experiments,
computing PSOΓ or POΓ may be the best choice because of
its size and computational cost.

6 Discussion
We have developed a new approach for preference inference
based on lexicographic models, using a notion of strong com-
positionality that allows a greedy algorithm. This is shown to
be polynomial for relatively expressive preference languages.
We also examined different notions of optimality, and proved
relationships between them. Our experimental results con-
firm that the preference inference/consistency algorithm is
fast, and examined the problem of generating optimal solu-
tions, where it was found that generating the sets of possibly
optimal and possibly strictly optimal solutions were signifi-
cantly faster than generating the undominated solutions.

There are other common forms of preference statement
that are strongly compositional, and for which the greedy
algorithm will enable checking consistency. For instance, a
restriction on the allowed value orderings of each variable
is always strongly compositional. This can include, for in-
stance, highly disjunctive statements, for instance, structural
properties of the value orderings, such as being single-peaked
[Conitzer, 2009]. Certain kinds of restrictions on variable or-
derings are also strongly compositional.

A lexicographic order can also be viewed as a static vari-
able and value search ordering, for a constraint satisfaction
or optimisation problem. In a configuration problem, for
instance, we may want to generate solutions in an ordering
which fits in with what one knows about user preferences and
the structure of the problem [Junker and Mailharro, 2003].
We can thus take, as input, past user preferences between
solutions, or even partial tuples; or that all solutions of one
constraint are preferred to all those satisfying another con-
straint. There may be natural restrictions on the set of value
orderings, e.g., that there is a single peak or trough with a
numerical domain. Given such inputs, which are strongly
compositional, one can apply our approach to see if there is
a compatible lexicographic order, which can then be used to
generate solutions in a best first order.

Our approach in Section 3 was rather abstract, in that no
explicit structure on the language L was assumed. In fact, a
closer examination of the proofs of some of the main results
suggests that these will hold more generally than for lexico-
graphic orders: essentially they just depend on basic proper-
ties of composition and extension, but not otherwise on the
structure of models. In particular, it is natural to look at the
generalisation to conditional lexicographic orders, which are
closely related to conditional preference languages [Wilson,
2009]. It would also be interesting to explore the potential
connection with efficient classes of planning problems.
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